Discriminative Hamiltonian variational autoencoder for accurate tumor segmentation in data-scarce regimes

Deep learning has gained significant attention in medical image segmentation. However, the limited availability of annotated training data presents a challenge to achieving accurate results. In efforts to overcome this challenge, data augmentation techniques have been proposed. However, the majority...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 606; p. 128360
Main Authors: Kebaili, Aghiles, Lapuyade-Lahorgue, Jérôme, Vera, Pierre, Ruan, Su
Format: Journal Article
Language:English
Published: Elsevier B.V 14.11.2024
Elsevier
Subjects:
ISSN:0925-2312
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep learning has gained significant attention in medical image segmentation. However, the limited availability of annotated training data presents a challenge to achieving accurate results. In efforts to overcome this challenge, data augmentation techniques have been proposed. However, the majority of these approaches primarily focus on image generation. For segmentation tasks, providing both images and their corresponding target masks is crucial, and the generation of diverse and realistic samples remains a complex task, especially when working with limited training datasets. To this end, we propose a new end-to-end hybrid architecture based on Hamiltonian Variational Autoencoders (HVAE) and a discriminative regularization to improve the quality of generated images. Our method provides an accurate estimation of the joint distribution of the images and masks, resulting in the generation of realistic medical images with reduced artifacts and off-distribution instances. As generating 3D volumes requires substantial time and memory, our architecture operates on a slice-by-slice basis to segment 3D volumes, capitalizing on the richly augmented dataset. Experiments conducted on two public datasets, BRATS (MRI modality) and HECKTOR (PET modality), demonstrate the efficacy of our proposed method on different medical imaging modalities with limited data.
AbstractList Deep learning has gained significant attention in medical image segmentation. However, the limited availability of annotated training data presents a challenge to achieving accurate results. In efforts to overcome this challenge, data augmentation techniques have been proposed. However, the majority of these approaches primarily focus on image generation. For segmentation tasks, providing both images and their corresponding target masks is crucial, and the generation of diverse and realistic samples remains a complex task, especially when working with limited training datasets. To this end, we propose a new end-to-end hybrid architecture based on Hamiltonian Variational Autoencoders (HVAE) and a discriminative regularization to improve the quality of generated images. Our method provides an accurate estimation of the joint distribution of the images and masks, resulting in the generation of realistic medical images with reduced artifacts and off-distribution instances. As generating 3D volumes requires substantial time and memory, our architecture operates on a sliceby-slice basis to segment 3D volumes, capitalizing on the richly augmented dataset. Experiments conducted on two public datasets, BRATS (MRI modality) and HECKTOR (PET modality), demonstrate the efficacy of our proposed method on different medical imaging modalities with limited data.
Deep learning has gained significant attention in medical image segmentation. However, the limited availability of annotated training data presents a challenge to achieving accurate results. In efforts to overcome this challenge, data augmentation techniques have been proposed. However, the majority of these approaches primarily focus on image generation. For segmentation tasks, providing both images and their corresponding target masks is crucial, and the generation of diverse and realistic samples remains a complex task, especially when working with limited training datasets. To this end, we propose a new end-to-end hybrid architecture based on Hamiltonian Variational Autoencoders (HVAE) and a discriminative regularization to improve the quality of generated images. Our method provides an accurate estimation of the joint distribution of the images and masks, resulting in the generation of realistic medical images with reduced artifacts and off-distribution instances. As generating 3D volumes requires substantial time and memory, our architecture operates on a slice-by-slice basis to segment 3D volumes, capitalizing on the richly augmented dataset. Experiments conducted on two public datasets, BRATS (MRI modality) and HECKTOR (PET modality), demonstrate the efficacy of our proposed method on different medical imaging modalities with limited data.
ArticleNumber 128360
Author Vera, Pierre
Ruan, Su
Lapuyade-Lahorgue, Jérôme
Kebaili, Aghiles
Author_xml – sequence: 1
  givenname: Aghiles
  orcidid: 0009-0000-6114-7733
  surname: Kebaili
  fullname: Kebaili, Aghiles
  organization: LITIS UR 4108, University of Rouen-Normandy, Rouen, 76000, Normandy, France
– sequence: 2
  givenname: Jérôme
  surname: Lapuyade-Lahorgue
  fullname: Lapuyade-Lahorgue, Jérôme
  organization: LITIS UR 4108, University of Rouen-Normandy, Rouen, 76000, Normandy, France
– sequence: 3
  givenname: Pierre
  surname: Vera
  fullname: Vera, Pierre
  organization: LITIS UR 4108, University of Rouen-Normandy, Rouen, 76000, Normandy, France
– sequence: 4
  givenname: Su
  orcidid: 0000-0001-8785-6917
  surname: Ruan
  fullname: Ruan, Su
  email: su.ruan@univ-rouen.fr
  organization: LITIS UR 4108, University of Rouen-Normandy, Rouen, 76000, Normandy, France
BackLink https://hal.science/hal-04782076$$DView record in HAL
BookMark eNqFkDtPAzEQhF2AxPMfULiluGD7nqZAisIjSJFooLY2vg1sdGcj2zmJf8-Fg4YCqtWuZmY13wk7cN4hYxdSzKSQ1dV25nBnfT9TQhUzqZq8EgfsWGhVZiqX6oidxLgVQtZS6WNGtxRtoJ4cJBqQL6GnLnlH4PgAgcard9Bx2CWPzvoWA9_4wMHaXYCEPO36cY342qNLX2pOjreQIIsWgkUe8JV6jGfscANdxPPvecpe7u-eF8ts9fTwuJivMpsXImUNQLPGsrEbAbKVNeo616iqRtdlAU1e4lrLVksJUlTQrttS6LyyaPO1rsfO-Sm7nHLfoDPvYzUIH8YDmeV8ZfY3UdSNEnU1yFF7PWlt8DEG3BhLU4kUgDojhdlDNVszQTV7qGaCOpqLX-afb__YbiYbjhAGwmCipREtthTQJtN6-jvgEyhZmUI
CitedBy_id crossref_primary_10_1038_s41467_025_61754_6
crossref_primary_10_1049_cit2_70053
crossref_primary_10_1016_j_saa_2025_126611
Cites_doi 10.1016/j.ijar.2022.06.007
10.1145/3065386
10.3390/jimaging9040081
10.1109/TMI.2019.2914656
10.1109/CVPR.2015.7298594
10.1364/BOE.449796
10.1016/j.zemedi.2018.11.002
10.1016/j.neucom.2023.02.047
10.1117/1.JMI.6.1.014001
10.1186/s40708-020-00104-2
10.1016/j.neucom.2023.126282
10.1038/s41467-024-44824-z
10.1093/bib/bbab569
10.1109/TCBB.2021.3065361
10.1016/j.neucom.2022.04.065
10.1109/CVPR.2018.00068
10.1109/CVPR52688.2022.01042
10.1109/WACV51458.2022.00181
ContentType Journal Article
Copyright 2024 Elsevier B.V.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.neucom.2024.128360
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID oai:HAL:hal-04782076v1
10_1016_j_neucom_2024_128360
S0925231224011317
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
WUQ
XPP
~HD
1XC
ID FETCH-LOGICAL-c340t-8aa8be58cf0a1d17e9739e2689754a835eb91d911a106adbd50936cec3b972023
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302503200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 06:20:40 EST 2025
Tue Nov 18 20:57:22 EST 2025
Sat Nov 29 06:34:00 EST 2025
Sat Sep 07 15:50:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Generative modeling
Hamiltonian Variational Autoencoder
MRI
Variational Autoencoder
Data augmentation
Tumor segmentation
PET
Deep learning Data augmentation Tumor segmentation Generative modeling Variational Autoencoder MRI PET Hamiltonian Variational Autoencoder
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-8aa8be58cf0a1d17e9739e2689754a835eb91d911a106adbd50936cec3b972023
ORCID 0009-0000-6114-7733
0000-0001-8785-6917
ParticipantIDs hal_primary_oai_HAL_hal_04782076v1
crossref_citationtrail_10_1016_j_neucom_2024_128360
crossref_primary_10_1016_j_neucom_2024_128360
elsevier_sciencedirect_doi_10_1016_j_neucom_2024_128360
PublicationCentury 2000
PublicationDate 2024-11-14
PublicationDateYYYYMMDD 2024-11-14
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-14
  day: 14
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer, High-resolution image synthesis with latent diffusion models, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10684–10695.
Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, Stephen Paul Smolley, Least squares generative adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2794–2802.
Liang, Chen (b38) 2021
Huang, Ruan, Decazes, Denœux (b4) 2022; 149
Song, Zheng, Li, Zhang, Zhang, Huang, Chen, Wang, Zhao, Chong (b5) 2021; 18
Kebaili, Lapuyade-Lahorgue, Ruan (b8) 2023; 9
Chen, Wang, Shan (b34) 2023
Andrearczyk, Oreiller, Boughdad, Rest, Elhalawani, Jreige, Prior, Vallières, Visvikis, Hatt (b53) 2021
Kebaili, Lapuyade-Lahorgue, Vera, Ruan (b20) 2023
Ho, Jain, Abbeel (b29) 2020; 33
Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (b54) 2017; 30
Trullo, Petitjean, Dubray, Ruan (b6) 2019; 6
Huo, Vakharia, Wu, Sharan, Ko, Ourselin, Sparks (b44) 2022
Stojanovski, Hermida, Lamata, Beqiri, Gomez (b32) 2023
Dorjsembe, Pao, Odonchimed, Xiao (b31) 2023
Biffi, Oktay, Tarroni, Bai, Marvao, Doumou, Rajchl, Bedair, Prasad, Cook (b42) 2018
Razavi, Van den Oord, Vinyals (b22) 2019; 32
Zhuang, Schwing, Koyejo (b41) 2019
Krizhevsky, Sutskever, Hinton (b57) 2012; 25
Isensee, Petersen, Klein, Zimmerer, Jaeger, Kohl, Wasserthal, Koehler, Norajitra, Wirkert (b64) 2018
Kazerouni, Aghdam, Heidari, Azad, Fayyaz, Hacihaliloglu, Merhof (b30) 2022
Xiao, Kreis, Vahdat (b17) 2021
Caterini, Doucet, Sejdinovic (b45) 2018; 31
Gan, Wang (b37) 2022; 13
Volokitin, Erdil, Karani, Tezcan, Chen, Gool, Konukoglu (b43) 2020
Huang, Ruan, Denœux (b2) 2023; 535
Li, Xia, Zhang, Wang, Li (b14) 2022
Wang, Xie, Huang, Lyu, Zheng, Zheng, Jin (b10) 2023; 546
Hatamizadeh, Nath, Tang, Yang, Roth, Xu (b62) 2021
Kingma, Salimans, Jozefowicz, Chen, Sutskever, Welling (b25) 2016; 29
Rezende, Mohamed (b26) 2015
Chadebec, Thibeau-Sutre, Burgos, Allassonnière (b27) 2022
Pesteie, Abolmaesumi, Rohling (b40) 2019; 38
Kingma, Salimans, Jozefowicz, Chen, Sutskever, Welling (b21) 2016; 29
Simonyan, Zisserman (b48) 2014
Bond-Taylor, Leach, Long, Willcocks (b13) 2021
Kingma, Welling (b16) 2013
Chadebec, Allassonnière (b18) 2021
Oktay, Schlemper, Folgoc, Lee, Heinrich, Misawa, Mori, McDonagh, Hammerla, Kainz (b63) 2018
Ronneberger, Fischer, Brox (b59) 2015
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
Davidson, Falorsi, De Cao, Kipf, Tomczak (b28) 2018
Islam, Zhang (b3) 2020; 7
Han, Xiong, You, Khosravi, Sun, Yan, Duncan, Xie (b35) 2023
Mescheder, Geiger, Nowozin (b12) 2018
Krizhevsky, Sutskever, Hinton (b7) 2017; 60
Stahlschmidt, Ulfenborg, Synnergren (b46) 2022; 23
Lundervold, Lundervold (b1) 2019; 29
Shrivastava, Fletcher (b33) 2023
Johnson, Alahi, Fei-Fei (b47) 2016
Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, Oliver Wang, The unreasonable effectiveness of deep features as a perceptual metric, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–595.
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b9) 2014
Chen, Yang, Wei, Heidari, Zheng, Li, Chen, Hu, Zhou, Guan (b11) 2022
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (b60) 2020
Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Landman, Holger R Roth, Daguang Xu, Unetr: Transformers for 3d medical image segmentation, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 574–584.
Ma, He, Li, Han, You, Wang (b51) 2024; 15
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b49) 2017; 30
Tomczak, Welling (b24) 2018
Odena (b15) 2016
Dai, Liu, Chen, Liu, Shi, Liu, Zhou (b19) 2023; 161
Niyas, Pawan, Kumar, Rajan (b39) 2022; 493
Baid, Ghodasara, Mohan, Bilello, Calabrese, Colak, Farahani, Kalpathy-Cramer, Kitamura, Pati (b52) 2021
Isola, Zhu, Zhou, Efros (b50) 2016
Dilokthanakul, Mediano, Garnelo, Lee, Salimbeni, Arulkumaran, Shanahan (b23) 2016
Davidson (10.1016/j.neucom.2024.128360_b28) 2018
Ho (10.1016/j.neucom.2024.128360_b29) 2020; 33
Islam (10.1016/j.neucom.2024.128360_b3) 2020; 7
10.1016/j.neucom.2024.128360_b56
10.1016/j.neucom.2024.128360_b55
10.1016/j.neucom.2024.128360_b58
Kazerouni (10.1016/j.neucom.2024.128360_b30) 2022
Dorjsembe (10.1016/j.neucom.2024.128360_b31) 2023
Huang (10.1016/j.neucom.2024.128360_b2) 2023; 535
Kingma (10.1016/j.neucom.2024.128360_b16) 2013
Krizhevsky (10.1016/j.neucom.2024.128360_b57) 2012; 25
Krizhevsky (10.1016/j.neucom.2024.128360_b7) 2017; 60
Niyas (10.1016/j.neucom.2024.128360_b39) 2022; 493
Simonyan (10.1016/j.neucom.2024.128360_b48) 2014
Pesteie (10.1016/j.neucom.2024.128360_b40) 2019; 38
Lundervold (10.1016/j.neucom.2024.128360_b1) 2019; 29
Rezende (10.1016/j.neucom.2024.128360_b26) 2015
Chadebec (10.1016/j.neucom.2024.128360_b18) 2021
Huang (10.1016/j.neucom.2024.128360_b4) 2022; 149
Dai (10.1016/j.neucom.2024.128360_b19) 2023; 161
Kebaili (10.1016/j.neucom.2024.128360_b20) 2023
Johnson (10.1016/j.neucom.2024.128360_b47) 2016
Stahlschmidt (10.1016/j.neucom.2024.128360_b46) 2022; 23
Biffi (10.1016/j.neucom.2024.128360_b42) 2018
Ronneberger (10.1016/j.neucom.2024.128360_b59) 2015
Trullo (10.1016/j.neucom.2024.128360_b6) 2019; 6
Odena (10.1016/j.neucom.2024.128360_b15) 2016
Kingma (10.1016/j.neucom.2024.128360_b21) 2016; 29
10.1016/j.neucom.2024.128360_b61
Zhuang (10.1016/j.neucom.2024.128360_b41) 2019
Razavi (10.1016/j.neucom.2024.128360_b22) 2019; 32
Vaswani (10.1016/j.neucom.2024.128360_b49) 2017; 30
Dosovitskiy (10.1016/j.neucom.2024.128360_b60) 2020
Li (10.1016/j.neucom.2024.128360_b14) 2022
Mescheder (10.1016/j.neucom.2024.128360_b12) 2018
Xiao (10.1016/j.neucom.2024.128360_b17) 2021
Heusel (10.1016/j.neucom.2024.128360_b54) 2017; 30
Oktay (10.1016/j.neucom.2024.128360_b63) 2018
Goodfellow (10.1016/j.neucom.2024.128360_b9) 2014
Wang (10.1016/j.neucom.2024.128360_b10) 2023; 546
Chen (10.1016/j.neucom.2024.128360_b34) 2023
Gan (10.1016/j.neucom.2024.128360_b37) 2022; 13
Tomczak (10.1016/j.neucom.2024.128360_b24) 2018
Kebaili (10.1016/j.neucom.2024.128360_b8) 2023; 9
Shrivastava (10.1016/j.neucom.2024.128360_b33) 2023
10.1016/j.neucom.2024.128360_b36
Dilokthanakul (10.1016/j.neucom.2024.128360_b23) 2016
Huo (10.1016/j.neucom.2024.128360_b44) 2022
Bond-Taylor (10.1016/j.neucom.2024.128360_b13) 2021
Ma (10.1016/j.neucom.2024.128360_b51) 2024; 15
Caterini (10.1016/j.neucom.2024.128360_b45) 2018; 31
Chen (10.1016/j.neucom.2024.128360_b11) 2022
Baid (10.1016/j.neucom.2024.128360_b52) 2021
Kingma (10.1016/j.neucom.2024.128360_b25) 2016; 29
Isensee (10.1016/j.neucom.2024.128360_b64) 2018
Isola (10.1016/j.neucom.2024.128360_b50) 2016
Han (10.1016/j.neucom.2024.128360_b35) 2023
Song (10.1016/j.neucom.2024.128360_b5) 2021; 18
Andrearczyk (10.1016/j.neucom.2024.128360_b53) 2021
Liang (10.1016/j.neucom.2024.128360_b38) 2021
Hatamizadeh (10.1016/j.neucom.2024.128360_b62) 2021
Stojanovski (10.1016/j.neucom.2024.128360_b32) 2023
Volokitin (10.1016/j.neucom.2024.128360_b43) 2020
Chadebec (10.1016/j.neucom.2024.128360_b27) 2022
References_xml – volume: 149
  start-page: 39
  year: 2022
  end-page: 60
  ident: b4
  article-title: Lymphoma segmentation from 3D PET-CT images using a deep evidential network
  publication-title: Internat. J. Approx. Reason.
– year: 2021
  ident: b17
  article-title: Tackling the generative learning trilemma with denoising diffusion gans
– volume: 493
  start-page: 397
  year: 2022
  end-page: 413
  ident: b39
  article-title: Medical image segmentation with 3D convolutional neural networks: A survey
  publication-title: Neurocomputing
– year: 2022
  ident: b30
  article-title: Diffusion models for medical image analysis: A comprehensive survey
– volume: 161
  year: 2023
  ident: b19
  article-title: Swin MAE: Masked autoencoders for small datasets
  publication-title: Comput. Biol. Med.
– volume: 31
  year: 2018
  ident: b45
  article-title: Hamiltonian variational auto-encoder
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2023
  ident: b31
  article-title: Conditional diffusion models for semantic 3D medical image synthesis
– volume: 13
  start-page: 1188
  year: 2022
  end-page: 1201
  ident: b37
  article-title: Esophageal optical coherence tomography image synthesis using an adversarially learned variational autoencoder
  publication-title: Biomed. Opt. Express
– volume: 25
  year: 2012
  ident: b57
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 34
  year: 2023
  end-page: 43
  ident: b32
  article-title: Echo from noise: synthetic ultrasound image generation using diffusion models for real image segmentation
  publication-title: International Workshop on Advances in Simplifying Medical Ultrasound
– volume: 18
  start-page: 2775
  year: 2021
  end-page: 2780
  ident: b5
  article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– reference: Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer, High-resolution image synthesis with latent diffusion models, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10684–10695.
– volume: 7
  start-page: 1
  year: 2020
  end-page: 12
  ident: b3
  article-title: GAN-based synthetic brain PET image generation
  publication-title: Brain Inform.
– start-page: 759
  year: 2023
  end-page: 769
  ident: b35
  article-title: Medgen3d: A deep generative framework for paired 3d image and mask generation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1214
  year: 2018
  end-page: 1223
  ident: b24
  article-title: VAE with a VampPrior
  publication-title: International Conference on Artificial Intelligence and Statistics
– volume: 30
  year: 2017
  ident: b54
  article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2014
  ident: b48
  article-title: Very deep convolutional networks for large-scale image recognition
– reference: Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, Oliver Wang, The unreasonable effectiveness of deep features as a perceptual metric, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–595.
– volume: 9
  start-page: 81
  year: 2023
  ident: b8
  article-title: Deep learning approaches for data augmentation in medical imaging: A review
  publication-title: J. Imaging
– year: 2023
  ident: b33
  article-title: NASDM: Nuclei-aware semantic histopathology image generation using diffusion models
– start-page: 1
  year: 2021
  end-page: 4
  ident: b38
  article-title: Data augmentation of thyroid ultrasound images using generative adversarial network
  publication-title: 2021 IEEE International Ultrasonics Symposium
– volume: 30
  year: 2017
  ident: b49
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  start-page: 654
  year: 2024
  ident: b51
  article-title: Segment anything in medical images
  publication-title: Nature Commun.
– year: 2018
  ident: b63
  article-title: Attention u-net: Learning where to look for the pancreas
– year: 2014
  ident: b9
  article-title: Generative adversarial networks
– start-page: 1530
  year: 2015
  end-page: 1538
  ident: b26
  article-title: Variational inference with normalizing flows
  publication-title: International Conference on Machine Learning
– start-page: 1
  year: 2021
  end-page: 37
  ident: b53
  article-title: Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET/CT images
  publication-title: 3D Head and Neck Tumor Segmentation in PET/CT Challenge
– year: 2020
  ident: b60
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– start-page: 3481
  year: 2018
  end-page: 3490
  ident: b12
  article-title: Which training methods for GANs do actually converge?
  publication-title: International Conference on Machine Learning
– start-page: 657
  year: 2020
  end-page: 666
  ident: b43
  article-title: Modelling the distribution of 3D brain MRI using a 2D slice VAE
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2016
  ident: b50
  article-title: Image-to-image translation with conditional adversarial networks
– year: 2021
  ident: b52
  article-title: The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification
– reference: Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Landman, Holger R Roth, Daguang Xu, Unetr: Transformers for 3d medical image segmentation, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 574–584.
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b7
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– year: 2022
  ident: b27
  article-title: Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2023
  ident: b34
  article-title: BerDiff: Conditional Bernoulli diffusion model for medical image segmentation
– start-page: 272
  year: 2021
  end-page: 284
  ident: b62
  article-title: Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images
  publication-title: International MICCAI Brainlesion Workshop
– year: 2016
  ident: b23
  article-title: Deep unsupervised clustering with gaussian mixture variational autoencoders
– volume: 29
  year: 2016
  ident: b25
  article-title: Improved variational inference with inverse autoregressive flow
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1783
  year: 2019
  end-page: 1787
  ident: b41
  article-title: Fmri data augmentation via synthesis
  publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging
– volume: 535
  start-page: 40
  year: 2023
  end-page: 52
  ident: b2
  article-title: Semi-supervised multiple evidence fusion for brain tumor segmentation
  publication-title: Neurocomputing
– volume: 38
  start-page: 2807
  year: 2019
  end-page: 2820
  ident: b40
  article-title: Adaptive augmentation of medical data using independently conditional variational auto-encoders
  publication-title: IEEE Trans. Med. Imaging
– start-page: 464
  year: 2018
  end-page: 471
  ident: b42
  article-title: Learning interpretable anatomical features through deep generative models: Application to cardiac remodeling
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2023
  ident: b20
  article-title: End-to-end autoencoding architecture for the simultaneous generation of medical images and corresponding segmentation masks
– volume: 23
  start-page: bbab569
  year: 2022
  ident: b46
  article-title: Multimodal deep learning for biomedical data fusion: a review
  publication-title: Brief. Bioinform.
– year: 2013
  ident: b16
  article-title: Auto-encoding variational bayes
– start-page: 694
  year: 2016
  end-page: 711
  ident: b47
  article-title: Perceptual losses for real-time style transfer and super-resolution
  publication-title: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, the Netherlands, October 11-14, 2016, Proceedings, Part II 14
– reference: Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, Stephen Paul Smolley, Least squares generative adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2794–2802.
– year: 2022
  ident: b14
  article-title: A comprehensive survey on data-efficient GANs in image generation
– volume: 546
  year: 2023
  ident: b10
  article-title: FedMed-GAN: Federated domain translation on unsupervised cross-modality brain image synthesis
  publication-title: Neurocomputing
– reference: Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  ident: b29
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: b15
  article-title: Semi-supervised learning with generative adversarial networks
– volume: 29
  start-page: 102
  year: 2019
  end-page: 127
  ident: b1
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Z. Med. Phys.
– volume: 32
  year: 2019
  ident: b22
  article-title: Generating diverse high-fidelity images with vq-vae-2
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2021
  ident: b13
  article-title: Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2018
  ident: b64
  article-title: nnu-net: Self-adapting framework for u-net-based medical image segmentation
– year: 2022
  ident: b11
  article-title: Generative adversarial networks in medical image augmentation: a review
  publication-title: Comput. Biol. Med.
– volume: 6
  year: 2019
  ident: b6
  article-title: Multiorgan segmentation using distance-aware adversarial networks
  publication-title: J. Med. Imaging
– year: 2018
  ident: b28
  article-title: Hyperspherical variational auto-encoders
– start-page: 234
  year: 2015
  end-page: 241
  ident: b59
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 184
  year: 2021
  end-page: 192
  ident: b18
  article-title: Data augmentation with variational autoencoders and manifold sampling
  publication-title: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections
– volume: 29
  year: 2016
  ident: b21
  article-title: Improved variational inference with inverse autoregressive flow
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 101
  year: 2022
  end-page: 111
  ident: b44
  article-title: Brain lesion synthesis via progressive adversarial variational auto-encoder
  publication-title: International Workshop on Simulation and Synthesis in Medical Imaging
– year: 2014
  ident: 10.1016/j.neucom.2024.128360_b9
– year: 2021
  ident: 10.1016/j.neucom.2024.128360_b13
  article-title: Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 32
  year: 2019
  ident: 10.1016/j.neucom.2024.128360_b22
  article-title: Generating diverse high-fidelity images with vq-vae-2
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 272
  year: 2021
  ident: 10.1016/j.neucom.2024.128360_b62
  article-title: Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images
– start-page: 694
  year: 2016
  ident: 10.1016/j.neucom.2024.128360_b47
  article-title: Perceptual losses for real-time style transfer and super-resolution
– volume: 149
  start-page: 39
  year: 2022
  ident: 10.1016/j.neucom.2024.128360_b4
  article-title: Lymphoma segmentation from 3D PET-CT images using a deep evidential network
  publication-title: Internat. J. Approx. Reason.
  doi: 10.1016/j.ijar.2022.06.007
– year: 2021
  ident: 10.1016/j.neucom.2024.128360_b52
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.neucom.2024.128360_b7
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– year: 2021
  ident: 10.1016/j.neucom.2024.128360_b17
– volume: 9
  start-page: 81
  issue: 4
  year: 2023
  ident: 10.1016/j.neucom.2024.128360_b8
  article-title: Deep learning approaches for data augmentation in medical imaging: A review
  publication-title: J. Imaging
  doi: 10.3390/jimaging9040081
– year: 2013
  ident: 10.1016/j.neucom.2024.128360_b16
– volume: 30
  year: 2017
  ident: 10.1016/j.neucom.2024.128360_b49
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  year: 2017
  ident: 10.1016/j.neucom.2024.128360_b54
  article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 34
  year: 2023
  ident: 10.1016/j.neucom.2024.128360_b32
  article-title: Echo from noise: synthetic ultrasound image generation using diffusion models for real image segmentation
– volume: 38
  start-page: 2807
  issue: 12
  year: 2019
  ident: 10.1016/j.neucom.2024.128360_b40
  article-title: Adaptive augmentation of medical data using independently conditional variational auto-encoders
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2914656
– start-page: 101
  year: 2022
  ident: 10.1016/j.neucom.2024.128360_b44
  article-title: Brain lesion synthesis via progressive adversarial variational auto-encoder
– volume: 29
  year: 2016
  ident: 10.1016/j.neucom.2024.128360_b21
  article-title: Improved variational inference with inverse autoregressive flow
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: 10.1016/j.neucom.2024.128360_b23
– year: 2023
  ident: 10.1016/j.neucom.2024.128360_b34
– start-page: 464
  year: 2018
  ident: 10.1016/j.neucom.2024.128360_b42
  article-title: Learning interpretable anatomical features through deep generative models: Application to cardiac remodeling
– ident: 10.1016/j.neucom.2024.128360_b55
  doi: 10.1109/CVPR.2015.7298594
– start-page: 1214
  year: 2018
  ident: 10.1016/j.neucom.2024.128360_b24
  article-title: VAE with a VampPrior
– start-page: 1
  year: 2021
  ident: 10.1016/j.neucom.2024.128360_b38
  article-title: Data augmentation of thyroid ultrasound images using generative adversarial network
– year: 2014
  ident: 10.1016/j.neucom.2024.128360_b48
– volume: 13
  start-page: 1188
  issue: 3
  year: 2022
  ident: 10.1016/j.neucom.2024.128360_b37
  article-title: Esophageal optical coherence tomography image synthesis using an adversarially learned variational autoencoder
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.449796
– year: 2020
  ident: 10.1016/j.neucom.2024.128360_b60
– volume: 33
  start-page: 6840
  year: 2020
  ident: 10.1016/j.neucom.2024.128360_b29
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 29
  start-page: 102
  issue: 2
  year: 2019
  ident: 10.1016/j.neucom.2024.128360_b1
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Z. Med. Phys.
  doi: 10.1016/j.zemedi.2018.11.002
– volume: 25
  year: 2012
  ident: 10.1016/j.neucom.2024.128360_b57
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: 10.1016/j.neucom.2024.128360_b63
– start-page: 1530
  year: 2015
  ident: 10.1016/j.neucom.2024.128360_b26
  article-title: Variational inference with normalizing flows
– start-page: 759
  year: 2023
  ident: 10.1016/j.neucom.2024.128360_b35
  article-title: Medgen3d: A deep generative framework for paired 3d image and mask generation
– volume: 535
  start-page: 40
  year: 2023
  ident: 10.1016/j.neucom.2024.128360_b2
  article-title: Semi-supervised multiple evidence fusion for brain tumor segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.047
– year: 2023
  ident: 10.1016/j.neucom.2024.128360_b33
– year: 2018
  ident: 10.1016/j.neucom.2024.128360_b28
– start-page: 1
  year: 2021
  ident: 10.1016/j.neucom.2024.128360_b53
  article-title: Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET/CT images
– volume: 29
  year: 2016
  ident: 10.1016/j.neucom.2024.128360_b25
  article-title: Improved variational inference with inverse autoregressive flow
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2022
  ident: 10.1016/j.neucom.2024.128360_b27
  article-title: Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 234
  year: 2015
  ident: 10.1016/j.neucom.2024.128360_b59
  article-title: U-net: Convolutional networks for biomedical image segmentation
– year: 2022
  ident: 10.1016/j.neucom.2024.128360_b14
– year: 2023
  ident: 10.1016/j.neucom.2024.128360_b20
– start-page: 3481
  year: 2018
  ident: 10.1016/j.neucom.2024.128360_b12
  article-title: Which training methods for GANs do actually converge?
– volume: 6
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2024.128360_b6
  article-title: Multiorgan segmentation using distance-aware adversarial networks
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.6.1.014001
– ident: 10.1016/j.neucom.2024.128360_b58
– year: 2016
  ident: 10.1016/j.neucom.2024.128360_b50
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2024.128360_b3
  article-title: GAN-based synthetic brain PET image generation
  publication-title: Brain Inform.
  doi: 10.1186/s40708-020-00104-2
– volume: 546
  year: 2023
  ident: 10.1016/j.neucom.2024.128360_b10
  article-title: FedMed-GAN: Federated domain translation on unsupervised cross-modality brain image synthesis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126282
– volume: 15
  start-page: 654
  issue: 1
  year: 2024
  ident: 10.1016/j.neucom.2024.128360_b51
  article-title: Segment anything in medical images
  publication-title: Nature Commun.
  doi: 10.1038/s41467-024-44824-z
– year: 2016
  ident: 10.1016/j.neucom.2024.128360_b15
– volume: 23
  start-page: bbab569
  issue: 2
  year: 2022
  ident: 10.1016/j.neucom.2024.128360_b46
  article-title: Multimodal deep learning for biomedical data fusion: a review
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab569
– volume: 161
  year: 2023
  ident: 10.1016/j.neucom.2024.128360_b19
  article-title: Swin MAE: Masked autoencoders for small datasets
  publication-title: Comput. Biol. Med.
– volume: 18
  start-page: 2775
  issue: 6
  year: 2021
  ident: 10.1016/j.neucom.2024.128360_b5
  article-title: Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2021.3065361
– start-page: 184
  year: 2021
  ident: 10.1016/j.neucom.2024.128360_b18
  article-title: Data augmentation with variational autoencoders and manifold sampling
– volume: 31
  year: 2018
  ident: 10.1016/j.neucom.2024.128360_b45
  article-title: Hamiltonian variational auto-encoder
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2022
  ident: 10.1016/j.neucom.2024.128360_b30
– start-page: 1783
  year: 2019
  ident: 10.1016/j.neucom.2024.128360_b41
  article-title: Fmri data augmentation via synthesis
– volume: 493
  start-page: 397
  year: 2022
  ident: 10.1016/j.neucom.2024.128360_b39
  article-title: Medical image segmentation with 3D convolutional neural networks: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.065
– year: 2022
  ident: 10.1016/j.neucom.2024.128360_b11
  article-title: Generative adversarial networks in medical image augmentation: a review
  publication-title: Comput. Biol. Med.
– year: 2023
  ident: 10.1016/j.neucom.2024.128360_b31
– ident: 10.1016/j.neucom.2024.128360_b56
  doi: 10.1109/CVPR.2018.00068
– ident: 10.1016/j.neucom.2024.128360_b36
  doi: 10.1109/CVPR52688.2022.01042
– start-page: 657
  year: 2020
  ident: 10.1016/j.neucom.2024.128360_b43
  article-title: Modelling the distribution of 3D brain MRI using a 2D slice VAE
– ident: 10.1016/j.neucom.2024.128360_b61
  doi: 10.1109/WACV51458.2022.00181
– year: 2018
  ident: 10.1016/j.neucom.2024.128360_b64
SSID ssj0017129
Score 2.4559722
Snippet Deep learning has gained significant attention in medical image segmentation. However, the limited availability of annotated training data presents a challenge...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 128360
SubjectTerms Data augmentation
Deep learning
Generative modeling
Hamiltonian Variational Autoencoder
Life Sciences
MRI
PET
Tumor segmentation
Variational Autoencoder
Title Discriminative Hamiltonian variational autoencoder for accurate tumor segmentation in data-scarce regimes
URI https://dx.doi.org/10.1016/j.neucom.2024.128360
https://hal.science/hal-04782076
Volume 606
WOSCitedRecordID wos001302503200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lLQcuvFHLSyvELXLl966PAYoCiqoKFZSbtV6vW0eNEyVxVP4Ov5QZ767tUEHpgYuVWPba8nyeHc9-8w0h7-LcC3NcZC1cN3dCGQsnKzLlFEwVihdceIVsmk2w01M-nSZng8FPWwuzvWJVxa-vk-V_NTXsA2Nj6ewdzN0OCjvgNxgdtmB22P6T4T-W6AmQ4dKwgsaYwYAAD1_kLXwY2-SfqDcLFLFELYmGSSlljbIRw009h79rdTE3ZUkNFxKZpM5aYmXkEJs52MKRmVV_qmEmbDpEmNzDaI4SDDnireNzq0yUuh57hELaHX9xIpb1D5ErZyIuF6uLWmf29Sp-s5j_Ppy3EPyumuZIwzOY0jvu7tfa5HLrfibDD7GkT1eQ2pSkHzkQb-5459jt-1eYTQPdf-CG69dZiNlxpWrkAeEFjrvDd5W2f5sBW16ipbzNUj1KiqOkepQ9cuCzKAHPeTD6fDL90q5VMc_Xio7m7m2BZsMivHk3fwqA9i5tKr8Jbc4fkQfmm4SONJYek4GqnpCHtt8HNe7_KSl3oUV70KI9aNEetChAi1po0QZatA8tWla0By1qoPWMfPt0cv5h7JhWHY4MQnfjcCF4piIuC1d4ucdUwoJE-TFPWBQKiPJVlng5TKzCc2ORZznEqUEslQyyhMHDCZ6T_WpRqUNCmYQYmmeCRYKHfsgyGSQuy90EHEcQ8fiIBPb5pdLo2GM7lav0b9Y7Ik571lLruNxyPLOmSU0sqmPMFPB2y5lvwZLtRVC-fTyapLgPlbB8l8Vb78Udb-clud-9Ma_I_mZVq9fkntxuyvXqjUHkL9dcu9A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminative+Hamiltonian+variational+autoencoder+for+accurate+tumor+segmentation+in+data-scarce+regimes&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Kebaili%2C+Aghiles&rft.au=Lapuyade-Lahorgue%2C+J%C3%A9r%C3%B4me&rft.au=Vera%2C+Pierre&rft.au=Ruan%2C+Su&rft.date=2024-11-14&rft.issn=0925-2312&rft.volume=606&rft.spage=128360&rft_id=info:doi/10.1016%2Fj.neucom.2024.128360&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2024_128360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon