How majority-vote crossover and estimation-of-distribution algorithms cope with fitness valleys
The benefits of using crossover in crossing fitness gaps have been studied extensively in evolutionary computation. Recent runtime results show that majority-vote crossover is particularly efficient at optimizing the well-known Jump benchmark function that includes a fitness gap next to the global o...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 940; s. 18 - 42 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
09.01.2023
|
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The benefits of using crossover in crossing fitness gaps have been studied extensively in evolutionary computation. Recent runtime results show that majority-vote crossover is particularly efficient at optimizing the well-known Jump benchmark function that includes a fitness gap next to the global optimum. Also estimation-of-distribution algorithms (EDAs), which use an implicit crossover, are much more efficient on Jump than typical mutation-based algorithms. However, the allowed gap size for polynomial runtimes with EDAs is at most logarithmic in the problem dimension n.
In this paper, we investigate variants of the Jump function where the gap is shifted and appears in the middle of the typical search trajectory. Such gaps can still be overcome efficiently in time O(nlogn) by majority-vote crossover and an estimation-of-distribution algorithm, even for gap sizes almost n. However, if the global optimum is located in the gap instead of the usual all-ones string, majority-vote crossover would nevertheless approach the all-ones string and be highly inefficient. In sharp contrast, an EDA can still find such a shifted optimum efficiently. Thanks to a general property called fair sampling, the EDA will with high probability sample from almost every fitness level of the function, including levels in the gap, and sample the global optimum even though the overall search trajectory points towards the all-ones string. Finally, we derive limits on the gap size allowing efficient runtimes for the EDA.
•We study 2 algorithms using majority-vote crossover and an estimation-of-distribution algorithm on modified jump functions.•We derive theorems on the algorithms' runtime using rigorous mathematical analyses.•All 3 algorithms can overcome the fitness gap of the jump functions efficiently for moderate sizes of the gap.•All but the estimation-of-distribution algorithm usually fail to find an optimum located within the gap.•The estimation-of-distribution is efficient since it samples fairly on all fitness levels towards the optimum. |
|---|---|
| AbstractList | The benefits of using crossover in crossing fitness gaps have been studied extensively in evolutionary computation. Recent runtime results show that majority-vote crossover is particularly efficient at optimizing the well-known Jump benchmark function that includes a fitness gap next to the global optimum. Also estimation-of-distribution algorithms (EDAs), which use an implicit crossover, are much more efficient on Jump than typical mutation-based algorithms. However, the allowed gap size for polynomial runtimes with EDAs is at most logarithmic in the problem dimension n.
In this paper, we investigate variants of the Jump function where the gap is shifted and appears in the middle of the typical search trajectory. Such gaps can still be overcome efficiently in time O(nlogn) by majority-vote crossover and an estimation-of-distribution algorithm, even for gap sizes almost n. However, if the global optimum is located in the gap instead of the usual all-ones string, majority-vote crossover would nevertheless approach the all-ones string and be highly inefficient. In sharp contrast, an EDA can still find such a shifted optimum efficiently. Thanks to a general property called fair sampling, the EDA will with high probability sample from almost every fitness level of the function, including levels in the gap, and sample the global optimum even though the overall search trajectory points towards the all-ones string. Finally, we derive limits on the gap size allowing efficient runtimes for the EDA.
•We study 2 algorithms using majority-vote crossover and an estimation-of-distribution algorithm on modified jump functions.•We derive theorems on the algorithms' runtime using rigorous mathematical analyses.•All 3 algorithms can overcome the fitness gap of the jump functions efficiently for moderate sizes of the gap.•All but the estimation-of-distribution algorithm usually fail to find an optimum located within the gap.•The estimation-of-distribution is efficient since it samples fairly on all fitness levels towards the optimum. |
| Author | Witt, Carsten |
| Author_xml | – sequence: 1 givenname: Carsten orcidid: 0000-0002-6105-7700 surname: Witt fullname: Witt, Carsten email: cawi@dtu.dk organization: DTU Compute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark |
| BookMark | eNp9kM9KAzEQxoNUsK0-gLe8QNb8280unqSoFQpe9ByySVazbDcliS19e7OtJw8dBmYG5jd88y3AbPSjBeCe4IJgUj30RdKxoJjSAtcFJvwKzEktGkRpw2dgjhnmiDWivAGLGHucoxTVHMi1P8Ct6n1w6Yj2Plmog4_R722AajTQxuS2Kjk_It8h42IKrv2ZZqiGrwn73kao_c7CQ-5h59JoY4R7NQz2GG_BdaeGaO_-6hJ8vjx_rNZo8_76tnraIM04TqipsMDY1lSUdcM6bYhhtspJtMYtL4ngVFSVUW2Z17QRJealMpxz1taUdWwJyPnuSX2wndyFrDscJcFyckj2MjskJ4ckrmV2KDPiH6NdOr2agnLDRfLxTNr80t7ZIKN2dtTWuGB1ksa7C_QvwSuEvg |
| CitedBy_id | crossref_primary_10_1007_s00453_025_01323_x crossref_primary_10_1007_s00453_024_01232_5 crossref_primary_10_1007_s00453_024_01281_w crossref_primary_10_1016_j_tcs_2024_114622 |
| Cites_doi | 10.1109/TEVC.2020.2987361 10.1007/s11047-006-9001-0 10.1007/s00453-002-0940-2 10.1016/S0304-3975(01)00182-7 10.1007/s00453-021-00907-7 10.1007/s00224-004-1177-z 10.1214/aoms/1177728178 10.1109/TEVC.2009.2039139 10.1007/s00453-020-00780-w 10.1017/S0963548315000127 10.1109/TEVC.2017.2724201 10.1214/aop/1176996461 10.1016/j.spa.2012.06.009 10.1162/EVCO_a_00171 10.1016/j.tcs.2015.01.002 10.1108/17563780910959893 10.1007/s00453-020-00778-4 10.1007/s00453-018-0480-z 10.1017/S0963548320000565 10.1007/s00453-018-0463-0 10.1109/4235.797971 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.tcs.2022.08.014 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1879-2294 |
| EndPage | 42 |
| ExternalDocumentID | 10_1016_j_tcs_2022_08_014 S0304397522004881 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPC SPCBC SSV SSW T5K TN5 WH7 YNT ZMT ~G- 29Q 9DU AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FGOYB G-2 HZ~ R2- SEW SSZ TAE WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c340t-960700e8275893fcd1d3e63e61cc0b451742766dab500ecd75045ad4443b823f3 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000990106700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-3975 |
| IngestDate | Tue Nov 18 22:29:09 EST 2025 Sat Nov 29 07:24:51 EST 2025 Fri Feb 23 02:37:33 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Randomized search heuristics Estimation-of-distribution algorithms Jump functions Runtime analysis Crossover Multimodal functions |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-960700e8275893fcd1d3e63e61cc0b451742766dab500ecd75045ad4443b823f3 |
| ORCID | 0000-0002-6105-7700 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.tcs.2022.08.014 |
| PageCount | 25 |
| ParticipantIDs | crossref_primary_10_1016_j_tcs_2022_08_014 crossref_citationtrail_10_1016_j_tcs_2022_08_014 elsevier_sciencedirect_doi_10_1016_j_tcs_2022_08_014 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-09 |
| PublicationDateYYYYMMDD | 2023-01-09 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | Theoretical computer science |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jansen (br0260) 2015 Droste, Jansen, Wegener (br0160) 2002; 276 Fan, Grama, Liu (br0180) 2012; 122 Lissovoi, Oliveto, Warwicker (br0330) 2019 Sudholt, Witt (br0430) 2019; 81 Jansen, Wegener (br0270) 2002; 34 Rajabi, Witt (br0390) 2021 Rowe, Aishwaryaprajna (br0410) 2019 Rajabi, Witt (br0380) 2020 Friedrich, Quinzan, Wagner (br0210) 2018 Droste (br0150) 2006; 5 Lengler (br0310) 2020 Corus, Oliveto, Yazdani (br0070) 2018 Whitley, Varadarajan, Hirsch, Mukhopadhyay (br0440) 2018 Corus, Oliveto, Yazdani (br0060) 2017 Prügel-Bennett (br0370) 2010; 14 Doerr, Le, Makhmara, Nguyen (br0130) 2017 Benbaki, Benmar, Doerr (br0050) 2021 Doerr (br0110) 2020 Ackley (br0010) 1987 Mitavskiy, Rowe, Cannings (br0350) 2009; 2 Friedrich, Kötzing, Krejca, Nallaperuma, Neumann, Schirneck (br0190) 2016 Kötzing, Sudholt, Theile (br0290) 2011 Friedrich, Kötzing, Krejca, Sutton (br0200) 2017; 21 Doerr (br0120) 2021; 83 Marshall, Olkin, Arnold (br0340) 2011 Witt (br0470) 2021 Hwang, Witt (br0250) 2019 Bambury, Bultel, Doerr (br0040) 2021 Antipov, Doerr, Karavaev (br0020) 2022; 84 Gleser (br0220) 1975; 3 Droste, Jansen, Wegener (br0170) 2006; 39 Hoeffding (br0240) 1956; 27 Witt (br0460) 2019; 81 Doerr (br0090) 2019 Witt (br0450) 2018 Lehre, Witt (br0300) 2021; 30 Rajabi, Witt (br0400) 2021 Baillon, Cominetti, Vaisman (br0030) 2016; 25 Johannsen (br0280) 2010 Harik, Lobo, Goldberg (br0230) 1999; 3 Doerr, Zheng (br0140) 2020; 24 Lengler, Sudholt, Witt (br0320) 2021; 83 Dang, Friedrich, Kötzing, Krejca, Lehre, Oliveto, Sudholt, Sutton (br0080) 2018; 22 Sudholt (br0420) 2017; 25 Doerr (br0100) 2019 Oliveto, Witt (br0360) 2015; 605 Ackley (10.1016/j.tcs.2022.08.014_br0010) 1987 Rajabi (10.1016/j.tcs.2022.08.014_br0400) 2021 Johannsen (10.1016/j.tcs.2022.08.014_br0280) 2010 Rowe (10.1016/j.tcs.2022.08.014_br0410) 2019 Corus (10.1016/j.tcs.2022.08.014_br0070) 2018 Doerr (10.1016/j.tcs.2022.08.014_br0110) 2020 Marshall (10.1016/j.tcs.2022.08.014_br0340) 2011 Antipov (10.1016/j.tcs.2022.08.014_br0020) 2022; 84 Witt (10.1016/j.tcs.2022.08.014_br0450) 2018 Harik (10.1016/j.tcs.2022.08.014_br0230) 1999; 3 Corus (10.1016/j.tcs.2022.08.014_br0060) 2017 Benbaki (10.1016/j.tcs.2022.08.014_br0050) 2021 Doerr (10.1016/j.tcs.2022.08.014_br0120) 2021; 83 Fan (10.1016/j.tcs.2022.08.014_br0180) 2012; 122 Droste (10.1016/j.tcs.2022.08.014_br0160) 2002; 276 Friedrich (10.1016/j.tcs.2022.08.014_br0200) 2017; 21 Hoeffding (10.1016/j.tcs.2022.08.014_br0240) 1956; 27 Sudholt (10.1016/j.tcs.2022.08.014_br0420) 2017; 25 Lehre (10.1016/j.tcs.2022.08.014_br0300) 2021; 30 Droste (10.1016/j.tcs.2022.08.014_br0150) 2006; 5 Prügel-Bennett (10.1016/j.tcs.2022.08.014_br0370) 2010; 14 Dang (10.1016/j.tcs.2022.08.014_br0080) 2018; 22 Doerr (10.1016/j.tcs.2022.08.014_br0130) 2017 Lengler (10.1016/j.tcs.2022.08.014_br0320) 2021; 83 Doerr (10.1016/j.tcs.2022.08.014_br0140) 2020; 24 Bambury (10.1016/j.tcs.2022.08.014_br0040) 2021 Kötzing (10.1016/j.tcs.2022.08.014_br0290) 2011 Doerr (10.1016/j.tcs.2022.08.014_br0090) 2019 Sudholt (10.1016/j.tcs.2022.08.014_br0430) 2019; 81 Jansen (10.1016/j.tcs.2022.08.014_br0270) 2002; 34 Hwang (10.1016/j.tcs.2022.08.014_br0250) 2019 Lengler (10.1016/j.tcs.2022.08.014_br0310) 2020 Doerr (10.1016/j.tcs.2022.08.014_br0100) 2019 Rajabi (10.1016/j.tcs.2022.08.014_br0390) 2021 Rajabi (10.1016/j.tcs.2022.08.014_br0380) 2020 Friedrich (10.1016/j.tcs.2022.08.014_br0210) 2018 Droste (10.1016/j.tcs.2022.08.014_br0170) 2006; 39 Baillon (10.1016/j.tcs.2022.08.014_br0030) 2016; 25 Mitavskiy (10.1016/j.tcs.2022.08.014_br0350) 2009; 2 Jansen (10.1016/j.tcs.2022.08.014_br0260) 2015 Witt (10.1016/j.tcs.2022.08.014_br0460) 2019; 81 Witt (10.1016/j.tcs.2022.08.014_br0470) 2021 Friedrich (10.1016/j.tcs.2022.08.014_br0190) 2016 Oliveto (10.1016/j.tcs.2022.08.014_br0360) 2015; 605 Lissovoi (10.1016/j.tcs.2022.08.014_br0330) 2019 Gleser (10.1016/j.tcs.2022.08.014_br0220) 1975; 3 Whitley (10.1016/j.tcs.2022.08.014_br0440) 2018 |
| References_xml | – start-page: 989 year: 2011 end-page: 996 ident: br0290 article-title: How crossover helps in Pseudo-Boolean optimization publication-title: Proc. of GECCO 2011 – volume: 84 start-page: 1573 year: 2022 end-page: 1602 ident: br0020 article-title: A rigorous runtime analysis of the (1 + ( publication-title: Algorithmica – volume: 22 start-page: 484 year: 2018 end-page: 497 ident: br0080 article-title: Escaping local optima using crossover with emergent diversity publication-title: IEEE Trans. Evol. Comput. – start-page: 25 year: 2019 end-page: 33 ident: br0090 article-title: An exponential lower bound for the runtime of the compact genetic algorithm on jump functions publication-title: Proc. of FOGA '19 – start-page: 34 year: 2019 end-page: 42 ident: br0410 article-title: The benefits and limitations of voting mechanisms in evolutionary optimisation publication-title: Proc. of FOGA '19 – start-page: 83 year: 2017 end-page: 90 ident: br0060 article-title: On the runtime analysis of the Opt-IA artificial immune system publication-title: Proc. of GECCO '17 – volume: 21 start-page: 477 year: 2017 end-page: 490 ident: br0200 article-title: The compact genetic algorithm is efficient under extreme Gaussian noise publication-title: IEEE Trans. Evol. Comput. – volume: 276 start-page: 51 year: 2002 end-page: 81 ident: br0160 article-title: On the analysis of the (1+1) evolutionary algorithm publication-title: Theor. Comput. Sci. – start-page: 1 year: 2020 end-page: 87 ident: br0110 article-title: Probabilistic tools for the analysis of randomized optimization heuristics publication-title: Theory of Evolutionary Computation – Recent Developments in Discrete Optimization – volume: 5 start-page: 257 year: 2006 end-page: 283 ident: br0150 article-title: A rigorous analysis of the compact genetic algorithm for linear functions publication-title: Nat. Comput. – year: 2011 ident: br0340 article-title: Inequalities: Theory of Majorization and Its Applications – start-page: 1539 year: 2018 end-page: 1546 ident: br0450 article-title: Domino convergence: why one should hill-climb on linear functions publication-title: Proc. of GECCO '18 – year: 2010 ident: br0280 article-title: Random combinatorial structures and randomized search heuristics – volume: 605 start-page: 21 year: 2015 end-page: 41 ident: br0360 article-title: Improved time complexity analysis of the simple genetic algorithm publication-title: Theor. Comput. Sci. – volume: 81 start-page: 632 year: 2019 end-page: 667 ident: br0460 article-title: Upper bounds on the running time of the univariate marginal distribution algorithm on OneMax publication-title: Algorithmica – volume: 30 start-page: 550 year: 2021 end-page: 569 ident: br0300 article-title: Tail bounds on hitting times of randomized search heuristics using variable drift analysis publication-title: Comb. Probab. Comput. – start-page: 293 year: 2018 end-page: 300 ident: br0210 article-title: Escaping large deceptive basins of attraction with heavy-tailed mutation operators publication-title: Proc. of GECCO '18 – volume: 14 start-page: 500 year: 2010 end-page: 517 ident: br0370 article-title: Benefits of a population: five mechanisms that advantage population-based algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 39 start-page: 525 year: 2006 end-page: 544 ident: br0170 article-title: Upper and lower bounds for randomized search heuristics in black-box optimization publication-title: Theory Comput. Syst. – volume: 81 start-page: 1450 year: 2019 end-page: 1489 ident: br0430 article-title: On the choice of the update strength in estimation-of-distribution algorithms and ant colony optimization publication-title: Algorithmica – volume: 25 start-page: 237 year: 2017 end-page: 274 ident: br0420 article-title: How crossover speeds up building block assembly in genetic algorithms publication-title: Evol. Comput. – start-page: 67 year: 2018 end-page: 78 ident: br0070 article-title: Fast artificial immune systems publication-title: Proc. of PPSN '18 – start-page: 1488 year: 2019 end-page: 1496 ident: br0100 article-title: A tight runtime analysis for the cGA on jump functions: EDAs can cross fitness valleys at no extra cost publication-title: Proc. of GECCO '19 – volume: 83 start-page: 1096 year: 2021 end-page: 1137 ident: br0320 article-title: The complex parameter landscape of the compact genetic algorithm publication-title: Algorithmica – volume: 83 start-page: 3059 year: 2021 end-page: 3107 ident: br0120 article-title: The runtime of the compact genetic algorithm on jump functions publication-title: Algorithmica – start-page: 4 year: 2021 end-page: 13 ident: br0050 article-title: A rigorous runtime analysis of the 2-MMAS publication-title: Proc. of GECCO '21 – volume: 3 start-page: 182 year: 1975 end-page: 188 ident: br0220 article-title: On the distribution of the number of successes in independent trials publication-title: Ann. Probab. – start-page: 1 year: 2019 end-page: 12 ident: br0250 article-title: Sharp bounds on the runtime of the (1+1) EA via drift analysis and analytic combinatorial tools publication-title: Proc. of FOGA '19 – start-page: 152 year: 2021 end-page: 168 ident: br0400 article-title: Stagnation detection with randomized local search publication-title: Proc. of EvoCOP '21 – volume: 24 start-page: 1140 year: 2020 end-page: 1149 ident: br0140 article-title: Sharp bounds for genetic drift in estimation of distribution algorithms publication-title: IEEE Trans. Evol. Comput. – start-page: 16 year: 2015 end-page: 24 ident: br0260 article-title: On the black-box complexity of example functions: the real jump function publication-title: Proc. of FOGA '15 – start-page: 777 year: 2017 end-page: 784 ident: br0130 article-title: Fast genetic algorithms publication-title: Proc. of GECCO '17 – year: 1987 ident: br0010 article-title: A Connectionist Machine for Genetic Hillclimbing – volume: 25 start-page: 352 year: 2016 end-page: 361 ident: br0030 article-title: A sharp uniform bound for the distribution of sums of Bernoulli trials publication-title: Comb. Probab. Comput. – volume: 34 start-page: 47 year: 2002 end-page: 66 ident: br0270 article-title: The analysis of evolutionary algorithms - a proof that crossover really can help publication-title: Algorithmica – start-page: 1 year: 2021 end-page: 15 ident: br0470 article-title: On crossing fitness valleys with majority-vote crossover and estimation-of-distribution algorithms publication-title: Proc. of FOGA '21 – start-page: 89 year: 2020 end-page: 131 ident: br0310 article-title: Drift analysis publication-title: Theory of Evolutionary Computation – Recent Developments in Discrete Optimization – start-page: 2322 year: 2019 end-page: 2329 ident: br0330 article-title: On the time complexity of algorithm selection hyper-heuristics for multimodal optimisation publication-title: Proc. of AAAI '19 – start-page: 1124 year: 2021 end-page: 1132 ident: br0040 article-title: An extended jump function benchmark for the analysis of randomized search heuristics publication-title: Proc. of GECCO '21 – start-page: 661 year: 2016 end-page: 668 ident: br0190 article-title: Fast building block assembly by majority vote crossover publication-title: Proc. of GECCO '16 – volume: 3 start-page: 287 year: 1999 end-page: 297 ident: br0230 article-title: The compact genetic algorithm publication-title: IEEE Trans. Evol. Comput. – start-page: 1178 year: 2021 end-page: 1186 ident: br0390 article-title: Stagnation detection in highly multimodal fitness landscapes publication-title: Proc. of GECCO '21 – volume: 27 start-page: 713 year: 1956 end-page: 721 ident: br0240 article-title: On the distribution of the number of successes in independent trials publication-title: Ann. Math. Stat. – volume: 122 start-page: 3545 year: 2012 end-page: 3559 ident: br0180 article-title: Hoeffding's inequality for supermartingales publication-title: Stoch. Process. Appl. – volume: 2 start-page: 243 year: 2009 end-page: 284 ident: br0350 article-title: Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links publication-title: Int. J. Intell. Comput. Cybern. – start-page: 1314 year: 2020 end-page: 1322 ident: br0380 article-title: Self-adjusting evolutionary algorithms for multimodal optimization publication-title: Proc. of GECCO '20 – start-page: 55 year: 2018 end-page: 66 ident: br0440 article-title: Exploration and exploitation without mutation: solving the jump function in publication-title: Proc. of PPSN '18 – volume: 24 start-page: 1140 year: 2020 ident: 10.1016/j.tcs.2022.08.014_br0140 article-title: Sharp bounds for genetic drift in estimation of distribution algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2987361 – volume: 21 start-page: 477 year: 2017 ident: 10.1016/j.tcs.2022.08.014_br0200 article-title: The compact genetic algorithm is efficient under extreme Gaussian noise publication-title: IEEE Trans. Evol. Comput. – start-page: 1314 year: 2020 ident: 10.1016/j.tcs.2022.08.014_br0380 article-title: Self-adjusting evolutionary algorithms for multimodal optimization – volume: 5 start-page: 257 year: 2006 ident: 10.1016/j.tcs.2022.08.014_br0150 article-title: A rigorous analysis of the compact genetic algorithm for linear functions publication-title: Nat. Comput. doi: 10.1007/s11047-006-9001-0 – start-page: 83 year: 2017 ident: 10.1016/j.tcs.2022.08.014_br0060 article-title: On the runtime analysis of the Opt-IA artificial immune system – volume: 34 start-page: 47 year: 2002 ident: 10.1016/j.tcs.2022.08.014_br0270 article-title: The analysis of evolutionary algorithms - a proof that crossover really can help publication-title: Algorithmica doi: 10.1007/s00453-002-0940-2 – start-page: 25 year: 2019 ident: 10.1016/j.tcs.2022.08.014_br0090 article-title: An exponential lower bound for the runtime of the compact genetic algorithm on jump functions – start-page: 1488 year: 2019 ident: 10.1016/j.tcs.2022.08.014_br0100 article-title: A tight runtime analysis for the cGA on jump functions: EDAs can cross fitness valleys at no extra cost – start-page: 16 year: 2015 ident: 10.1016/j.tcs.2022.08.014_br0260 article-title: On the black-box complexity of example functions: the real jump function – start-page: 89 year: 2020 ident: 10.1016/j.tcs.2022.08.014_br0310 article-title: Drift analysis – start-page: 1 year: 2021 ident: 10.1016/j.tcs.2022.08.014_br0470 article-title: On crossing fitness valleys with majority-vote crossover and estimation-of-distribution algorithms – start-page: 152 year: 2021 ident: 10.1016/j.tcs.2022.08.014_br0400 article-title: Stagnation detection with randomized local search – start-page: 777 year: 2017 ident: 10.1016/j.tcs.2022.08.014_br0130 article-title: Fast genetic algorithms – start-page: 989 year: 2011 ident: 10.1016/j.tcs.2022.08.014_br0290 article-title: How crossover helps in Pseudo-Boolean optimization – start-page: 55 year: 2018 ident: 10.1016/j.tcs.2022.08.014_br0440 article-title: Exploration and exploitation without mutation: solving the jump function in θ(n) time – start-page: 4 year: 2021 ident: 10.1016/j.tcs.2022.08.014_br0050 article-title: A rigorous runtime analysis of the 2-MMASib on jump functions: ant colony optimizers can cope well with local optima – volume: 276 start-page: 51 year: 2002 ident: 10.1016/j.tcs.2022.08.014_br0160 article-title: On the analysis of the (1+1) evolutionary algorithm publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(01)00182-7 – year: 1987 ident: 10.1016/j.tcs.2022.08.014_br0010 – volume: 84 start-page: 1573 year: 2022 ident: 10.1016/j.tcs.2022.08.014_br0020 article-title: A rigorous runtime analysis of the (1 + (λ, λ)) GA on jump functions publication-title: Algorithmica doi: 10.1007/s00453-021-00907-7 – volume: 39 start-page: 525 year: 2006 ident: 10.1016/j.tcs.2022.08.014_br0170 article-title: Upper and lower bounds for randomized search heuristics in black-box optimization publication-title: Theory Comput. Syst. doi: 10.1007/s00224-004-1177-z – start-page: 67 year: 2018 ident: 10.1016/j.tcs.2022.08.014_br0070 article-title: Fast artificial immune systems – volume: 27 start-page: 713 year: 1956 ident: 10.1016/j.tcs.2022.08.014_br0240 article-title: On the distribution of the number of successes in independent trials publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177728178 – volume: 14 start-page: 500 year: 2010 ident: 10.1016/j.tcs.2022.08.014_br0370 article-title: Benefits of a population: five mechanisms that advantage population-based algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2039139 – volume: 83 start-page: 3059 year: 2021 ident: 10.1016/j.tcs.2022.08.014_br0120 article-title: The runtime of the compact genetic algorithm on jump functions publication-title: Algorithmica doi: 10.1007/s00453-020-00780-w – start-page: 1 year: 2019 ident: 10.1016/j.tcs.2022.08.014_br0250 article-title: Sharp bounds on the runtime of the (1+1) EA via drift analysis and analytic combinatorial tools – volume: 25 start-page: 352 year: 2016 ident: 10.1016/j.tcs.2022.08.014_br0030 article-title: A sharp uniform bound for the distribution of sums of Bernoulli trials publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548315000127 – start-page: 1178 year: 2021 ident: 10.1016/j.tcs.2022.08.014_br0390 article-title: Stagnation detection in highly multimodal fitness landscapes – start-page: 2322 year: 2019 ident: 10.1016/j.tcs.2022.08.014_br0330 article-title: On the time complexity of algorithm selection hyper-heuristics for multimodal optimisation – start-page: 34 year: 2019 ident: 10.1016/j.tcs.2022.08.014_br0410 article-title: The benefits and limitations of voting mechanisms in evolutionary optimisation – volume: 22 start-page: 484 year: 2018 ident: 10.1016/j.tcs.2022.08.014_br0080 article-title: Escaping local optima using crossover with emergent diversity publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2724201 – volume: 3 start-page: 182 year: 1975 ident: 10.1016/j.tcs.2022.08.014_br0220 article-title: On the distribution of the number of successes in independent trials publication-title: Ann. Probab. doi: 10.1214/aop/1176996461 – year: 2010 ident: 10.1016/j.tcs.2022.08.014_br0280 – start-page: 1 year: 2020 ident: 10.1016/j.tcs.2022.08.014_br0110 article-title: Probabilistic tools for the analysis of randomized optimization heuristics – volume: 122 start-page: 3545 year: 2012 ident: 10.1016/j.tcs.2022.08.014_br0180 article-title: Hoeffding's inequality for supermartingales publication-title: Stoch. Process. Appl. doi: 10.1016/j.spa.2012.06.009 – volume: 25 start-page: 237 year: 2017 ident: 10.1016/j.tcs.2022.08.014_br0420 article-title: How crossover speeds up building block assembly in genetic algorithms publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00171 – start-page: 293 year: 2018 ident: 10.1016/j.tcs.2022.08.014_br0210 article-title: Escaping large deceptive basins of attraction with heavy-tailed mutation operators – volume: 605 start-page: 21 year: 2015 ident: 10.1016/j.tcs.2022.08.014_br0360 article-title: Improved time complexity analysis of the simple genetic algorithm publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2015.01.002 – start-page: 1539 year: 2018 ident: 10.1016/j.tcs.2022.08.014_br0450 article-title: Domino convergence: why one should hill-climb on linear functions – year: 2011 ident: 10.1016/j.tcs.2022.08.014_br0340 – volume: 2 start-page: 243 year: 2009 ident: 10.1016/j.tcs.2022.08.014_br0350 article-title: Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links publication-title: Int. J. Intell. Comput. Cybern. doi: 10.1108/17563780910959893 – volume: 83 start-page: 1096 year: 2021 ident: 10.1016/j.tcs.2022.08.014_br0320 article-title: The complex parameter landscape of the compact genetic algorithm publication-title: Algorithmica doi: 10.1007/s00453-020-00778-4 – volume: 81 start-page: 1450 year: 2019 ident: 10.1016/j.tcs.2022.08.014_br0430 article-title: On the choice of the update strength in estimation-of-distribution algorithms and ant colony optimization publication-title: Algorithmica doi: 10.1007/s00453-018-0480-z – start-page: 1124 year: 2021 ident: 10.1016/j.tcs.2022.08.014_br0040 article-title: An extended jump function benchmark for the analysis of randomized search heuristics – volume: 30 start-page: 550 year: 2021 ident: 10.1016/j.tcs.2022.08.014_br0300 article-title: Tail bounds on hitting times of randomized search heuristics using variable drift analysis publication-title: Comb. Probab. Comput. doi: 10.1017/S0963548320000565 – start-page: 661 year: 2016 ident: 10.1016/j.tcs.2022.08.014_br0190 article-title: Fast building block assembly by majority vote crossover – volume: 81 start-page: 632 year: 2019 ident: 10.1016/j.tcs.2022.08.014_br0460 article-title: Upper bounds on the running time of the univariate marginal distribution algorithm on OneMax publication-title: Algorithmica doi: 10.1007/s00453-018-0463-0 – volume: 3 start-page: 287 year: 1999 ident: 10.1016/j.tcs.2022.08.014_br0230 article-title: The compact genetic algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.797971 |
| SSID | ssj0000576 |
| Score | 2.5436738 |
| Snippet | The benefits of using crossover in crossing fitness gaps have been studied extensively in evolutionary computation. Recent runtime results show that... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 18 |
| SubjectTerms | Crossover Estimation-of-distribution algorithms Jump functions Multimodal functions Randomized search heuristics Runtime analysis |
| Title | How majority-vote crossover and estimation-of-distribution algorithms cope with fitness valleys |
| URI | https://dx.doi.org/10.1016/j.tcs.2022.08.014 |
| Volume | 940 |
| WOSCitedRecordID | wos000990106700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2294 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000576 issn: 0304-3975 databaseCode: AIEXJ dateStart: 20211207 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBah3cP2sEu30XYX9LCnBRVblizpsYyOXctgGeTNWLK8NaROabzQ_vudY8lx1q5jGwyCCcaKhc6Xo3Mkne8j5IV0EARVLmdlXVomZJkyrb1kykImpmtla9cVCn9Qx8d6OjWfRqP3fS3Maq6aRl9cmLP_amq4B8bG0tm_MPf6R-EGfAejwxXMDtc_MjyKxJ2WswWq0rHVovXjbibEo5rdTgHSaoR6RbaoWYXEuVHzalzOv2Kzb6fLMRarhEXa-qTt3OEKVVcul5vR7GSjCtJFeYhxnFOHBZ22P1kCgGo2Vxl41q0yDL7sevlLKLnCbRUTpE8OfPCgWhnGeVAu7l2sCZRM0UlGhxum28Ctdc2RhzWF2UHrkFOd845nNZSbXuHH_oy9wE5w3rkjSIW3uZIGXNz24duj6bthYpYqbF3HXveb3N1xvysv-nWYshF6TO6TuzFnoIfB1g_IyDc75F6vx0Gje94hdz6uOXiXD0kBQKA_AYGugUABCPRmINABCBSBQBEINAKBRiA8Il9eH01evWFRToO5TCQtg1xVJYnXMDgQpNauSqvM5_BJnUusQMpyrvK8Kq2Ex1yFxP-yrIQQmdU8q7PHZKtZNH6XUJHq3JvSqqS0os4qIzOpsyr1JoWM3Ns9kvSjV7jINY-SJ_OiP1Q4K2DACxzwAmVQU7FHXq6bnAWild89LHqTFBHVIQIsAD83N9v_t2ZPyO3hL_GUbLXn3_0zcsut2pPl-fOIsh-2kZCn |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+majority-vote+crossover+and+estimation-of-distribution+algorithms+cope+with+fitness+valleys&rft.jtitle=Theoretical+computer+science&rft.au=Witt%2C+Carsten&rft.date=2023-01-09&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=940&rft.spage=18&rft.epage=42&rft_id=info:doi/10.1016%2Fj.tcs.2022.08.014&rft.externalDocID=S0304397522004881 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |