Quantum clustering with k-Means: A hybrid approach

Quantum computing, based on quantum theory, holds great promise as an advanced computational paradigm for achieving fast computations. Quantum algorithms are expected to surpass their classical counterparts in terms of computational complexity for certain tasks, including machine learning. In this p...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science Vol. 992; p. 114466
Main Authors: Poggiali, Alessandro, Berti, Alessandro, Bernasconi, Anna, Del Corso, Gianna M., Guidotti, Riccardo
Format: Journal Article
Language:English
Published: Elsevier B.V 21.04.2024
Subjects:
ISSN:0304-3975, 1879-2294
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Quantum computing, based on quantum theory, holds great promise as an advanced computational paradigm for achieving fast computations. Quantum algorithms are expected to surpass their classical counterparts in terms of computational complexity for certain tasks, including machine learning. In this paper, we design, implement, and evaluate three hybrid quantum k-Means algorithms, exploiting different degrees of parallelism. Indeed, each algorithm incrementally leverages quantum parallelism to reduce the complexity of the cluster assignment step up to a constant cost. In particular, we exploit quantum phenomena to speed up the computation of distances. The core idea is that the computation of distances between records and centroids can be executed simultaneously, thus saving time, especially for big datasets. We show that our hybrid quantum k-Means algorithms are theoretically faster than the classical algorithm, while experiments suggest that it is possible to obtain comparable clustering results.
AbstractList Quantum computing, based on quantum theory, holds great promise as an advanced computational paradigm for achieving fast computations. Quantum algorithms are expected to surpass their classical counterparts in terms of computational complexity for certain tasks, including machine learning. In this paper, we design, implement, and evaluate three hybrid quantum k-Means algorithms, exploiting different degrees of parallelism. Indeed, each algorithm incrementally leverages quantum parallelism to reduce the complexity of the cluster assignment step up to a constant cost. In particular, we exploit quantum phenomena to speed up the computation of distances. The core idea is that the computation of distances between records and centroids can be executed simultaneously, thus saving time, especially for big datasets. We show that our hybrid quantum k-Means algorithms are theoretically faster than the classical algorithm, while experiments suggest that it is possible to obtain comparable clustering results.
ArticleNumber 114466
Author Poggiali, Alessandro
Guidotti, Riccardo
Berti, Alessandro
Del Corso, Gianna M.
Bernasconi, Anna
Author_xml – sequence: 1
  givenname: Alessandro
  orcidid: 0000-0002-1591-7925
  surname: Poggiali
  fullname: Poggiali, Alessandro
  email: alessandro.poggiali@phd.unipi.it
  organization: Department of Computer Science, University of Pisa, Largo B. Pontecorvo, Pisa, 56127, Italy
– sequence: 2
  givenname: Alessandro
  surname: Berti
  fullname: Berti, Alessandro
  organization: Department of Computer Science, University of Pisa, Largo B. Pontecorvo, Pisa, 56127, Italy
– sequence: 3
  givenname: Anna
  surname: Bernasconi
  fullname: Bernasconi, Anna
  organization: Department of Computer Science, University of Pisa, Largo B. Pontecorvo, Pisa, 56127, Italy
– sequence: 4
  givenname: Gianna M.
  surname: Del Corso
  fullname: Del Corso, Gianna M.
  organization: Department of Computer Science, University of Pisa, Largo B. Pontecorvo, Pisa, 56127, Italy
– sequence: 5
  givenname: Riccardo
  surname: Guidotti
  fullname: Guidotti, Riccardo
  organization: Department of Computer Science, University of Pisa, Largo B. Pontecorvo, Pisa, 56127, Italy
BookMark eNp9z81KAzEUhuEgFWyrF-BubmDGJJOfia5K8Q8qIug6ZE4yNrXNlCRVevdOqSsXPZuzej94JmgU-uAQuia4IpiIm1WVIVUUU1YRwpgQZ2hMGqlKShUboTGuMStrJfkFmqS0wsNxKcaIvu1MyLtNAetdyi768Fn8-LwsvsoXZ0K6LWbFct9Gbwuz3cbewPISnXdmndzV35-ij4f79_lTuXh9fJ7PFiXUDOeygRpo03HTOtkKJRpQYKjgYDHlpLYGBAbGlLQdUZYT2UnRgqKOcyuM5fUUkeMuxD6l6Dq9jX5j4l4TrA9ovdIDWh_Q-ogeGvmvAZ9N9n3I0fj1yfLuWLqB9O1d1Am8C-Csjw6ytr0_Uf8CHKFzBQ
CitedBy_id crossref_primary_10_24201_es_2024v42_e2664
crossref_primary_10_1007_s10586_024_04664_4
crossref_primary_10_1007_s42484_025_00266_4
crossref_primary_10_1016_j_patcog_2025_111342
crossref_primary_10_1109_ACCESS_2025_3585799
crossref_primary_10_1177_14727978251355787
crossref_primary_10_1016_j_tcs_2024_114716
crossref_primary_10_1038_s41598_025_99990_x
crossref_primary_10_1007_s13369_024_09468_7
crossref_primary_10_1007_s42484_025_00293_1
crossref_primary_10_1007_s42484_024_00210_y
crossref_primary_10_1007_s42484_024_00213_9
crossref_primary_10_1016_j_sysarc_2025_103431
crossref_primary_10_1016_j_engappai_2024_109258
Cites_doi 10.1007/s11222-007-9033-z
10.1007/s11128-021-03384-7
10.1007/s10489-021-02513-0
10.1016/0377-0427(87)90125-7
10.1103/PhysRevLett.88.018702
10.1007/s11128-021-03071-7
10.1109/TC.2020.3037932
10.1103/PhysRevA.103.042415
10.19026/rjaset.6.3638
10.1016/j.eswa.2009.12.017
10.1038/nature23474
10.1080/00107514.2014.964942
10.22331/q-2018-08-06-79
10.1007/s42484-020-00035-5
10.1209/0295-5075/119/60002
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.tcs.2024.114466
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
ExternalDocumentID 10_1016_j_tcs_2024_114466
S0304397524000811
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABMYL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
R2-
SSZ
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c340t-8c3c28f5abe7b6968c9ca265cd02513dac60c4497df19d517f76bc92e55d6ad53
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001196600600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Tue Nov 18 21:31:42 EST 2025
Sat Nov 29 07:24:10 EST 2025
Sat Mar 16 16:14:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Clustering
Data mining
Quantum machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-8c3c28f5abe7b6968c9ca265cd02513dac60c4497df19d517f76bc92e55d6ad53
ORCID 0000-0002-1591-7925
OpenAccessLink https://dx.doi.org/10.1016/j.tcs.2024.114466
ParticipantIDs crossref_primary_10_1016_j_tcs_2024_114466
crossref_citationtrail_10_1016_j_tcs_2024_114466
elsevier_sciencedirect_doi_10_1016_j_tcs_2024_114466
PublicationCentury 2000
PublicationDate 2024-04-21
PublicationDateYYYYMMDD 2024-04-21
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-21
  day: 21
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Benlamine, Bennani, Zaiou, Hibti, Matei, Grozavu (br0160) 2019
Zaiou, Bennani, Matei, Hibti (br0210) 2021
Tan (br0240) 2005
Benlamine, Bennani, Grozavu, Matei (br0190) 2020
Nielsen, Chuang (br0130) 2010
Golub, Van Loan (br0360) 1996
Lloyd, Mohseni, Rebentrost (br0090) 2013
Preskill (br0260) 2018; 2
Von Luxburg (br0230) 2007; 17
Otterbach, Manenti, Alidoust, Bestwick, Block, Bloom, Caldwell, Didier, Fried, Hong (br0080) 2017
Khan, Awan, Vall-Llosera (br0320) 2019
Farhi, Goldstone, Gutmann, Sipser (br0100) 2000
Poggiali, Berti, Bernasconi, Del Corso, Giudotti (br0060) 2022
Horn, Gottlieb (br0070) 2001; 88
de Veras, De Araujo, Park, da Silva (br0340) 2020; 70
Wu, Song, Zhang (br0170) 2022; 21
Schuld, Sinayskiy, Petruccione (br0020) 2015; 56
MacQueen (br0030) 1967
Schuld, Fingerhuth, Petruccione (br0040) 2017; 119
Xiao, Yan, Zhang, Tang (br0110) 2010; 37
Aïmeur, Brassard, Gambs (br0120) 2006
Kerenidis, Landman, Luongo, Prakash (br0050) 2019; 32
Aïmeur, Brassard, Gambs (br0140) 2007
Eybpoosh, Rezghi, Heydari (br0300) 2022; 52
Thakare, Bagal (br0180) 2015; 110
Schuld (br0280) 2018
Mengoni, Incudini, Di Pierro (br0290) 2021; 3
Biamonte, Wittek, Pancotti, Rebentrost, Wiebe, Lloyd (br0010) 2017; 549
Gong, Dong, Gani, Qi (br0200) 2021; 20
Kerenidis, Landman (br0220) 2021; 103
Mohamad, Usman (br0350) 2013; 6
Park, Petruccione, Rhee (br0310) 2019; 9
Berti (br0330) 2023
Rousseeuw (br0370) 1987; 20
Grover (br0150) 1996
Vassilvitskii, Arthur k-means (br0250) 2006
Rosenberg, Hirschberg (br0380) 2007
Berti, Bernasconi, Del Corso, Guidotti (br0270) 2022
Preskill (10.1016/j.tcs.2024.114466_br0260) 2018; 2
Vassilvitskii (10.1016/j.tcs.2024.114466_br0250) 2006
Berti (10.1016/j.tcs.2024.114466_br0270) 2022
Rousseeuw (10.1016/j.tcs.2024.114466_br0370) 1987; 20
Rosenberg (10.1016/j.tcs.2024.114466_br0380) 2007
Von Luxburg (10.1016/j.tcs.2024.114466_br0230) 2007; 17
Otterbach (10.1016/j.tcs.2024.114466_br0080)
Zaiou (10.1016/j.tcs.2024.114466_br0210) 2021
Berti (10.1016/j.tcs.2024.114466_br0330) 2023
Park (10.1016/j.tcs.2024.114466_br0310) 2019; 9
Wu (10.1016/j.tcs.2024.114466_br0170) 2022; 21
de Veras (10.1016/j.tcs.2024.114466_br0340) 2020; 70
Kerenidis (10.1016/j.tcs.2024.114466_br0050) 2019; 32
Kerenidis (10.1016/j.tcs.2024.114466_br0220) 2021; 103
Mengoni (10.1016/j.tcs.2024.114466_br0290) 2021; 3
Tan (10.1016/j.tcs.2024.114466_br0240) 2005
Farhi (10.1016/j.tcs.2024.114466_br0100)
Biamonte (10.1016/j.tcs.2024.114466_br0010) 2017; 549
Horn (10.1016/j.tcs.2024.114466_br0070) 2001; 88
Khan (10.1016/j.tcs.2024.114466_br0320)
Benlamine (10.1016/j.tcs.2024.114466_br0190) 2020
Eybpoosh (10.1016/j.tcs.2024.114466_br0300) 2022; 52
Lloyd (10.1016/j.tcs.2024.114466_br0090)
Thakare (10.1016/j.tcs.2024.114466_br0180) 2015; 110
Aïmeur (10.1016/j.tcs.2024.114466_br0120) 2006
Gong (10.1016/j.tcs.2024.114466_br0200) 2021; 20
Mohamad (10.1016/j.tcs.2024.114466_br0350) 2013; 6
Schuld (10.1016/j.tcs.2024.114466_br0020) 2015; 56
Xiao (10.1016/j.tcs.2024.114466_br0110) 2010; 37
MacQueen (10.1016/j.tcs.2024.114466_br0030) 1967
Grover (10.1016/j.tcs.2024.114466_br0150) 1996
Benlamine (10.1016/j.tcs.2024.114466_br0160) 2019
Schuld (10.1016/j.tcs.2024.114466_br0040) 2017; 119
Aïmeur (10.1016/j.tcs.2024.114466_br0140) 2007
Nielsen (10.1016/j.tcs.2024.114466_br0130) 2010
Schuld (10.1016/j.tcs.2024.114466_br0280) 2018
Poggiali (10.1016/j.tcs.2024.114466_br0060) 2022
Golub (10.1016/j.tcs.2024.114466_br0360) 1996
References_xml – start-page: 1
  year: 2020
  end-page: 7
  ident: br0190
  article-title: Quantum collaborative k-means
  publication-title: 2020 International Joint Conference on Neural Networks (IJCNN)
– volume: 549
  start-page: 195
  year: 2017
  end-page: 202
  ident: br0010
  article-title: Quantum machine learning
  publication-title: Nature
– volume: 103
  year: 2021
  ident: br0220
  article-title: Quantum spectral clustering
  publication-title: Phys. Rev. A
– start-page: 281
  year: 1967
  end-page: 297
  ident: br0030
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1
– start-page: 251
  year: 2023
  end-page: 256
  ident: br0330
  publication-title: Logarithmic Quantum Forking
– year: 2000
  ident: br0100
  article-title: Quantum computation by adiabatic evolution
– volume: 2
  start-page: 79
  year: 2018
  ident: br0260
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
– volume: 3
  start-page: 1
  year: 2021
  end-page: 11
  ident: br0290
  article-title: Facial expression recognition on a quantum computer
  publication-title: Quantum Mach. Intell.
– year: 2013
  ident: br0090
  article-title: Quantum algorithms for supervised and unsupervised machine learning
– year: 2005
  ident: br0240
  article-title: Introduction to Data Mining
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: br0370
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– year: 2010
  ident: br0130
  article-title: Quantum Computation and Quantum Information
– start-page: 410
  year: 2007
  end-page: 420
  ident: br0380
  article-title: V-measure: a conditional entropy-based external cluster evaluation measure
  publication-title: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)
– year: 2022
  ident: br0060
  article-title: Clustering classical data with quantum k-means
  publication-title: Proceedings of the 23rd Italian Conference on Theoretical Computer Science
– start-page: 1
  year: 2021
  end-page: 7
  ident: br0210
  article-title: Balanced k-means using quantum annealing
  publication-title: 2021 IEEE Symposium Series on Computational Intelligence (SSCI)
– volume: 37
  start-page: 4966
  year: 2010
  end-page: 4973
  ident: br0110
  article-title: A quantum-inspired genetic algorithm for k-means clustering
  publication-title: Expert Syst. Appl.
– year: 1996
  ident: br0360
  article-title: Matrix Computations
– volume: 21
  start-page: 1
  year: 2022
  end-page: 10
  ident: br0170
  article-title: Quantum k-means algorithm based on Manhattan distance
  publication-title: Quantum Inf. Process.
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: br0230
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 8
  ident: br0310
  article-title: Circuit-based quantum random access memory for classical data
  publication-title: Sci. Rep.
– volume: 70
  start-page: 2125
  year: 2020
  end-page: 2135
  ident: br0340
  article-title: Circuit-based quantum random access memory for classical data with continuous amplitudes
  publication-title: IEEE Trans. Comput.
– year: 2022
  ident: br0270
  article-title: Effect of different encodings and distance functions on quantum instance-based classifiers
  publication-title: Proceedings 26th Pacific-Asia Conference on Knowledge Discovery and Data Mining PAKDD
– volume: 56
  start-page: 172
  year: 2015
  end-page: 185
  ident: br0020
  article-title: An introduction to quantum machine learning
  publication-title: Contemp. Phys.
– volume: 119
  year: 2017
  ident: br0040
  article-title: Implementing a distance-based classifier with a quantum interference circuit
  publication-title: Europhys. Lett.
– volume: 32
  year: 2019
  ident: br0050
  article-title: q-means: a quantum algorithm for unsupervised machine learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 431
  year: 2006
  end-page: 442
  ident: br0120
  article-title: Machine learning in a quantum world
  publication-title: Conference of the Canadian Society for Computational Studies of Intelligence
– start-page: 1027
  year: 2006
  end-page: 1035
  ident: br0250
  article-title: The advantages of careful seeding
  publication-title: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
– volume: 88
  year: 2001
  ident: br0070
  article-title: Algorithm for data clustering in pattern recognition problems based on quantum mechanics
  publication-title: Phys. Rev. Lett.
– start-page: 212
  year: 1996
  end-page: 219
  ident: br0150
  article-title: A fast quantum mechanical algorithm for database search
  publication-title: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing
– start-page: 1
  year: 2007
  end-page: 8
  ident: br0140
  article-title: Quantum clustering algorithms
  publication-title: Proceedings of the 24th International Conference on Machine Learning
– start-page: 561
  year: 2019
  end-page: 572
  ident: br0160
  article-title: Distance estimation for quantum prototypes based clustering
  publication-title: Neural Information Processing: 26th International Conference
– volume: 110
  start-page: 12
  year: 2015
  end-page: 16
  ident: br0180
  article-title: Performance evaluation of k-means clustering algorithm with various distance metrics
  publication-title: Int. J. Comput. Appl.
– volume: 20
  start-page: 1
  year: 2021
  end-page: 22
  ident: br0200
  article-title: Quantum k-means algorithm based on trusted server in quantum cloud computing
  publication-title: Quantum Inf. Process.
– year: 2018
  ident: br0280
  article-title: Supervised Learning with Quantum Computers
– volume: 6
  start-page: 3299
  year: 2013
  end-page: 3303
  ident: br0350
  article-title: Standardization and its effects on k-means clustering algorithm
  publication-title: Res. J. Appl. Sci. Eng. Technol.
– year: 2017
  ident: br0080
  article-title: Unsupervised machine learning on a hybrid quantum computer
– year: 2019
  ident: br0320
  article-title: K-means clustering on noisy intermediate scale quantum computers
– volume: 52
  start-page: 4443
  year: 2022
  end-page: 4457
  ident: br0300
  article-title: Applying inverse stereographic projection to manifold learning and clustering
  publication-title: Appl. Intell.
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 10.1016/j.tcs.2024.114466_br0230
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 21
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.tcs.2024.114466_br0170
  article-title: Quantum k-means algorithm based on Manhattan distance
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-021-03384-7
– start-page: 1
  year: 2020
  ident: 10.1016/j.tcs.2024.114466_br0190
  article-title: Quantum collaborative k-means
– start-page: 281
  year: 1967
  ident: 10.1016/j.tcs.2024.114466_br0030
  article-title: Some methods for classification and analysis of multivariate observations
– year: 2018
  ident: 10.1016/j.tcs.2024.114466_br0280
– volume: 52
  start-page: 4443
  issue: 4
  year: 2022
  ident: 10.1016/j.tcs.2024.114466_br0300
  article-title: Applying inverse stereographic projection to manifold learning and clustering
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02513-0
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.tcs.2024.114466_br0310
  article-title: Circuit-based quantum random access memory for classical data
  publication-title: Sci. Rep.
– ident: 10.1016/j.tcs.2024.114466_br0320
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.tcs.2024.114466_br0370
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– start-page: 1
  year: 2007
  ident: 10.1016/j.tcs.2024.114466_br0140
  article-title: Quantum clustering algorithms
– volume: 88
  issue: 1
  year: 2001
  ident: 10.1016/j.tcs.2024.114466_br0070
  article-title: Algorithm for data clustering in pattern recognition problems based on quantum mechanics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.018702
– volume: 20
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.tcs.2024.114466_br0200
  article-title: Quantum k-means algorithm based on trusted server in quantum cloud computing
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-021-03071-7
– year: 2010
  ident: 10.1016/j.tcs.2024.114466_br0130
– volume: 70
  start-page: 2125
  issue: 12
  year: 2020
  ident: 10.1016/j.tcs.2024.114466_br0340
  article-title: Circuit-based quantum random access memory for classical data with continuous amplitudes
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2020.3037932
– ident: 10.1016/j.tcs.2024.114466_br0080
– volume: 103
  issue: 4
  year: 2021
  ident: 10.1016/j.tcs.2024.114466_br0220
  article-title: Quantum spectral clustering
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.042415
– year: 1996
  ident: 10.1016/j.tcs.2024.114466_br0360
– ident: 10.1016/j.tcs.2024.114466_br0090
– start-page: 1027
  year: 2006
  ident: 10.1016/j.tcs.2024.114466_br0250
  article-title: The advantages of careful seeding
– volume: 110
  start-page: 12
  issue: 11
  year: 2015
  ident: 10.1016/j.tcs.2024.114466_br0180
  article-title: Performance evaluation of k-means clustering algorithm with various distance metrics
  publication-title: Int. J. Comput. Appl.
– start-page: 1
  year: 2021
  ident: 10.1016/j.tcs.2024.114466_br0210
  article-title: Balanced k-means using quantum annealing
– volume: 6
  start-page: 3299
  issue: 17
  year: 2013
  ident: 10.1016/j.tcs.2024.114466_br0350
  article-title: Standardization and its effects on k-means clustering algorithm
  publication-title: Res. J. Appl. Sci. Eng. Technol.
  doi: 10.19026/rjaset.6.3638
– volume: 37
  start-page: 4966
  issue: 7
  year: 2010
  ident: 10.1016/j.tcs.2024.114466_br0110
  article-title: A quantum-inspired genetic algorithm for k-means clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.12.017
– volume: 549
  start-page: 195
  issue: 7671
  year: 2017
  ident: 10.1016/j.tcs.2024.114466_br0010
  article-title: Quantum machine learning
  publication-title: Nature
  doi: 10.1038/nature23474
– start-page: 212
  year: 1996
  ident: 10.1016/j.tcs.2024.114466_br0150
  article-title: A fast quantum mechanical algorithm for database search
– start-page: 561
  year: 2019
  ident: 10.1016/j.tcs.2024.114466_br0160
  article-title: Distance estimation for quantum prototypes based clustering
– start-page: 431
  year: 2006
  ident: 10.1016/j.tcs.2024.114466_br0120
  article-title: Machine learning in a quantum world
– start-page: 251
  year: 2023
  ident: 10.1016/j.tcs.2024.114466_br0330
  publication-title: Logarithmic Quantum Forking
– volume: 32
  year: 2019
  ident: 10.1016/j.tcs.2024.114466_br0050
  article-title: q-means: a quantum algorithm for unsupervised machine learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 56
  start-page: 172
  issue: 2
  year: 2015
  ident: 10.1016/j.tcs.2024.114466_br0020
  article-title: An introduction to quantum machine learning
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2014.964942
– year: 2005
  ident: 10.1016/j.tcs.2024.114466_br0240
– year: 2022
  ident: 10.1016/j.tcs.2024.114466_br0270
  article-title: Effect of different encodings and distance functions on quantum instance-based classifiers
– start-page: 410
  year: 2007
  ident: 10.1016/j.tcs.2024.114466_br0380
  article-title: V-measure: a conditional entropy-based external cluster evaluation measure
– year: 2022
  ident: 10.1016/j.tcs.2024.114466_br0060
  article-title: Clustering classical data with quantum k-means
– volume: 2
  start-page: 79
  year: 2018
  ident: 10.1016/j.tcs.2024.114466_br0260
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 3
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.tcs.2024.114466_br0290
  article-title: Facial expression recognition on a quantum computer
  publication-title: Quantum Mach. Intell.
  doi: 10.1007/s42484-020-00035-5
– volume: 119
  issue: 6
  year: 2017
  ident: 10.1016/j.tcs.2024.114466_br0040
  article-title: Implementing a distance-based classifier with a quantum interference circuit
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/119/60002
– ident: 10.1016/j.tcs.2024.114466_br0100
SSID ssj0000576
Score 2.5646403
Snippet Quantum computing, based on quantum theory, holds great promise as an advanced computational paradigm for achieving fast computations. Quantum algorithms are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114466
SubjectTerms Clustering
Data mining
Quantum machine learning
Title Quantum clustering with k-Means: A hybrid approach
URI https://dx.doi.org/10.1016/j.tcs.2024.114466
Volume 992
WOSCitedRecordID wos001196600600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 20211209
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeqjgd44GOANhjIDzytStU6dmzzVo0hQOs0REF9C47t7Kt409JO47_nHDtptQ3EkHiJqriuk7tfz3fn-0DoDWBkaMHsSowlRUK1LZMCFHH4uw-YFVkpijqa8Nse398X06k86HS-N7kwlzPunLi6kuf_ldVwD5jtU2fvwO72R-EGfAamwxXYDte_YvznBRBr8aOnZwtfBKF1tp4mY-u15joV_einz9RqK4qvqqiTldRGHXs-9OJG2QrSs8NDeJPjmCJTVcrXPWhNexuDBG4dcqoCGzyMO9fuCu-s92KA-l976gG0TvXG_VWnBKljWcjSKXEzWyZkaPlTGBk6pfRtELiCy4SQ0Oi4kcgytMe7Id2Do-GkP9e-0DqhvtAxza5V0q735i9-Lb-UD5EFrQfs4zXCmRRdtDb6uDv9tNytGQ_n2fHZmpPvOgbw2kK36y4r-sjkMXoYDQk8CgB4gjrWraNHTZMOHGX2OnowbgvzVk8RiejAS3Rgjw4c0fEWj3DABm6w8Qx9fb872fmQxLYZiU7pYJ4InWoiSqYKywtf-0hLrUjGtPH2ZGqUzgaaUslNOZSGDXnJs0JLYhkzmTIsfY667szZDYRB4JfUCmNSC3ZqYQUFa0LTYcEzxRUjm2jQECTXsaa8b20yy5vgwZMcaJh7GuaBhptou51yHgqq_OnLtKFyHoEeNL0cIPH7aS_-bdpLdH-J5S3UnV8s7Ct0T1_Oj6uL1xE4vwDF8YIN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+clustering+with+k-Means%3A+A+hybrid+approach&rft.jtitle=Theoretical+computer+science&rft.au=Poggiali%2C+Alessandro&rft.au=Berti%2C+Alessandro&rft.au=Bernasconi%2C+Anna&rft.au=Del+Corso%2C+Gianna+M.&rft.date=2024-04-21&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=992&rft_id=info:doi/10.1016%2Fj.tcs.2024.114466&rft.externalDocID=S0304397524000811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon