How majority-vote crossover and estimation-of-distribution algorithms cope with fitness valleys

The benefits of using crossover in crossing fitness gaps have been studied extensively in evolutionary computation. Recent runtime results show that majority-vote crossover is particularly efficient at optimizing the well-known Jump benchmark function that includes a fitness gap next to the global o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science Jg. 940; S. 18 - 42
1. Verfasser: Witt, Carsten
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 09.01.2023
Schlagworte:
ISSN:0304-3975, 1879-2294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The benefits of using crossover in crossing fitness gaps have been studied extensively in evolutionary computation. Recent runtime results show that majority-vote crossover is particularly efficient at optimizing the well-known Jump benchmark function that includes a fitness gap next to the global optimum. Also estimation-of-distribution algorithms (EDAs), which use an implicit crossover, are much more efficient on Jump than typical mutation-based algorithms. However, the allowed gap size for polynomial runtimes with EDAs is at most logarithmic in the problem dimension n. In this paper, we investigate variants of the Jump function where the gap is shifted and appears in the middle of the typical search trajectory. Such gaps can still be overcome efficiently in time O(nlog⁡n) by majority-vote crossover and an estimation-of-distribution algorithm, even for gap sizes almost n. However, if the global optimum is located in the gap instead of the usual all-ones string, majority-vote crossover would nevertheless approach the all-ones string and be highly inefficient. In sharp contrast, an EDA can still find such a shifted optimum efficiently. Thanks to a general property called fair sampling, the EDA will with high probability sample from almost every fitness level of the function, including levels in the gap, and sample the global optimum even though the overall search trajectory points towards the all-ones string. Finally, we derive limits on the gap size allowing efficient runtimes for the EDA. •We study 2 algorithms using majority-vote crossover and an estimation-of-distribution algorithm on modified jump functions.•We derive theorems on the algorithms' runtime using rigorous mathematical analyses.•All 3 algorithms can overcome the fitness gap of the jump functions efficiently for moderate sizes of the gap.•All but the estimation-of-distribution algorithm usually fail to find an optimum located within the gap.•The estimation-of-distribution is efficient since it samples fairly on all fitness levels towards the optimum.
AbstractList The benefits of using crossover in crossing fitness gaps have been studied extensively in evolutionary computation. Recent runtime results show that majority-vote crossover is particularly efficient at optimizing the well-known Jump benchmark function that includes a fitness gap next to the global optimum. Also estimation-of-distribution algorithms (EDAs), which use an implicit crossover, are much more efficient on Jump than typical mutation-based algorithms. However, the allowed gap size for polynomial runtimes with EDAs is at most logarithmic in the problem dimension n. In this paper, we investigate variants of the Jump function where the gap is shifted and appears in the middle of the typical search trajectory. Such gaps can still be overcome efficiently in time O(nlog⁡n) by majority-vote crossover and an estimation-of-distribution algorithm, even for gap sizes almost n. However, if the global optimum is located in the gap instead of the usual all-ones string, majority-vote crossover would nevertheless approach the all-ones string and be highly inefficient. In sharp contrast, an EDA can still find such a shifted optimum efficiently. Thanks to a general property called fair sampling, the EDA will with high probability sample from almost every fitness level of the function, including levels in the gap, and sample the global optimum even though the overall search trajectory points towards the all-ones string. Finally, we derive limits on the gap size allowing efficient runtimes for the EDA. •We study 2 algorithms using majority-vote crossover and an estimation-of-distribution algorithm on modified jump functions.•We derive theorems on the algorithms' runtime using rigorous mathematical analyses.•All 3 algorithms can overcome the fitness gap of the jump functions efficiently for moderate sizes of the gap.•All but the estimation-of-distribution algorithm usually fail to find an optimum located within the gap.•The estimation-of-distribution is efficient since it samples fairly on all fitness levels towards the optimum.
Author Witt, Carsten
Author_xml – sequence: 1
  givenname: Carsten
  orcidid: 0000-0002-6105-7700
  surname: Witt
  fullname: Witt, Carsten
  email: cawi@dtu.dk
  organization: DTU Compute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
BookMark eNp9kM9KAzEQxoNUsK0-gLe8QNb8280unqSoFQpe9ByySVazbDcliS19e7OtJw8dBmYG5jd88y3AbPSjBeCe4IJgUj30RdKxoJjSAtcFJvwKzEktGkRpw2dgjhnmiDWivAGLGHucoxTVHMi1P8Ct6n1w6Yj2Plmog4_R722AajTQxuS2Kjk_It8h42IKrv2ZZqiGrwn73kao_c7CQ-5h59JoY4R7NQz2GG_BdaeGaO_-6hJ8vjx_rNZo8_76tnraIM04TqipsMDY1lSUdcM6bYhhtspJtMYtL4ngVFSVUW2Z17QRJealMpxz1taUdWwJyPnuSX2wndyFrDscJcFyckj2MjskJ4ckrmV2KDPiH6NdOr2agnLDRfLxTNr80t7ZIKN2dtTWuGB1ksa7C_QvwSuEvg
CitedBy_id crossref_primary_10_1007_s00453_025_01323_x
crossref_primary_10_1007_s00453_024_01232_5
crossref_primary_10_1007_s00453_024_01281_w
crossref_primary_10_1016_j_tcs_2024_114622
Cites_doi 10.1109/TEVC.2020.2987361
10.1007/s11047-006-9001-0
10.1007/s00453-002-0940-2
10.1016/S0304-3975(01)00182-7
10.1007/s00453-021-00907-7
10.1007/s00224-004-1177-z
10.1214/aoms/1177728178
10.1109/TEVC.2009.2039139
10.1007/s00453-020-00780-w
10.1017/S0963548315000127
10.1109/TEVC.2017.2724201
10.1214/aop/1176996461
10.1016/j.spa.2012.06.009
10.1162/EVCO_a_00171
10.1016/j.tcs.2015.01.002
10.1108/17563780910959893
10.1007/s00453-020-00778-4
10.1007/s00453-018-0480-z
10.1017/S0963548320000565
10.1007/s00453-018-0463-0
10.1109/4235.797971
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.tcs.2022.08.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 42
ExternalDocumentID 10_1016_j_tcs_2022_08_014
S0304397522004881
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SEW
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c340t-960700e8275893fcd1d3e63e61cc0b451742766dab500ecd75045ad4443b823f3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000990106700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Tue Nov 18 22:29:09 EST 2025
Sat Nov 29 07:24:51 EST 2025
Fri Feb 23 02:37:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Randomized search heuristics
Estimation-of-distribution algorithms
Jump functions
Runtime analysis
Crossover
Multimodal functions
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-960700e8275893fcd1d3e63e61cc0b451742766dab500ecd75045ad4443b823f3
ORCID 0000-0002-6105-7700
OpenAccessLink https://dx.doi.org/10.1016/j.tcs.2022.08.014
PageCount 25
ParticipantIDs crossref_primary_10_1016_j_tcs_2022_08_014
crossref_citationtrail_10_1016_j_tcs_2022_08_014
elsevier_sciencedirect_doi_10_1016_j_tcs_2022_08_014
PublicationCentury 2000
PublicationDate 2023-01-09
PublicationDateYYYYMMDD 2023-01-09
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-09
  day: 09
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jansen (br0260) 2015
Droste, Jansen, Wegener (br0160) 2002; 276
Fan, Grama, Liu (br0180) 2012; 122
Lissovoi, Oliveto, Warwicker (br0330) 2019
Sudholt, Witt (br0430) 2019; 81
Jansen, Wegener (br0270) 2002; 34
Rajabi, Witt (br0390) 2021
Rowe, Aishwaryaprajna (br0410) 2019
Rajabi, Witt (br0380) 2020
Friedrich, Quinzan, Wagner (br0210) 2018
Droste (br0150) 2006; 5
Lengler (br0310) 2020
Corus, Oliveto, Yazdani (br0070) 2018
Whitley, Varadarajan, Hirsch, Mukhopadhyay (br0440) 2018
Corus, Oliveto, Yazdani (br0060) 2017
Prügel-Bennett (br0370) 2010; 14
Doerr, Le, Makhmara, Nguyen (br0130) 2017
Benbaki, Benmar, Doerr (br0050) 2021
Doerr (br0110) 2020
Ackley (br0010) 1987
Mitavskiy, Rowe, Cannings (br0350) 2009; 2
Friedrich, Kötzing, Krejca, Nallaperuma, Neumann, Schirneck (br0190) 2016
Kötzing, Sudholt, Theile (br0290) 2011
Friedrich, Kötzing, Krejca, Sutton (br0200) 2017; 21
Doerr (br0120) 2021; 83
Marshall, Olkin, Arnold (br0340) 2011
Witt (br0470) 2021
Hwang, Witt (br0250) 2019
Bambury, Bultel, Doerr (br0040) 2021
Antipov, Doerr, Karavaev (br0020) 2022; 84
Gleser (br0220) 1975; 3
Droste, Jansen, Wegener (br0170) 2006; 39
Hoeffding (br0240) 1956; 27
Witt (br0460) 2019; 81
Doerr (br0090) 2019
Witt (br0450) 2018
Lehre, Witt (br0300) 2021; 30
Rajabi, Witt (br0400) 2021
Baillon, Cominetti, Vaisman (br0030) 2016; 25
Johannsen (br0280) 2010
Harik, Lobo, Goldberg (br0230) 1999; 3
Doerr, Zheng (br0140) 2020; 24
Lengler, Sudholt, Witt (br0320) 2021; 83
Dang, Friedrich, Kötzing, Krejca, Lehre, Oliveto, Sudholt, Sutton (br0080) 2018; 22
Sudholt (br0420) 2017; 25
Doerr (br0100) 2019
Oliveto, Witt (br0360) 2015; 605
Ackley (10.1016/j.tcs.2022.08.014_br0010) 1987
Rajabi (10.1016/j.tcs.2022.08.014_br0400) 2021
Johannsen (10.1016/j.tcs.2022.08.014_br0280) 2010
Rowe (10.1016/j.tcs.2022.08.014_br0410) 2019
Corus (10.1016/j.tcs.2022.08.014_br0070) 2018
Doerr (10.1016/j.tcs.2022.08.014_br0110) 2020
Marshall (10.1016/j.tcs.2022.08.014_br0340) 2011
Antipov (10.1016/j.tcs.2022.08.014_br0020) 2022; 84
Witt (10.1016/j.tcs.2022.08.014_br0450) 2018
Harik (10.1016/j.tcs.2022.08.014_br0230) 1999; 3
Corus (10.1016/j.tcs.2022.08.014_br0060) 2017
Benbaki (10.1016/j.tcs.2022.08.014_br0050) 2021
Doerr (10.1016/j.tcs.2022.08.014_br0120) 2021; 83
Fan (10.1016/j.tcs.2022.08.014_br0180) 2012; 122
Droste (10.1016/j.tcs.2022.08.014_br0160) 2002; 276
Friedrich (10.1016/j.tcs.2022.08.014_br0200) 2017; 21
Hoeffding (10.1016/j.tcs.2022.08.014_br0240) 1956; 27
Sudholt (10.1016/j.tcs.2022.08.014_br0420) 2017; 25
Lehre (10.1016/j.tcs.2022.08.014_br0300) 2021; 30
Droste (10.1016/j.tcs.2022.08.014_br0150) 2006; 5
Prügel-Bennett (10.1016/j.tcs.2022.08.014_br0370) 2010; 14
Dang (10.1016/j.tcs.2022.08.014_br0080) 2018; 22
Doerr (10.1016/j.tcs.2022.08.014_br0130) 2017
Lengler (10.1016/j.tcs.2022.08.014_br0320) 2021; 83
Doerr (10.1016/j.tcs.2022.08.014_br0140) 2020; 24
Bambury (10.1016/j.tcs.2022.08.014_br0040) 2021
Kötzing (10.1016/j.tcs.2022.08.014_br0290) 2011
Doerr (10.1016/j.tcs.2022.08.014_br0090) 2019
Sudholt (10.1016/j.tcs.2022.08.014_br0430) 2019; 81
Jansen (10.1016/j.tcs.2022.08.014_br0270) 2002; 34
Hwang (10.1016/j.tcs.2022.08.014_br0250) 2019
Lengler (10.1016/j.tcs.2022.08.014_br0310) 2020
Doerr (10.1016/j.tcs.2022.08.014_br0100) 2019
Rajabi (10.1016/j.tcs.2022.08.014_br0390) 2021
Rajabi (10.1016/j.tcs.2022.08.014_br0380) 2020
Friedrich (10.1016/j.tcs.2022.08.014_br0210) 2018
Droste (10.1016/j.tcs.2022.08.014_br0170) 2006; 39
Baillon (10.1016/j.tcs.2022.08.014_br0030) 2016; 25
Mitavskiy (10.1016/j.tcs.2022.08.014_br0350) 2009; 2
Jansen (10.1016/j.tcs.2022.08.014_br0260) 2015
Witt (10.1016/j.tcs.2022.08.014_br0460) 2019; 81
Witt (10.1016/j.tcs.2022.08.014_br0470) 2021
Friedrich (10.1016/j.tcs.2022.08.014_br0190) 2016
Oliveto (10.1016/j.tcs.2022.08.014_br0360) 2015; 605
Lissovoi (10.1016/j.tcs.2022.08.014_br0330) 2019
Gleser (10.1016/j.tcs.2022.08.014_br0220) 1975; 3
Whitley (10.1016/j.tcs.2022.08.014_br0440) 2018
References_xml – start-page: 989
  year: 2011
  end-page: 996
  ident: br0290
  article-title: How crossover helps in Pseudo-Boolean optimization
  publication-title: Proc. of GECCO 2011
– volume: 84
  start-page: 1573
  year: 2022
  end-page: 1602
  ident: br0020
  article-title: A rigorous runtime analysis of the (1 + (
  publication-title: Algorithmica
– volume: 22
  start-page: 484
  year: 2018
  end-page: 497
  ident: br0080
  article-title: Escaping local optima using crossover with emergent diversity
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 25
  year: 2019
  end-page: 33
  ident: br0090
  article-title: An exponential lower bound for the runtime of the compact genetic algorithm on jump functions
  publication-title: Proc. of FOGA '19
– start-page: 34
  year: 2019
  end-page: 42
  ident: br0410
  article-title: The benefits and limitations of voting mechanisms in evolutionary optimisation
  publication-title: Proc. of FOGA '19
– start-page: 83
  year: 2017
  end-page: 90
  ident: br0060
  article-title: On the runtime analysis of the Opt-IA artificial immune system
  publication-title: Proc. of GECCO '17
– volume: 21
  start-page: 477
  year: 2017
  end-page: 490
  ident: br0200
  article-title: The compact genetic algorithm is efficient under extreme Gaussian noise
  publication-title: IEEE Trans. Evol. Comput.
– volume: 276
  start-page: 51
  year: 2002
  end-page: 81
  ident: br0160
  article-title: On the analysis of the (1+1) evolutionary algorithm
  publication-title: Theor. Comput. Sci.
– start-page: 1
  year: 2020
  end-page: 87
  ident: br0110
  article-title: Probabilistic tools for the analysis of randomized optimization heuristics
  publication-title: Theory of Evolutionary Computation – Recent Developments in Discrete Optimization
– volume: 5
  start-page: 257
  year: 2006
  end-page: 283
  ident: br0150
  article-title: A rigorous analysis of the compact genetic algorithm for linear functions
  publication-title: Nat. Comput.
– year: 2011
  ident: br0340
  article-title: Inequalities: Theory of Majorization and Its Applications
– start-page: 1539
  year: 2018
  end-page: 1546
  ident: br0450
  article-title: Domino convergence: why one should hill-climb on linear functions
  publication-title: Proc. of GECCO '18
– year: 2010
  ident: br0280
  article-title: Random combinatorial structures and randomized search heuristics
– volume: 605
  start-page: 21
  year: 2015
  end-page: 41
  ident: br0360
  article-title: Improved time complexity analysis of the simple genetic algorithm
  publication-title: Theor. Comput. Sci.
– volume: 81
  start-page: 632
  year: 2019
  end-page: 667
  ident: br0460
  article-title: Upper bounds on the running time of the univariate marginal distribution algorithm on OneMax
  publication-title: Algorithmica
– volume: 30
  start-page: 550
  year: 2021
  end-page: 569
  ident: br0300
  article-title: Tail bounds on hitting times of randomized search heuristics using variable drift analysis
  publication-title: Comb. Probab. Comput.
– start-page: 293
  year: 2018
  end-page: 300
  ident: br0210
  article-title: Escaping large deceptive basins of attraction with heavy-tailed mutation operators
  publication-title: Proc. of GECCO '18
– volume: 14
  start-page: 500
  year: 2010
  end-page: 517
  ident: br0370
  article-title: Benefits of a population: five mechanisms that advantage population-based algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 39
  start-page: 525
  year: 2006
  end-page: 544
  ident: br0170
  article-title: Upper and lower bounds for randomized search heuristics in black-box optimization
  publication-title: Theory Comput. Syst.
– volume: 81
  start-page: 1450
  year: 2019
  end-page: 1489
  ident: br0430
  article-title: On the choice of the update strength in estimation-of-distribution algorithms and ant colony optimization
  publication-title: Algorithmica
– volume: 25
  start-page: 237
  year: 2017
  end-page: 274
  ident: br0420
  article-title: How crossover speeds up building block assembly in genetic algorithms
  publication-title: Evol. Comput.
– start-page: 67
  year: 2018
  end-page: 78
  ident: br0070
  article-title: Fast artificial immune systems
  publication-title: Proc. of PPSN '18
– start-page: 1488
  year: 2019
  end-page: 1496
  ident: br0100
  article-title: A tight runtime analysis for the cGA on jump functions: EDAs can cross fitness valleys at no extra cost
  publication-title: Proc. of GECCO '19
– volume: 83
  start-page: 1096
  year: 2021
  end-page: 1137
  ident: br0320
  article-title: The complex parameter landscape of the compact genetic algorithm
  publication-title: Algorithmica
– volume: 83
  start-page: 3059
  year: 2021
  end-page: 3107
  ident: br0120
  article-title: The runtime of the compact genetic algorithm on jump functions
  publication-title: Algorithmica
– start-page: 4
  year: 2021
  end-page: 13
  ident: br0050
  article-title: A rigorous runtime analysis of the 2-MMAS
  publication-title: Proc. of GECCO '21
– volume: 3
  start-page: 182
  year: 1975
  end-page: 188
  ident: br0220
  article-title: On the distribution of the number of successes in independent trials
  publication-title: Ann. Probab.
– start-page: 1
  year: 2019
  end-page: 12
  ident: br0250
  article-title: Sharp bounds on the runtime of the (1+1) EA via drift analysis and analytic combinatorial tools
  publication-title: Proc. of FOGA '19
– start-page: 152
  year: 2021
  end-page: 168
  ident: br0400
  article-title: Stagnation detection with randomized local search
  publication-title: Proc. of EvoCOP '21
– volume: 24
  start-page: 1140
  year: 2020
  end-page: 1149
  ident: br0140
  article-title: Sharp bounds for genetic drift in estimation of distribution algorithms
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 16
  year: 2015
  end-page: 24
  ident: br0260
  article-title: On the black-box complexity of example functions: the real jump function
  publication-title: Proc. of FOGA '15
– start-page: 777
  year: 2017
  end-page: 784
  ident: br0130
  article-title: Fast genetic algorithms
  publication-title: Proc. of GECCO '17
– year: 1987
  ident: br0010
  article-title: A Connectionist Machine for Genetic Hillclimbing
– volume: 25
  start-page: 352
  year: 2016
  end-page: 361
  ident: br0030
  article-title: A sharp uniform bound for the distribution of sums of Bernoulli trials
  publication-title: Comb. Probab. Comput.
– volume: 34
  start-page: 47
  year: 2002
  end-page: 66
  ident: br0270
  article-title: The analysis of evolutionary algorithms - a proof that crossover really can help
  publication-title: Algorithmica
– start-page: 1
  year: 2021
  end-page: 15
  ident: br0470
  article-title: On crossing fitness valleys with majority-vote crossover and estimation-of-distribution algorithms
  publication-title: Proc. of FOGA '21
– start-page: 89
  year: 2020
  end-page: 131
  ident: br0310
  article-title: Drift analysis
  publication-title: Theory of Evolutionary Computation – Recent Developments in Discrete Optimization
– start-page: 2322
  year: 2019
  end-page: 2329
  ident: br0330
  article-title: On the time complexity of algorithm selection hyper-heuristics for multimodal optimisation
  publication-title: Proc. of AAAI '19
– start-page: 1124
  year: 2021
  end-page: 1132
  ident: br0040
  article-title: An extended jump function benchmark for the analysis of randomized search heuristics
  publication-title: Proc. of GECCO '21
– start-page: 661
  year: 2016
  end-page: 668
  ident: br0190
  article-title: Fast building block assembly by majority vote crossover
  publication-title: Proc. of GECCO '16
– volume: 3
  start-page: 287
  year: 1999
  end-page: 297
  ident: br0230
  article-title: The compact genetic algorithm
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1178
  year: 2021
  end-page: 1186
  ident: br0390
  article-title: Stagnation detection in highly multimodal fitness landscapes
  publication-title: Proc. of GECCO '21
– volume: 27
  start-page: 713
  year: 1956
  end-page: 721
  ident: br0240
  article-title: On the distribution of the number of successes in independent trials
  publication-title: Ann. Math. Stat.
– volume: 122
  start-page: 3545
  year: 2012
  end-page: 3559
  ident: br0180
  article-title: Hoeffding's inequality for supermartingales
  publication-title: Stoch. Process. Appl.
– volume: 2
  start-page: 243
  year: 2009
  end-page: 284
  ident: br0350
  article-title: Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links
  publication-title: Int. J. Intell. Comput. Cybern.
– start-page: 1314
  year: 2020
  end-page: 1322
  ident: br0380
  article-title: Self-adjusting evolutionary algorithms for multimodal optimization
  publication-title: Proc. of GECCO '20
– start-page: 55
  year: 2018
  end-page: 66
  ident: br0440
  article-title: Exploration and exploitation without mutation: solving the jump function in
  publication-title: Proc. of PPSN '18
– volume: 24
  start-page: 1140
  year: 2020
  ident: 10.1016/j.tcs.2022.08.014_br0140
  article-title: Sharp bounds for genetic drift in estimation of distribution algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2987361
– volume: 21
  start-page: 477
  year: 2017
  ident: 10.1016/j.tcs.2022.08.014_br0200
  article-title: The compact genetic algorithm is efficient under extreme Gaussian noise
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1314
  year: 2020
  ident: 10.1016/j.tcs.2022.08.014_br0380
  article-title: Self-adjusting evolutionary algorithms for multimodal optimization
– volume: 5
  start-page: 257
  year: 2006
  ident: 10.1016/j.tcs.2022.08.014_br0150
  article-title: A rigorous analysis of the compact genetic algorithm for linear functions
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-006-9001-0
– start-page: 83
  year: 2017
  ident: 10.1016/j.tcs.2022.08.014_br0060
  article-title: On the runtime analysis of the Opt-IA artificial immune system
– volume: 34
  start-page: 47
  year: 2002
  ident: 10.1016/j.tcs.2022.08.014_br0270
  article-title: The analysis of evolutionary algorithms - a proof that crossover really can help
  publication-title: Algorithmica
  doi: 10.1007/s00453-002-0940-2
– start-page: 25
  year: 2019
  ident: 10.1016/j.tcs.2022.08.014_br0090
  article-title: An exponential lower bound for the runtime of the compact genetic algorithm on jump functions
– start-page: 1488
  year: 2019
  ident: 10.1016/j.tcs.2022.08.014_br0100
  article-title: A tight runtime analysis for the cGA on jump functions: EDAs can cross fitness valleys at no extra cost
– start-page: 16
  year: 2015
  ident: 10.1016/j.tcs.2022.08.014_br0260
  article-title: On the black-box complexity of example functions: the real jump function
– start-page: 89
  year: 2020
  ident: 10.1016/j.tcs.2022.08.014_br0310
  article-title: Drift analysis
– start-page: 1
  year: 2021
  ident: 10.1016/j.tcs.2022.08.014_br0470
  article-title: On crossing fitness valleys with majority-vote crossover and estimation-of-distribution algorithms
– start-page: 152
  year: 2021
  ident: 10.1016/j.tcs.2022.08.014_br0400
  article-title: Stagnation detection with randomized local search
– start-page: 777
  year: 2017
  ident: 10.1016/j.tcs.2022.08.014_br0130
  article-title: Fast genetic algorithms
– start-page: 989
  year: 2011
  ident: 10.1016/j.tcs.2022.08.014_br0290
  article-title: How crossover helps in Pseudo-Boolean optimization
– start-page: 55
  year: 2018
  ident: 10.1016/j.tcs.2022.08.014_br0440
  article-title: Exploration and exploitation without mutation: solving the jump function in θ(n) time
– start-page: 4
  year: 2021
  ident: 10.1016/j.tcs.2022.08.014_br0050
  article-title: A rigorous runtime analysis of the 2-MMASib on jump functions: ant colony optimizers can cope well with local optima
– volume: 276
  start-page: 51
  year: 2002
  ident: 10.1016/j.tcs.2022.08.014_br0160
  article-title: On the analysis of the (1+1) evolutionary algorithm
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(01)00182-7
– year: 1987
  ident: 10.1016/j.tcs.2022.08.014_br0010
– volume: 84
  start-page: 1573
  year: 2022
  ident: 10.1016/j.tcs.2022.08.014_br0020
  article-title: A rigorous runtime analysis of the (1 + (λ, λ)) GA on jump functions
  publication-title: Algorithmica
  doi: 10.1007/s00453-021-00907-7
– volume: 39
  start-page: 525
  year: 2006
  ident: 10.1016/j.tcs.2022.08.014_br0170
  article-title: Upper and lower bounds for randomized search heuristics in black-box optimization
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-004-1177-z
– start-page: 67
  year: 2018
  ident: 10.1016/j.tcs.2022.08.014_br0070
  article-title: Fast artificial immune systems
– volume: 27
  start-page: 713
  year: 1956
  ident: 10.1016/j.tcs.2022.08.014_br0240
  article-title: On the distribution of the number of successes in independent trials
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177728178
– volume: 14
  start-page: 500
  year: 2010
  ident: 10.1016/j.tcs.2022.08.014_br0370
  article-title: Benefits of a population: five mechanisms that advantage population-based algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2039139
– volume: 83
  start-page: 3059
  year: 2021
  ident: 10.1016/j.tcs.2022.08.014_br0120
  article-title: The runtime of the compact genetic algorithm on jump functions
  publication-title: Algorithmica
  doi: 10.1007/s00453-020-00780-w
– start-page: 1
  year: 2019
  ident: 10.1016/j.tcs.2022.08.014_br0250
  article-title: Sharp bounds on the runtime of the (1+1) EA via drift analysis and analytic combinatorial tools
– volume: 25
  start-page: 352
  year: 2016
  ident: 10.1016/j.tcs.2022.08.014_br0030
  article-title: A sharp uniform bound for the distribution of sums of Bernoulli trials
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548315000127
– start-page: 1178
  year: 2021
  ident: 10.1016/j.tcs.2022.08.014_br0390
  article-title: Stagnation detection in highly multimodal fitness landscapes
– start-page: 2322
  year: 2019
  ident: 10.1016/j.tcs.2022.08.014_br0330
  article-title: On the time complexity of algorithm selection hyper-heuristics for multimodal optimisation
– start-page: 34
  year: 2019
  ident: 10.1016/j.tcs.2022.08.014_br0410
  article-title: The benefits and limitations of voting mechanisms in evolutionary optimisation
– volume: 22
  start-page: 484
  year: 2018
  ident: 10.1016/j.tcs.2022.08.014_br0080
  article-title: Escaping local optima using crossover with emergent diversity
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2724201
– volume: 3
  start-page: 182
  year: 1975
  ident: 10.1016/j.tcs.2022.08.014_br0220
  article-title: On the distribution of the number of successes in independent trials
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176996461
– year: 2010
  ident: 10.1016/j.tcs.2022.08.014_br0280
– start-page: 1
  year: 2020
  ident: 10.1016/j.tcs.2022.08.014_br0110
  article-title: Probabilistic tools for the analysis of randomized optimization heuristics
– volume: 122
  start-page: 3545
  year: 2012
  ident: 10.1016/j.tcs.2022.08.014_br0180
  article-title: Hoeffding's inequality for supermartingales
  publication-title: Stoch. Process. Appl.
  doi: 10.1016/j.spa.2012.06.009
– volume: 25
  start-page: 237
  year: 2017
  ident: 10.1016/j.tcs.2022.08.014_br0420
  article-title: How crossover speeds up building block assembly in genetic algorithms
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00171
– start-page: 293
  year: 2018
  ident: 10.1016/j.tcs.2022.08.014_br0210
  article-title: Escaping large deceptive basins of attraction with heavy-tailed mutation operators
– volume: 605
  start-page: 21
  year: 2015
  ident: 10.1016/j.tcs.2022.08.014_br0360
  article-title: Improved time complexity analysis of the simple genetic algorithm
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2015.01.002
– start-page: 1539
  year: 2018
  ident: 10.1016/j.tcs.2022.08.014_br0450
  article-title: Domino convergence: why one should hill-climb on linear functions
– year: 2011
  ident: 10.1016/j.tcs.2022.08.014_br0340
– volume: 2
  start-page: 243
  year: 2009
  ident: 10.1016/j.tcs.2022.08.014_br0350
  article-title: Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links
  publication-title: Int. J. Intell. Comput. Cybern.
  doi: 10.1108/17563780910959893
– volume: 83
  start-page: 1096
  year: 2021
  ident: 10.1016/j.tcs.2022.08.014_br0320
  article-title: The complex parameter landscape of the compact genetic algorithm
  publication-title: Algorithmica
  doi: 10.1007/s00453-020-00778-4
– volume: 81
  start-page: 1450
  year: 2019
  ident: 10.1016/j.tcs.2022.08.014_br0430
  article-title: On the choice of the update strength in estimation-of-distribution algorithms and ant colony optimization
  publication-title: Algorithmica
  doi: 10.1007/s00453-018-0480-z
– start-page: 1124
  year: 2021
  ident: 10.1016/j.tcs.2022.08.014_br0040
  article-title: An extended jump function benchmark for the analysis of randomized search heuristics
– volume: 30
  start-page: 550
  year: 2021
  ident: 10.1016/j.tcs.2022.08.014_br0300
  article-title: Tail bounds on hitting times of randomized search heuristics using variable drift analysis
  publication-title: Comb. Probab. Comput.
  doi: 10.1017/S0963548320000565
– start-page: 661
  year: 2016
  ident: 10.1016/j.tcs.2022.08.014_br0190
  article-title: Fast building block assembly by majority vote crossover
– volume: 81
  start-page: 632
  year: 2019
  ident: 10.1016/j.tcs.2022.08.014_br0460
  article-title: Upper bounds on the running time of the univariate marginal distribution algorithm on OneMax
  publication-title: Algorithmica
  doi: 10.1007/s00453-018-0463-0
– volume: 3
  start-page: 287
  year: 1999
  ident: 10.1016/j.tcs.2022.08.014_br0230
  article-title: The compact genetic algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797971
SSID ssj0000576
Score 2.5436738
Snippet The benefits of using crossover in crossing fitness gaps have been studied extensively in evolutionary computation. Recent runtime results show that...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 18
SubjectTerms Crossover
Estimation-of-distribution algorithms
Jump functions
Multimodal functions
Randomized search heuristics
Runtime analysis
Title How majority-vote crossover and estimation-of-distribution algorithms cope with fitness valleys
URI https://dx.doi.org/10.1016/j.tcs.2022.08.014
Volume 940
WOSCitedRecordID wos000990106700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swEBah3cP20G3dRtv9QA97alCRZdmyHsvo2NauDJZC3owly1tD6pTGDe1_vztLjrN2He1gEEwwViJ0n0-nk-77CHlfwTo2NTphssockzZ1zAiumbalMhE3VtmWxPVIHR9n47H-NhgcdrUwi6mq6-zqSp__V1PDPTA2ls4-wNzLH4Ub8B2MDlcwO1zvZXgUiTsrJjNUpWOLWeOG7UyIRzXbnQKk1fD1imxWsRKJc4Pm1bCY_sBmP8_mQyxW8Una6rRp3eECVVeu56vR7GilCtIGeYhhmFP7hE7TnSwBQNWrWQYRt1mG3pfdLn_xJVe4raK99Mme8x40U5oJ4ZWLOxerPSVTcJLB4frp1nNr3XLkPqcw2WsscqoL0fKs-nLTG_zY37EX2AkhWncES-F1oRINLm59__PB-Es_MSfKb12HXneb3O1xvxt_9OcwZSX0GD0jG2HNQPe9rZ-Tgas3ydNOj4MG97xJnnxdcvDOX5AcgEB_AwJdAoECEOjdQKA9ECgCgSIQaAACDUB4SU4-How-fGJBToPZWPKGwVpVce4yGBwIUitbRmXsUvhE1nIjkbJcqDQtC5PAY_CuJhDuF6WUMjaZiKv4FVmrZ7XbIhTDQtyf5rHVsogyk8SF4hBuRalOpbHbhHejl9vANY-SJ9O8O1Q4yWHAcxzwHGVQI7lNdpdNzj3Ryt8elp1J8oBqHwHmgJ-7m-38W7PX5HH_Srwha83FpXtLHtlFczq_eBdQ9gubQo-x
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+majority-vote+crossover+and+estimation-of-distribution+algorithms+cope+with+fitness+valleys&rft.jtitle=Theoretical+computer+science&rft.au=Witt%2C+Carsten&rft.date=2023-01-09&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=940&rft.spage=18&rft.epage=42&rft_id=info:doi/10.1016%2Fj.tcs.2022.08.014&rft.externalDocID=S0304397522004881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon