An exponential time 2-approximation algorithm for bandwidth
The bandwidth of a graph G on n vertices is the minimum b such that the vertices of G can be labeled from 1 to n such that the labels of every pair of adjacent vertices differ by at most b. In this paper, we present a 2-approximation algorithm for the Bandwidth problem that takes worst-case O(1.9797...
Saved in:
| Published in: | Theoretical computer science Vol. 511; pp. 23 - 31 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
04.11.2013
|
| Subjects: | |
| ISSN: | 0304-3975, 1879-2294 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The bandwidth of a graph G on n vertices is the minimum b such that the vertices of G can be labeled from 1 to n such that the labels of every pair of adjacent vertices differ by at most b.
In this paper, we present a 2-approximation algorithm for the Bandwidth problem that takes worst-case O(1.9797n)=O(30.6217n) time and uses polynomial space. This improves both the previous best 2- and 3-approximation algorithms of Cygan et al. which have O∗(3n) and O∗(2n) worst-case running time bounds, respectively. Our algorithm is based on constructing bucket decompositions of the input graph. A bucket decomposition partitions the vertex set of a graph into ordered sets (called buckets) of (almost) equal sizes such that all edges are either incident to vertices in the same bucket or to vertices in two consecutive buckets. The idea is to find the smallest bucket size for which there exists a bucket decomposition. The algorithm uses a divide-and-conquer strategy along with dynamic programming to achieve the improved time bound. |
|---|---|
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2013.03.024 |