Hall characterization of epitaxial GaSb and AlGaAsSb layers using p-n junctions on GaSb substrates

•Hall methodology for antimonides, grown on conducting GaSb substrates.•Comparison of the GaSb Hall layer morphologies, grown on GaSb versus GaAs.•Comparison of Hall properties of p- and n-GaSb, grown on GaSb versus GaAs.•Successful Hall measurements of p-AlGaAsSb layers grown on GaSb. The Hall Van-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth Jg. 496-497; S. 36 - 42
Hauptverfasser: Predan, F., Ohlmann, J., Mrabet, S., Dimroth, F., Lackner, D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.08.2018
Elsevier BV
Schlagworte:
ISSN:0022-0248, 1873-5002
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Hall methodology for antimonides, grown on conducting GaSb substrates.•Comparison of the GaSb Hall layer morphologies, grown on GaSb versus GaAs.•Comparison of Hall properties of p- and n-GaSb, grown on GaSb versus GaAs.•Successful Hall measurements of p-AlGaAsSb layers grown on GaSb. The Hall Van-der-Pauw method is widely used to assess the electrical properties of GaSb based semiconductor layers. Semi-insulating GaSb substrates are not available, and therefore, Hall structures are generally grown on semi-insulating GaAs. The lattice mismatch of 7.8% between GaAs and GaSb results in high defect densities, which may influence the measurement. We investigated an alternative approach for Hall effect measurements using a p-n junction for the electrical isolation of the test layer from layers below. This allows antimonide based test layers with low defect density grown lattice-matched on GaSb substrates to be analyzed. Negligible leakage currents across the p-n junctions are key to ensure significant measurement results. n- and p-GaSb layers show similar carrier concentration if grown on GaSb or semi-insulating GaAs, with the exception of highly n-doped layers >5x1017cm−3. However, majority carrier mobilities were systematically higher on GaSb substrate, explained by a lower density of structural defects. Furthermore, the sample design with p-n junction enabled Hall effect measurements of quaternary p-Al0.2Ga0.8As0.02Sb0.98 layers, which was impossible for those same layers grown on GaAs due to strain induced phase-separation. The methodology is presented for antimonides, but it is applicable to a wide range of material systems including metamorphic structures.
AbstractList •Hall methodology for antimonides, grown on conducting GaSb substrates.•Comparison of the GaSb Hall layer morphologies, grown on GaSb versus GaAs.•Comparison of Hall properties of p- and n-GaSb, grown on GaSb versus GaAs.•Successful Hall measurements of p-AlGaAsSb layers grown on GaSb. The Hall Van-der-Pauw method is widely used to assess the electrical properties of GaSb based semiconductor layers. Semi-insulating GaSb substrates are not available, and therefore, Hall structures are generally grown on semi-insulating GaAs. The lattice mismatch of 7.8% between GaAs and GaSb results in high defect densities, which may influence the measurement. We investigated an alternative approach for Hall effect measurements using a p-n junction for the electrical isolation of the test layer from layers below. This allows antimonide based test layers with low defect density grown lattice-matched on GaSb substrates to be analyzed. Negligible leakage currents across the p-n junctions are key to ensure significant measurement results. n- and p-GaSb layers show similar carrier concentration if grown on GaSb or semi-insulating GaAs, with the exception of highly n-doped layers >5x1017cm−3. However, majority carrier mobilities were systematically higher on GaSb substrate, explained by a lower density of structural defects. Furthermore, the sample design with p-n junction enabled Hall effect measurements of quaternary p-Al0.2Ga0.8As0.02Sb0.98 layers, which was impossible for those same layers grown on GaAs due to strain induced phase-separation. The methodology is presented for antimonides, but it is applicable to a wide range of material systems including metamorphic structures.
The Hall Van-der-Pauw method is widely used to assess the electrical properties of GaSb based semiconductor layers. Semi-insulating GaSb substrates are not available, and therefore, Hall structures are generally grown on semi-insulating GaAs. The lattice mismatch of 7.8% between GaAs and GaSb results in high defect densities, which may influence the measurement. We investigated an alternative approach for Hall effect measurements using a p-n junction for the electrical isolation of the test layer from layers below. This allows antimonide based test layers with low defect density grown lattice-matched on GaSb substrates to be analyzed. Negligible leakage currents across the p-n junctions are key to ensure significant measurement results. n- and p-GaSb layers show similar carrier concentration if grown on GaSb or semi-insulating GaAs, with the exception of highly n-doped layers >5 x 1017 cm−3. However, majority carrier mobilities were systematically higher on GaSb substrate, explained by a lower density of structural defects. Furthermore, the sample design with p-n junction enabled Hall effect measurements of quaternary p-Al0.2Ga0.8As0.02Sb0.98 layers, which was impossible for those same layers grown on GaAs due to strain induced phase-separation. The methodology is presented for antimonides, but it is applicable to a wide range of material systems including metamorphic structures.
Author Predan, F.
Mrabet, S.
Dimroth, F.
Ohlmann, J.
Lackner, D.
Author_xml – sequence: 1
  givenname: F.
  surname: Predan
  fullname: Predan, F.
  email: felix.predan@ise.fraunhofer.de
– sequence: 2
  givenname: J.
  surname: Ohlmann
  fullname: Ohlmann, J.
– sequence: 3
  givenname: S.
  surname: Mrabet
  fullname: Mrabet, S.
– sequence: 4
  givenname: F.
  surname: Dimroth
  fullname: Dimroth, F.
– sequence: 5
  givenname: D.
  surname: Lackner
  fullname: Lackner, D.
BookMark eNqFkMtKxDAUhoMoOF5eQQKuW0_SO7hwEJ0RBBfqOpymp2NKTcekFcenN-Poxo2bHAL_dy7fEdu3gyXGzgTEAkR-0cWddhu_ckMsQZQxZDHIZI_NRFkkUQYg99ksvDICmZaH7Mj7DiCQAmasXmLfc_2CDvVIznziaAbLh5bT2oz4YbDnC3ysOdqGz_sFzn349Lgh5_nkjV3xdWR5N1m9BT0P8HfeT7UfHY7kT9hBi72n0596zJ5vb56ul9H9w-Luen4f6SSFMapki0WZC5m0dV1hJopcUpVQmrVFm-aixEY0VLVpmYGEokhLBKjSOkPIqpwoOWbnu75rN7xN5EfVDZOzYaSSUCWiApHkIXW5S2k3eO-oVTrcud09bGt6JUBtrapO_VpVW6sKMhWsBjz_g6-deUW3-R-82oEUFLwbcsprQ1ZTYxzpUTWD-a_FF3USmBM
CitedBy_id crossref_primary_10_1109_JPHOTOV_2019_2957663
crossref_primary_10_3390_ma14174944
crossref_primary_10_1109_JPHOTOV_2022_3164690
crossref_primary_10_3390_nano14070592
Cites_doi 10.1016/j.apsusc.2015.07.048
10.1016/S0921-5107(98)00540-6
10.1016/j.solmat.2005.02.002
10.1016/S0022-0248(00)00739-9
10.1016/S0022-0248(98)00710-6
10.1116/1.586767
10.1016/S0022-0248(98)00597-1
10.1016/S0927-796X(02)00002-5
10.1049/el:19950525
10.1007/s11664-998-0178-0
10.1016/S0960-8974(98)00004-7
10.1063/1.1368156
10.1016/S0022-0248(97)00117-6
10.1063/1.1760218
10.1016/S0022-0248(96)00445-9
10.1116/1.4947118
10.1007/s11664-997-0025-8
10.1557/PROC-423-661
10.1063/1.53289
10.1016/j.jcrysgro.2004.09.019
10.1049/el:20071305
10.1166/jnn.2011.4111
10.1016/S0022-0248(96)00579-9
10.1016/0022-0248(91)90789-8
10.1109/T-ED.1980.19815
10.1016/S0022-0248(98)00670-8
10.1088/0268-1242/12/4/013
10.1063/1.365356
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Aug/Sep 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Aug/Sep 2018
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jcrysgro.2018.05.023
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-5002
EndPage 42
ExternalDocumentID 10_1016_j_jcrysgro_2018_05_023
S0022024818302501
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c340t-92fa786123fbb9a51762e93e45f7f4618ad1de9f4850207748a0094b5a0596ee3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434416000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0248
IngestDate Sun Nov 09 07:02:12 EST 2025
Tue Nov 18 22:42:22 EST 2025
Sat Nov 29 06:34:54 EST 2025
Fri Feb 23 02:31:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords A1 Majority carrier properties
A3 Metalorganicvapor phase epitaxy
A1 Hall measurements
B1 Gallium compounds
A1 Doping
B1 Antimonides
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-92fa786123fbb9a51762e93e45f7f4618ad1de9f4850207748a0094b5a0596ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2093190136
PQPubID 2045452
PageCount 7
ParticipantIDs proquest_journals_2093190136
crossref_citationtrail_10_1016_j_jcrysgro_2018_05_023
crossref_primary_10_1016_j_jcrysgro_2018_05_023
elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2018_05_023
PublicationCentury 2000
PublicationDate August-September 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August-September 2018
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of crystal growth
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Biefeld (b0065) 2002; 36
Schöner, Rottner, Nordell (b0115) 1996
Larrabee, Thurber (b0110) 1980; 27
Huang, Balakrishnan, Huffaker (b0130) 2011; 11
Agert (b0140) 2001
Nakamura, Taira, Funato, Kawai (b0150) 1991; 115
Boos, Bennett, Papanicolaou, Ancona, Champlain, Bass, Shanabrook (b0040) 2007; 43
Aardvark, Mason, Walker (b0060) 1997; 35
Giesen, Beerbom, Xu, Heime (b0085) 1998; 195
Koljonen, Sopanen, Lipsanen, Tuomi (b0090) 1996; 169
Wang (b0095) 1997; 170
Madelung (b0155) 1991
Shin, Hsu, Hsu, Stringfellow (b0100) 1997; 179
Ehsani, Bhat, Hitchcock, Gutmann, Charache, Freeman (b0105) 1998; 195
Salesse, Alabedra, Chen, Lakrimi, Nicholas, Mason, Walker (b0145) 1997
Wang (b0070) 2004; 272
Predan, Reinwald, Klinger, Dimroth (b0045) 2015; 353
Van der Pauw (b0075) 1958; 13
Predan, Reinwand, Cariou, Niemeyer, Dimroth (b0050) 2016; 34
Wang, Choi (b0030) 1997; 26
Giesen, Szymakowski, Rushworth, Heuken, Heime (b0080) 2000; 221
Vurgaftman, Meyer, Ram-Mohan (b0055) 2001; 89
Schöner, Karlsson, Schmitt, Nordell, Linarsson, Rottner (b0120) 1999; 61–62
Zhang, Zhou, Jiang, Ning, Jin (b0010) 1995; 31
Turner, Eglash, Strauss (b0160) 1993
Schroder (b0125) 2006
Wang, Choi, Oakley, Charache (b0015) 1998; 195
Lin, Grau, Dier, Amann (b0025) 2004; 84
Dutta, Bhat, Kumar (b0005) 1997; 81
Kim, Seong, Mason, Walker (b0135) 1998; 27
C.A. Wang, H.K. Choi, G.W. Turner, D.L. Spears, M.J. Manfra, G.W. Charache, Lattice-matched epitaxial GaInAsSb/GaSb thermophotovoltaic devices, in: 3rd NREL Conference on Thermophotovoltaic Generation of Electricity, AIP Conference Proceedings, Colorado Springs, Colorado, USA, 1997, pp. 75–87.
Qiu, Hayden, Mauk, Sulima (b0020) 2006; 90
Dutta (10.1016/j.jcrysgro.2018.05.023_b0005) 1997; 81
Larrabee (10.1016/j.jcrysgro.2018.05.023_b0110) 1980; 27
Wang (10.1016/j.jcrysgro.2018.05.023_b0070) 2004; 272
Ehsani (10.1016/j.jcrysgro.2018.05.023_b0105) 1998; 195
Wang (10.1016/j.jcrysgro.2018.05.023_b0015) 1998; 195
Giesen (10.1016/j.jcrysgro.2018.05.023_b0085) 1998; 195
Schöner (10.1016/j.jcrysgro.2018.05.023_b0115) 1996
Aardvark (10.1016/j.jcrysgro.2018.05.023_b0060) 1997; 35
Wang (10.1016/j.jcrysgro.2018.05.023_b0030) 1997; 26
Biefeld (10.1016/j.jcrysgro.2018.05.023_b0065) 2002; 36
Wang (10.1016/j.jcrysgro.2018.05.023_b0095) 1997; 170
Giesen (10.1016/j.jcrysgro.2018.05.023_b0080) 2000; 221
Salesse (10.1016/j.jcrysgro.2018.05.023_b0145) 1997
Qiu (10.1016/j.jcrysgro.2018.05.023_b0020) 2006; 90
Van der Pauw (10.1016/j.jcrysgro.2018.05.023_b0075) 1958; 13
Predan (10.1016/j.jcrysgro.2018.05.023_b0050) 2016; 34
Kim (10.1016/j.jcrysgro.2018.05.023_b0135) 1998; 27
Nakamura (10.1016/j.jcrysgro.2018.05.023_b0150) 1991; 115
Zhang (10.1016/j.jcrysgro.2018.05.023_b0010) 1995; 31
Agert (10.1016/j.jcrysgro.2018.05.023_b0140) 2001
Madelung (10.1016/j.jcrysgro.2018.05.023_b0155) 1991
10.1016/j.jcrysgro.2018.05.023_b0035
Schöner (10.1016/j.jcrysgro.2018.05.023_b0120) 1999; 61–62
Huang (10.1016/j.jcrysgro.2018.05.023_b0130) 2011; 11
Predan (10.1016/j.jcrysgro.2018.05.023_b0045) 2015; 353
Shin (10.1016/j.jcrysgro.2018.05.023_b0100) 1997; 179
Vurgaftman (10.1016/j.jcrysgro.2018.05.023_b0055) 2001; 89
Turner (10.1016/j.jcrysgro.2018.05.023_b0160) 1993
Boos (10.1016/j.jcrysgro.2018.05.023_b0040) 2007; 43
Schroder (10.1016/j.jcrysgro.2018.05.023_b0125) 2006
Lin (10.1016/j.jcrysgro.2018.05.023_b0025) 2004; 84
Koljonen (10.1016/j.jcrysgro.2018.05.023_b0090) 1996; 169
References_xml – start-page: 413
  year: 1997
  end-page: 418
  ident: b0145
  article-title: Improved photoluminescence from electrochemically passivated GaSb
  publication-title: Semicond. Sci. Technol.
– volume: 26
  start-page: 1231
  year: 1997
  end-page: 1236
  ident: b0030
  article-title: OMVPE growth of GaInAsSb/AlGaAsSb for quantum-well diode lasers
  publication-title: J. Electron. Mater.
– volume: 81
  start-page: 5821
  year: 1997
  end-page: 5870
  ident: b0005
  article-title: The physics and technology of gallium antimode: An emerging optoelectronic material
  publication-title: J. Appl. Phys.
– start-page: 864
  year: 1993
  end-page: 867
  ident: b0160
  article-title: Molecular-beam epitaxial growth of high-mobility n-GaSb
  publication-title: J. Vac. Sci. Technol., B
– volume: 353
  start-page: 1203
  year: 2015
  end-page: 1207
  ident: b0045
  article-title: Transparent and electrically conductive GaSb/Si direct wafer bondingat low temperatures by argon-beam surface activation
  publication-title: Appl. Surf. Sci.
– volume: 35
  start-page: 207
  year: 1997
  end-page: 241
  ident: b0060
  article-title: The growth of antimonides by MOVPE
  publication-title: Prog. Cryst. Growth Charact. Mater.
– volume: 43
  start-page: 834
  year: 2007
  end-page: 835
  ident: b0040
  article-title: High mobility p-channel HFETs using strained Sb-based materials
  publication-title: Electron. Lett.
– volume: 272
  start-page: 664
  year: 2004
  end-page: 681
  ident: b0070
  article-title: Progress and continuing challenges in GaSb-based III-V alloys and heterostructures grown by organometallic vapor-phase epitaxy
  publication-title: J. Cryst. Growth
– volume: 34
  start-page: 031103
  year: 2016
  ident: b0050
  article-title: Direct wafer bonding of highly conductive GaSb/GaInAs and GaSb/GaInP heterojunctions prepared by argon-beam surface activation
  publication-title: J. Vac. Sci. Technol., A
– volume: 115
  start-page: 474
  year: 1991
  end-page: 478
  ident: b0150
  article-title: Se and Te doping in LP-MOCVD-grown GaSb using H
  publication-title: J. Cryst. Growth
– volume: 221
  start-page: 450
  year: 2000
  end-page: 455
  ident: b0080
  article-title: MOVPE of AlGaAsSb using TTBAl as an alternative aluminum precursor
  publication-title: J. Cryst. Growth
– volume: 90
  start-page: 68
  year: 2006
  end-page: 81
  ident: b0020
  article-title: Generation of electricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 89
  start-page: 5815
  year: 2001
  end-page: 5875
  ident: b0055
  article-title: Band parameters for III-V compound semiconductors and their alloys
  publication-title: J. Appl. Phys.
– start-page: 661
  year: 1996
  end-page: 666
  ident: b0115
  article-title: Theory and realization of a two-layer hall effect measurement concept for characterization of epitaxial and implanted layers of SiC
  publication-title: Mater. Res. Soc. Symp. Proc.
– year: 2006
  ident: b0125
  article-title: Semiconductor Material and Device Characterization
– reference: C.A. Wang, H.K. Choi, G.W. Turner, D.L. Spears, M.J. Manfra, G.W. Charache, Lattice-matched epitaxial GaInAsSb/GaSb thermophotovoltaic devices, in: 3rd NREL Conference on Thermophotovoltaic Generation of Electricity, AIP Conference Proceedings, Colorado Springs, Colorado, USA, 1997, pp. 75–87.
– volume: 169
  start-page: 417
  year: 1996
  end-page: 423
  ident: b0090
  article-title: Metalorganic vapor phase epitaxial growth of AlGaSb and AlGaAsSb using all-organometallic sources
  publication-title: J. Cryst. Growth
– volume: 13
  start-page: 1
  year: 1958
  end-page: 9
  ident: b0075
  article-title: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape
  publication-title: Philips Res. Reports
– year: 1991
  ident: b0155
  article-title: Semiconductors: Group IV Elements and III-V Compounds
– volume: 11
  year: 2011
  ident: b0130
  article-title: Growth mode and defect evaluation of GaSb on GaAs substrate: a transmission electron microscopy study
  publication-title: J. Nanosci. Nanotechnol.
– volume: 195
  start-page: 85
  year: 1998
  end-page: 90
  ident: b0085
  article-title: MOVPE of AlAsSb using tritertiarybutylaluminum
  publication-title: J. Cryst. Growth
– volume: 31
  start-page: 830
  year: 1995
  end-page: 832
  ident: b0010
  article-title: GaInAsSb/GaSb infrared photodetectors prepared by MOCVD
  publication-title: Electron. Lett.
– volume: 195
  start-page: 385
  year: 1998
  end-page: 390
  ident: b0105
  article-title: p-Type and n-type doping in GaSb and Ga
  publication-title: J. Cryst. Growth
– volume: 36
  start-page: 105
  year: 2002
  end-page: 142
  ident: b0065
  article-title: The metal-organic chemical vapor deposition and properties of III-V antimony-based semiconductor materials
  publication-title: Mater. Sci. Eng., R
– volume: 170
  start-page: 725
  year: 1997
  end-page: 731
  ident: b0095
  article-title: Organometallic vapor phase epitaxial growth of AlSb-based alloys
  publication-title: J. Cryst. Growth
– volume: 61–62
  start-page: 389
  year: 1999
  end-page: 394
  ident: b0120
  article-title: Hall effect investigations of 4H–SiC epitaxial layers grown on semi-insulating and conducting substrates
  publication-title: Mater. Sci. Eng., B
– volume: 27
  start-page: 466
  year: 1998
  end-page: 471
  ident: b0135
  article-title: Morphology and defect structures of GaSb Islands on GaAs grown by metalorganic vapor phase epitaxy
  publication-title: J. Electron. Mater.
– volume: 27
  start-page: 32
  year: 1980
  end-page: 36
  ident: b0110
  article-title: Theory and application of a two-layer hall technique
  publication-title: IEEE Trans. Electron Devices
– start-page: 145
  year: 2001
  ident: b0140
  article-title: MOVPE of GaSb-based materials and solar cell structures
  publication-title: Fakultät für Physik
– volume: 179
  start-page: 1
  year: 1997
  end-page: 9
  ident: b0100
  article-title: OMVPE growth of metastable GaAsSb and GalnAsSb alloys using TBAs and TBDMSb
  publication-title: J. Cryst. Growth
– volume: 195
  start-page: 346
  year: 1998
  end-page: 355
  ident: b0015
  article-title: Recent progress in GaInAsSb thermophotovoltaics grown by organometallic vapor-phase epitaxy
  publication-title: J. Cryst. Growth
– volume: 84
  start-page: 5088
  year: 2004
  end-page: 5090
  ident: b0025
  article-title: Low threshold room-temperature continuous-wave operation of 2.24–3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers
  publication-title: Appl. Phys. Lett.
– volume: 353
  start-page: 1203
  year: 2015
  ident: 10.1016/j.jcrysgro.2018.05.023_b0045
  article-title: Transparent and electrically conductive GaSb/Si direct wafer bondingat low temperatures by argon-beam surface activation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.07.048
– volume: 61–62
  start-page: 389
  year: 1999
  ident: 10.1016/j.jcrysgro.2018.05.023_b0120
  article-title: Hall effect investigations of 4H–SiC epitaxial layers grown on semi-insulating and conducting substrates
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/S0921-5107(98)00540-6
– year: 1991
  ident: 10.1016/j.jcrysgro.2018.05.023_b0155
– volume: 90
  start-page: 68
  year: 2006
  ident: 10.1016/j.jcrysgro.2018.05.023_b0020
  article-title: Generation of electricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2005.02.002
– year: 2006
  ident: 10.1016/j.jcrysgro.2018.05.023_b0125
– volume: 221
  start-page: 450
  year: 2000
  ident: 10.1016/j.jcrysgro.2018.05.023_b0080
  article-title: MOVPE of AlGaAsSb using TTBAl as an alternative aluminum precursor
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(00)00739-9
– volume: 195
  start-page: 385
  year: 1998
  ident: 10.1016/j.jcrysgro.2018.05.023_b0105
  article-title: p-Type and n-type doping in GaSb and Ga0.8In0.2Sb layers grown by metalorganic vapor phase epitaxy
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(98)00710-6
– start-page: 864
  year: 1993
  ident: 10.1016/j.jcrysgro.2018.05.023_b0160
  article-title: Molecular-beam epitaxial growth of high-mobility n-GaSb
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.586767
– volume: 195
  start-page: 346
  year: 1998
  ident: 10.1016/j.jcrysgro.2018.05.023_b0015
  article-title: Recent progress in GaInAsSb thermophotovoltaics grown by organometallic vapor-phase epitaxy
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(98)00597-1
– volume: 36
  start-page: 105
  year: 2002
  ident: 10.1016/j.jcrysgro.2018.05.023_b0065
  article-title: The metal-organic chemical vapor deposition and properties of III-V antimony-based semiconductor materials
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/S0927-796X(02)00002-5
– volume: 31
  start-page: 830
  year: 1995
  ident: 10.1016/j.jcrysgro.2018.05.023_b0010
  article-title: GaInAsSb/GaSb infrared photodetectors prepared by MOCVD
  publication-title: Electron. Lett.
  doi: 10.1049/el:19950525
– volume: 27
  start-page: 466
  year: 1998
  ident: 10.1016/j.jcrysgro.2018.05.023_b0135
  article-title: Morphology and defect structures of GaSb Islands on GaAs grown by metalorganic vapor phase epitaxy
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-998-0178-0
– volume: 35
  start-page: 207
  year: 1997
  ident: 10.1016/j.jcrysgro.2018.05.023_b0060
  article-title: The growth of antimonides by MOVPE
  publication-title: Prog. Cryst. Growth Charact. Mater.
  doi: 10.1016/S0960-8974(98)00004-7
– start-page: 145
  year: 2001
  ident: 10.1016/j.jcrysgro.2018.05.023_b0140
  article-title: MOVPE of GaSb-based materials and solar cell structures
– volume: 89
  start-page: 5815
  year: 2001
  ident: 10.1016/j.jcrysgro.2018.05.023_b0055
  article-title: Band parameters for III-V compound semiconductors and their alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1368156
– volume: 179
  start-page: 1
  year: 1997
  ident: 10.1016/j.jcrysgro.2018.05.023_b0100
  article-title: OMVPE growth of metastable GaAsSb and GalnAsSb alloys using TBAs and TBDMSb
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(97)00117-6
– volume: 84
  start-page: 5088
  year: 2004
  ident: 10.1016/j.jcrysgro.2018.05.023_b0025
  article-title: Low threshold room-temperature continuous-wave operation of 2.24–3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1760218
– volume: 169
  start-page: 417
  year: 1996
  ident: 10.1016/j.jcrysgro.2018.05.023_b0090
  article-title: Metalorganic vapor phase epitaxial growth of AlGaSb and AlGaAsSb using all-organometallic sources
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(96)00445-9
– volume: 34
  start-page: 031103
  year: 2016
  ident: 10.1016/j.jcrysgro.2018.05.023_b0050
  article-title: Direct wafer bonding of highly conductive GaSb/GaInAs and GaSb/GaInP heterojunctions prepared by argon-beam surface activation
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/1.4947118
– volume: 26
  start-page: 1231
  year: 1997
  ident: 10.1016/j.jcrysgro.2018.05.023_b0030
  article-title: OMVPE growth of GaInAsSb/AlGaAsSb for quantum-well diode lasers
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-997-0025-8
– start-page: 661
  year: 1996
  ident: 10.1016/j.jcrysgro.2018.05.023_b0115
  article-title: Theory and realization of a two-layer hall effect measurement concept for characterization of epitaxial and implanted layers of SiC
  publication-title: Mater. Res. Soc. Symp. Proc.
  doi: 10.1557/PROC-423-661
– ident: 10.1016/j.jcrysgro.2018.05.023_b0035
  doi: 10.1063/1.53289
– volume: 272
  start-page: 664
  year: 2004
  ident: 10.1016/j.jcrysgro.2018.05.023_b0070
  article-title: Progress and continuing challenges in GaSb-based III-V alloys and heterostructures grown by organometallic vapor-phase epitaxy
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2004.09.019
– volume: 13
  start-page: 1
  year: 1958
  ident: 10.1016/j.jcrysgro.2018.05.023_b0075
  article-title: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape
  publication-title: Philips Res. Reports
– volume: 43
  start-page: 834
  year: 2007
  ident: 10.1016/j.jcrysgro.2018.05.023_b0040
  article-title: High mobility p-channel HFETs using strained Sb-based materials
  publication-title: Electron. Lett.
  doi: 10.1049/el:20071305
– volume: 11
  year: 2011
  ident: 10.1016/j.jcrysgro.2018.05.023_b0130
  article-title: Growth mode and defect evaluation of GaSb on GaAs substrate: a transmission electron microscopy study
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2011.4111
– volume: 170
  start-page: 725
  year: 1997
  ident: 10.1016/j.jcrysgro.2018.05.023_b0095
  article-title: Organometallic vapor phase epitaxial growth of AlSb-based alloys
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(96)00579-9
– volume: 115
  start-page: 474
  year: 1991
  ident: 10.1016/j.jcrysgro.2018.05.023_b0150
  article-title: Se and Te doping in LP-MOCVD-grown GaSb using H2Se and DETe
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(91)90789-8
– volume: 27
  start-page: 32
  year: 1980
  ident: 10.1016/j.jcrysgro.2018.05.023_b0110
  article-title: Theory and application of a two-layer hall technique
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/T-ED.1980.19815
– volume: 195
  start-page: 85
  year: 1998
  ident: 10.1016/j.jcrysgro.2018.05.023_b0085
  article-title: MOVPE of AlAsSb using tritertiarybutylaluminum
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(98)00670-8
– start-page: 413
  year: 1997
  ident: 10.1016/j.jcrysgro.2018.05.023_b0145
  article-title: Improved photoluminescence from electrochemically passivated GaSb
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/12/4/013
– volume: 81
  start-page: 5821
  year: 1997
  ident: 10.1016/j.jcrysgro.2018.05.023_b0005
  article-title: The physics and technology of gallium antimode: An emerging optoelectronic material
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.365356
SSID ssj0001610
Score 2.2785742
Snippet •Hall methodology for antimonides, grown on conducting GaSb substrates.•Comparison of the GaSb Hall layer morphologies, grown on GaSb versus GaAs.•Comparison...
The Hall Van-der-Pauw method is widely used to assess the electrical properties of GaSb based semiconductor layers. Semi-insulating GaSb substrates are not...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 36
SubjectTerms A1 Doping
A1 Hall measurements
A1 Majority carrier properties
A3 Metalorganicvapor phase epitaxy
Antimonides
B1 Antimonides
B1 Gallium compounds
Carrier density
Design defects
Electrical junctions
Electrical properties
Gallium antimonide
Gallium antimonides
Gallium arsenide
Hall effect
Lattice matching
Majority carriers
P-n junctions
Semiconductor doping
Semiconductors
Substrates
Title Hall characterization of epitaxial GaSb and AlGaAsSb layers using p-n junctions on GaSb substrates
URI https://dx.doi.org/10.1016/j.jcrysgro.2018.05.023
https://www.proquest.com/docview/2093190136
Volume 496-497
WOSCitedRecordID wos000434416000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5002
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001610
  issn: 0022-0248
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKhgQcEAwQGwP5gLhMgXzHPlaj3UBVN4lu6s1yE2esytIu6abC38AfzXux43WDMThwidokThX_fn1-7_l9EPKWp16Mhgf6ABInBLvHkX4OgORukMjAT-Omnc_xIBkO2XjMDzudH20uzGWRlCVbLvn8v0IN5wBsTJ39B7jtQ-EEfAbQ4Qiww_GvgN_HzebU1mH-bnVChQ1Clugh35NfJs2uQbfYk90avhQSVe-di8ZzMHfKnSmsdyZIrtT31yBimlK29S0KbVp9qzG18gQs-4X1Mh9WKtNOVhtDfPC1OGt7M1vAK2n2Rax2-vH0rJppt09_1TnhMRsaZzxmNmvmeFUIg_2LpdT0EqTlLksCJ3Lda4I55OhXCHX8rhGwulrKL3JfuyCm76f4qvCaGLPHmpKsOpv5eqHt4YHoHw0GYtQbj97Nzx3sQYZ79aYhyz2y7icRBxm53v3UG3-2Kztox25bfR5fYCXj_Pc_fZuyc2PZb3SZ0RPy2GBGu5o8T0lHlRvkwW7b-2-DPFopU_mMTJBS9Cal6CynllIUKUKBUrSlFNWUog2lKFCKWkpRGNzcf0Wp5-So3xvt7jumN4eTBqG7cLify4Rh7Z58MuEy8mBRVTxQYZQneRh7TGZepngesggMErAxmMQg1kkksd-TUsELslbOSvWSUJm5WaCUr1wFcxpIyVIW8zQLE576IGI2SdROokhN4Xrsn1KINkJxKtrJFzj5wo0ETP4m-WDHzXXpljtH8BYjYRRQrVgK4NmdY7dbUIWRBjVc5wFq3EG89efLr8jDq7_PNllbVBfqNbmfXi5O6-qN4eFPf1evsg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hall+characterization+of+epitaxial+GaSb+and+AlGaAsSb+layers+using+p-n+junctions+on+GaSb+substrates&rft.jtitle=Journal+of+crystal+growth&rft.au=Predan%2C+F&rft.au=Ohlmann%2C+J&rft.au=Mrabet%2C+S&rft.au=Dimroth%2C+F&rft.date=2018-08-01&rft.pub=Elsevier+BV&rft.issn=0022-0248&rft.eissn=1873-5002&rft.volume=496%2F497&rft.spage=36&rft_id=info:doi/10.1016%2Fj.jcrysgro.2018.05.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon