Integration in Cones

Measurable cones, with linear and measurable functions as morphisms, are a model of intuitionistic linear logic and of call-by-name probabilistic PCF which accommodates "continuous data types" such as the real line. So far however, they lacked a major feature to make them a model of more g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science Jg. 21, Issue 1; H. 1
Hauptverfasser: Ehrhard, Thomas, Geoffroy, Guillaume
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Logical Methods in Computer Science Association 01.01.2025
Logical Methods in Computer Science e.V
Schlagworte:
ISSN:1860-5974, 1860-5974
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Measurable cones, with linear and measurable functions as morphisms, are a model of intuitionistic linear logic and of call-by-name probabilistic PCF which accommodates "continuous data types" such as the real line. So far however, they lacked a major feature to make them a model of more general probabilistic programming languages (notably call-by-value and call-by-push-value languages): a theory of integration for functions whose codomain is a cone, which is the key ingredient for interpreting the sampling programming primitives. The goal of this paper is to develop such a theory: our definition of integrals is an adaptation to cones of Pettis integrals in topological vector spaces. We prove that such integrable cones, with integral-preserving linear maps as morphisms, form a model of Linear Logic for which we develop two exponential comonads: the first based on a notion of stable and measurable functions introduced in earlier work and the second based on a new notion of integrable analytic function on cones.
AbstractList Measurable cones, with linear and measurable functions as morphisms, are a model of intuitionistic linear logic and of call-by-name probabilistic PCF which accommodates "continuous data types" such as the real line. So far however, they lacked a major feature to make them a model of more general probabilistic programming languages (notably call-by-value and call-by-push-value languages): a theory of integration for functions whose codomain is a cone, which is the key ingredient for interpreting the sampling programming primitives. The goal of this paper is to develop such a theory: our definition of integrals is an adaptation to cones of Pettis integrals in topological vector spaces. We prove that such integrable cones, with integral-preserving linear maps as morphisms, form a model of Linear Logic for which we develop two exponential comonads: the first based on a notion of stable and measurable functions introduced in earlier work and the second based on a new notion of integrable analytic function on cones.
Measurable cones, with linear and measurable functions as morphisms, are a model of intuitionistic linear logic and of call-by-name probabilistic PCF which accommodates ``continuous data types'' such as the real line. So far however, they lacked a major feature to make them a model of more general probabilistic programming languages (notably call-by-value and call-by-push-value languages): a theory of integration for functions whose codomain is a cone, which is the key ingredient for interpreting the sampling programming primitives. The goal of this paper is to develop such a theory: our definition of integrals is an adaptation to cones of Pettis integrals in topological vector spaces. We prove that such integrable cones, with integral-preserving linear maps as morphisms, form a model of Linear Logic for which we develop two exponential comonads: the first based on a notion of stable functions introduced in earlier work and thesecond based on a new notion of integrable analytic function on cones.
Author Ehrhard, Thomas
Geoffroy, Guillaume
Author_xml – sequence: 1
  givenname: Thomas
  surname: Ehrhard
  fullname: Ehrhard, Thomas
– sequence: 2
  givenname: Guillaume
  surname: Geoffroy
  fullname: Geoffroy, Guillaume
BackLink https://hal.science/hal-03883861$$DView record in HAL
BookMark eNpVkL1PwzAQxS1UJErpxsLWkQ4Bn-1zHLaqAhqpEgvMlj9LqjRBcYTEf0_SIgR3w53evfsN75JMmrYJhNwAvROSFeq-PriUMbiFB1gyyvCMTEFJmmGRi8mf_YLMU9rToTgHxeSUXJdNH3ad6au2WVTNYj2Q0xU5j6ZOYf4zZ-Tt6fF1vcm2L8_lerXNHBe0z5RlgkmFEiL3GLiTHiMyiBAseOSOWu8LizQX0XOTW88UAB0uRQ6Sej4j5YnrW7PXH111MN2Xbk2lj0Lb7bTp-srVQaOKTISYc8yZiBaVdR5R4oBR1lo1sJYn1rup_6E2q60eNcqV4krCpxi8cPK6rk2pC_H3Aag-JqrHRDUDPfaYKP8G1DZoWw
ContentType Journal Article
Copyright licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.46298/lmcs-21(1:1)2025
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_58f24ef735724fb58bcd556560d8bbb8
oai:HAL:hal-03883861v4
10_46298_lmcs_21_1_1_2025
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
1XC
VOOES
ID FETCH-LOGICAL-c340t-8b24268561f3d5e3c6d5f521f1eb1d53c0bdd9b5074fd3a7bd28110d5397160d3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001390176800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-5974
IngestDate Fri Oct 03 12:53:36 EDT 2025
Sat Nov 22 06:21:03 EST 2025
Sat Nov 29 06:21:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Linear logic
Measurable spaces
Integration
Probabilistic coherence spaces
Denotational semantics
Probabilistic programming languages
Positive cones
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-8b24268561f3d5e3c6d5f521f1eb1d53c0bdd9b5074fd3a7bd28110d5397160d3
ORCID 0000-0001-5231-5504
OpenAccessLink https://doaj.org/article/58f24ef735724fb58bcd556560d8bbb8
ParticipantIDs doaj_primary_oai_doaj_org_article_58f24ef735724fb58bcd556560d8bbb8
hal_primary_oai_HAL_hal_03883861v4
crossref_primary_10_46298_lmcs_21_1_1_2025
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Logical methods in computer science
PublicationYear 2025
Publisher Logical Methods in Computer Science Association
Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science Association
– name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 2.333207
Snippet Measurable cones, with linear and measurable functions as morphisms, are a model of intuitionistic linear logic and of call-by-name probabilistic PCF which...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Index Database
SubjectTerms Computer Science
computer science - logic in computer science
Logic in Computer Science
Title Integration in Cones
URI https://hal.science/hal-03883861
https://doaj.org/article/58f24ef735724fb58bcd556560d8bbb8
Volume 21, Issue 1
WOSCitedRecordID wos001390176800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA4yvPo1xflFEQ8qhDVN0qbe5tiYoMODwm5h-cKBDtnmjv523zftZDt5kZYe0jZpn7R5nrTJ8xJyxT26nAlLvfCeiuCgHQyZoh7ozBkBgpZXwSaK4VCNRuXzWqgvHBNW2QNXwLUlnCp8KLgsMhGMVMY6iSokdcoYE6f5gupZ60zFNphzFM7Vb0yRZ6Vqv3_YOc3YNbtjN9DjlxtEFP36gV7eVp9TI73098hOrQuTTnU9-2TLTw_I7irmQlK_gk3SfKj9HQDPZDJNuui1f0he-72X7oDWkQ2o5SJdUGWQGRVol8Cd9NzmTgYg0sCg6XSS29Q4VxrQaoAeHxfGZQp4Gvag41Pq-BFpTCH_Y5IEw4Tzmed8nAqcl2psIZzyJrUsDXnZIrer29SflYGFBuEfMdGIic6YxgUxaZF7BOL3QPSejglQI7quEf1XjbTIJcC4kceg86gxDa1nuMrZUpz8R0mn2MuOI6hhPSONxezLn5Ntu1xM5rOL-ETA9um79wMdh7jF
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+in+Cones&rft.jtitle=Logical+methods+in+computer+science&rft.au=Ehrhard%2C+Thomas&rft.au=Geoffroy%2C+Guillaume&rft.date=2025-01-01&rft.issn=1860-5974&rft.eissn=1860-5974&rft.volume=21%2C+Issue+1&rft_id=info:doi/10.46298%2Flmcs-21%281%3A1%292025&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_lmcs_21_1_1_2025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon