Neural-aided GNC reconfiguration algorithm for distributed space system: development and PIL test

This paper presents a neural-aided Guidance, Navigation & Control algorithm for reconfiguration of distributed space systems. The guidance algorithm is based on Artificial Potential Fields (APF) in the Relative Orbital Elements (ROE) space. Since the relative orbit determination measurements are...

Full description

Saved in:
Bibliographic Details
Published in:Advances in space research Vol. 67; no. 5; pp. 1490 - 1505
Main Authors: Silvestrini, Stefano, Lavagna, Michèle
Format: Journal Article
Language:English
Published: Elsevier B.V 01.03.2021
Subjects:
ISSN:0273-1177, 1879-1948
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a neural-aided Guidance, Navigation & Control algorithm for reconfiguration of distributed space systems. The guidance algorithm is based on Artificial Potential Fields (APF) in the Relative Orbital Elements (ROE) space. Since the relative orbit determination measurements are typically referred to the Cartesian metrics (e.g. range or range rate), a linear mapping between the set of ROE and the Cartesian coordinates expressed in the Local-Vertical-Local-Horizontal (LVLH) reference frame is derived. The navigation and control algorithms rely on the relative dynamics expressed in the same ROE set of coordinates. To cope with uncertainties and nonlinearities of the system, a Radial Basis Function Neural Network (RBFNN) is employed to reconstruct the perturbed dynamics. The Artificial Neural Network (ANN) is coupled with an adaptive Extended Kalman Filter for state estimation. A feedback control is designed to track the desired state, whose stability is analyzed using Lyapunov theory. The guidance, navigation and control algorithms are tested in a high-fidelity numerical orbit propagator. Moreover, the algorithm is tested in relevant Processor-In-the-Loop (PIL) simulations using a TI C2000-Delfino MCU F28379D. The results demonstrate the effectiveness of the algorithm for relative reconfiguration maneuvers involving relative distances ~102 m with limited fuel consumption and constrained available thrust (⩽1mN). In particular along-track maneuvers, relative plane change and formation enlargement are analysed in the paper, showing the comparison between the proposed algorithm and the legacy one without the neural network. The benefit of implementing a neural network is particularly highlighted when the nonlinearities or unmodelled terms in the on-board dynamics become prominent.
AbstractList This paper presents a neural-aided Guidance, Navigation & Control algorithm for reconfiguration of distributed space systems. The guidance algorithm is based on Artificial Potential Fields (APF) in the Relative Orbital Elements (ROE) space. Since the relative orbit determination measurements are typically referred to the Cartesian metrics (e.g. range or range rate), a linear mapping between the set of ROE and the Cartesian coordinates expressed in the Local-Vertical-Local-Horizontal (LVLH) reference frame is derived. The navigation and control algorithms rely on the relative dynamics expressed in the same ROE set of coordinates. To cope with uncertainties and nonlinearities of the system, a Radial Basis Function Neural Network (RBFNN) is employed to reconstruct the perturbed dynamics. The Artificial Neural Network (ANN) is coupled with an adaptive Extended Kalman Filter for state estimation. A feedback control is designed to track the desired state, whose stability is analyzed using Lyapunov theory. The guidance, navigation and control algorithms are tested in a high-fidelity numerical orbit propagator. Moreover, the algorithm is tested in relevant Processor-In-the-Loop (PIL) simulations using a TI C2000-Delfino MCU F28379D. The results demonstrate the effectiveness of the algorithm for relative reconfiguration maneuvers involving relative distances ~102 m with limited fuel consumption and constrained available thrust (⩽1mN). In particular along-track maneuvers, relative plane change and formation enlargement are analysed in the paper, showing the comparison between the proposed algorithm and the legacy one without the neural network. The benefit of implementing a neural network is particularly highlighted when the nonlinearities or unmodelled terms in the on-board dynamics become prominent.
Author Silvestrini, Stefano
Lavagna, Michèle
Author_xml – sequence: 1
  givenname: Stefano
  surname: Silvestrini
  fullname: Silvestrini, Stefano
  email: stefano.silvestrini@polimi.it
– sequence: 2
  givenname: Michèle
  surname: Lavagna
  fullname: Lavagna, Michèle
  email: michelle.lavagna@polimi.it
BookMark eNp9kM9OAjEQhxuDiYA-gLe-wK6d7rJd9GSIIglBD3puuu0slixb0hYS3t4injxwmsyfb5LfNyKD3vVIyD2wHBhUD5tcBZ9zxlPPcwblFRlCLaYZTMt6QIaMiyIDEOKGjELYMAZcCDYkaoV7r7pMWYOGzlcz6lG7vrXrNI7W9VR1a-dt_N7S1nlqbIjeNvuYrsNOaaThGCJuH6nBA3Zut8U-UtUb-rFY0ogh3pLrVnUB7_7qmHy9vnzO3rLl-3wxe15muihZzOpaq6bWpm1EhWAarMy0Kia6UIii1AXX9aTE2uiqgrSHUiCDVquygElTIy_GRJz_au9C8NhKbeNvhOiV7SQweTIlNzKZkidTErhMphIJ_8idt1vljxeZpzODKdLBopdBW-w1GpsERmmcvUD_AKnhhZU
CitedBy_id crossref_primary_10_1016_j_enconman_2023_117063
crossref_primary_10_2514_1_G005481
crossref_primary_10_1016_j_asr_2023_07_051
crossref_primary_10_1016_j_asr_2022_11_048
crossref_primary_10_1016_j_pss_2022_105425
crossref_primary_10_1007_s42401_022_00152_y
crossref_primary_10_3390_aerospace10110959
crossref_primary_10_1016_j_procs_2025_05_071
crossref_primary_10_3390_aerospace9090503
crossref_primary_10_1016_j_actaastro_2022_11_018
crossref_primary_10_1016_j_asr_2021_12_015
crossref_primary_10_1016_j_ast_2022_107503
crossref_primary_10_1016_j_dt_2022_04_002
crossref_primary_10_3390_drones6100270
crossref_primary_10_3389_frspt_2022_792944
crossref_primary_10_1007_s11071_022_08214_8
crossref_primary_10_1016_j_asr_2023_07_007
Cites_doi 10.2514/1.G002409
10.2514/2.4893
10.1016/j.jfranklin.2011.08.009
10.2514/2.5072
10.1002/rnc.4025
10.1016/j.ast.2019.105527
10.2514/1.G002848
10.1016/j.asr.2018.08.003
10.2514/1.13173
10.1016/j.asr.2020.01.033
10.1007/BF03546219
10.1007/978-1-4614-4541-8_4
10.5402/2012/324194
ContentType Journal Article
Copyright 2020 COSPAR
Copyright_xml – notice: 2020 COSPAR
DBID AAYXX
CITATION
DOI 10.1016/j.asr.2020.12.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Astronomy & Astrophysics
Physics
EISSN 1879-1948
EndPage 1505
ExternalDocumentID 10_1016_j_asr_2020_12_014
S027311772030870X
GroupedDBID --K
--M
-~X
.~1
0R~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IMUCA
J1W
KOM
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
ROL
SDF
SDG
SEP
SES
SPC
SPCBC
SSE
SSQ
SSZ
T5K
ZMT
~02
~G-
1B1
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HME
HVGLF
HX~
HZ~
IHE
R2-
RPZ
SEW
SHN
T9H
UHS
VH1
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c340t-88cab8cdfb76e1dbe6d9635c3aee74c32c854e8dc661e1d147e01fca4315b8e23
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615282600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0273-1177
IngestDate Sat Nov 29 07:21:18 EST 2025
Tue Nov 18 21:21:49 EST 2025
Fri Feb 23 02:41:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ANN
PIL test
GNC
Formation flying
Spacecraft
Distributed
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-88cab8cdfb76e1dbe6d9635c3aee74c32c854e8dc661e1d147e01fca4315b8e23
OpenAccessLink http://hdl.handle.net/11311/1157802
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_asr_2020_12_014
crossref_primary_10_1016_j_asr_2020_12_014
elsevier_sciencedirect_doi_10_1016_j_asr_2020_12_014
PublicationCentury 2000
PublicationDate 2021-03-01
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Advances in space research
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bae, Kim (b0005) 2012; 349
Koenig, Guffanti, D’Amico (b0045) 2017; 40
Visconti, P., Silvestrini, S., Lavagna, M., 2018. Dance: a frictionless 5 DOF facility for GNC proximity maneuvering experimental testing and validation. In: IAC. Number October. pp. 1–5.
Chu, J., 2015. Dynamics, Distributed Control And Autonomous Cluster Operations Of Fractionated Spacecraft.
Gurfil, Idan, Kasdin (b0035) 2003; 26
D’Amico, S., 2010. Autonomous formation flying in low earth orbit. Ph.D. thesis.
Vadali, S.R., Alfriend, K.T., 2013. Formation establishment, maintenance and control. In: Distributed Space Missions for Earth System Monitoring. pp. 1–675.
Schaub, Vadali, Junkins, Alfriend (b0080) 2000; 48
Lane, Axelrad (b0050) 2006; 29
Li, Zhang, Yuan, Wang (b0055) 2018; 62
Guffanti, D’Amico, Lavagna (b0030) 2017; 160
Schaub, Alfriend (b0075) 2002; 25
Di Mauro, Spiller, Bevilacqua, Curti (b0025) 2018; 0216
Ottolina, Silvestrini, Lavagna (b0060) 2019
Zhou, Chen, Xia, Huang, Wen (b0110) 2018; 28
Sarno, Guo, D’Errico, Gill (b0070) 2020; 65
Pesce, Silvestrini, Lavagna (b0065) 2020; 1
Steindorf, D’Amico, Scharnagl, Kempf, Schilling (b0090) 2017; 160
Izzo, Pettazzi (b0040) 2005; 30
Silvestrini, Pesce, Lavagna (b0085) 2019
Chernick, D’Amico (b0010) 2016; 41
Wu, Wang, Zhang, Du (b0105) 2012; 2012
10.1016/j.asr.2020.12.014_b0020
10.1016/j.asr.2020.12.014_b0095
Lane (10.1016/j.asr.2020.12.014_b0050) 2006; 29
Sarno (10.1016/j.asr.2020.12.014_b0070) 2020; 65
10.1016/j.asr.2020.12.014_b0100
Wu (10.1016/j.asr.2020.12.014_b0105) 2012; 2012
Zhou (10.1016/j.asr.2020.12.014_b0110) 2018; 28
Schaub (10.1016/j.asr.2020.12.014_b0080) 2000; 48
Guffanti (10.1016/j.asr.2020.12.014_b0030) 2017; 160
Izzo (10.1016/j.asr.2020.12.014_b0040) 2005; 30
Li (10.1016/j.asr.2020.12.014_b0055) 2018; 62
Gurfil (10.1016/j.asr.2020.12.014_b0035) 2003; 26
Silvestrini (10.1016/j.asr.2020.12.014_b0085) 2019
Chernick (10.1016/j.asr.2020.12.014_b0010) 2016; 41
Koenig (10.1016/j.asr.2020.12.014_b0045) 2017; 40
Pesce (10.1016/j.asr.2020.12.014_b0065) 2020; 1
Steindorf (10.1016/j.asr.2020.12.014_b0090) 2017; 160
Bae (10.1016/j.asr.2020.12.014_b0005) 2012; 349
10.1016/j.asr.2020.12.014_b0015
Ottolina (10.1016/j.asr.2020.12.014_b0060) 2019
Schaub (10.1016/j.asr.2020.12.014_b0075) 2002; 25
Di Mauro (10.1016/j.asr.2020.12.014_b0025) 2018; 0216
References_xml – volume: 2012
  start-page: 1
  year: 2012
  end-page: 34
  ident: b0105
  article-title: Using radial basis function networks for function approximation and classification
  publication-title: ISRN Appl. Math.
– volume: 1
  start-page: 105527
  year: 2020
  ident: b0065
  article-title: Radial basis function neural network aided adaptive extended Kalman filter for spacecraft relative navigation
  publication-title: Aerosp. Sci. Technol.
– volume: 65
  start-page: 2003
  year: 2020
  end-page: 2017
  ident: b0070
  article-title: A guidance approach to satellite formation reconfiguration based on convex optimization and genetic algorithms
  publication-title: Adv. Space Res.
– reference: D’Amico, S., 2010. Autonomous formation flying in low earth orbit. Ph.D. thesis.
– reference: Visconti, P., Silvestrini, S., Lavagna, M., 2018. Dance: a frictionless 5 DOF facility for GNC proximity maneuvering experimental testing and validation. In: IAC. Number October. pp. 1–5.
– reference: Vadali, S.R., Alfriend, K.T., 2013. Formation establishment, maintenance and control. In: Distributed Space Missions for Earth System Monitoring. pp. 1–675.
– volume: 25
  start-page: 387
  year: 2002
  end-page: 393
  ident: b0075
  article-title: Hybrid Cartesian and orbit element feedback law for formation flying spacecraft
  publication-title: J. Guid. Control Dyn.
– start-page: 1
  year: 2019
  end-page: 19
  ident: b0085
  article-title: Distributed autonomous guidance, navigation and control loop for formation flying spacecraft reconfiguration
  publication-title: 5th CEAS Conference on Guidance, Navigation and Control
– volume: 40
  start-page: 1749
  year: 2017
  end-page: 1768
  ident: b0045
  article-title: New state transition matrices for spacecraft relative motion in perturbed orbits
  publication-title: J. Guid. Control Dyn.
– year: 2019
  ident: b0060
  article-title: DANCE: Design and characterization of a 5 DOF facility for relative GNC
  publication-title: ASTRA
– volume: 62
  start-page: 2586
  year: 2018
  end-page: 2598
  ident: b0055
  article-title: Potential function based robust safety control for spacecraft rendezvous and proximity operations under path constraint
  publication-title: Adv. Space Res.
– volume: 28
  start-page: 2442
  year: 2018
  end-page: 2456
  ident: b0110
  article-title: Neural network-based reconfiguration control for spacecraft formation in obstacle environments
  publication-title: Int. J. Robust Nonlinear Control
– volume: 48
  start-page: 69
  year: 2000
  end-page: 87
  ident: b0080
  article-title: Spacecraft formation flying control using mean orbit elements
  publication-title: J. Astronaut. Sci.
– volume: 26
  start-page: 491
  year: 2003
  end-page: 501
  ident: b0035
  article-title: Adaptive neural control of deep-space formation flying
  publication-title: J. Guid. Control Dyn.
– volume: 160
  start-page: 3563
  year: 2017
  end-page: 3583
  ident: b0090
  article-title: Constrained low-thrust satellite formation-flying using relative orbit elements
  publication-title: Adv. Astronaut. Sci.
– volume: 30
  start-page: 727
  year: 2005
  end-page: 736
  ident: b0040
  article-title: Autonomous and distributed motion planning for satellite swarm
  publication-title: European Space Agency, (Special Publication) ESA SP
– volume: 29
  start-page: 146
  year: 2006
  end-page: 160
  ident: b0050
  article-title: Formation design in eccentric orbits using linearized equations of relative motion
  publication-title: J. Guid. Control Dyn.
– volume: 41
  start-page: 301
  year: 2016
  end-page: 319
  ident: b0010
  article-title: New closed-form solutions for optimal impulsive control of spacecraft relative motion
  publication-title: J. Guid. Control Dyn.
– reference: Chu, J., 2015. Dynamics, Distributed Control And Autonomous Cluster Operations Of Fractionated Spacecraft.
– volume: 349
  start-page: 578
  year: 2012
  end-page: 603
  ident: b0005
  article-title: Adaptive controller design for spacecraft formation flying using sliding mode controller and neural networks
  publication-title: J. Franklin Inst.
– volume: 160
  start-page: 2387
  year: 2017
  end-page: 2417
  ident: b0030
  article-title: Long-term analytical propagation of satellite relative motion in perturbed orbits
  publication-title: Adv. Astronaut. Sci.
– volume: 0216
  start-page: 1
  year: 2018
  end-page: 20
  ident: b0025
  article-title: Optimal continuous maneuvers for satellite formation reconfiguration in J2-perturbed Orbits
  publication-title: 2018 Space Flight Mechanics Meeting
– ident: 10.1016/j.asr.2020.12.014_b0015
– volume: 40
  start-page: 1749
  issue: 7
  year: 2017
  ident: 10.1016/j.asr.2020.12.014_b0045
  article-title: New state transition matrices for spacecraft relative motion in perturbed orbits
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G002409
– volume: 0216
  start-page: 1
  issue: January
  year: 2018
  ident: 10.1016/j.asr.2020.12.014_b0025
  article-title: Optimal continuous maneuvers for satellite formation reconfiguration in J2-perturbed Orbits
  publication-title: 2018 Space Flight Mechanics Meeting
– volume: 25
  start-page: 387
  issue: 2
  year: 2002
  ident: 10.1016/j.asr.2020.12.014_b0075
  article-title: Hybrid Cartesian and orbit element feedback law for formation flying spacecraft
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/2.4893
– volume: 160
  start-page: 2387
  year: 2017
  ident: 10.1016/j.asr.2020.12.014_b0030
  article-title: Long-term analytical propagation of satellite relative motion in perturbed orbits
  publication-title: Adv. Astronaut. Sci.
– volume: 349
  start-page: 578
  issue: 2
  year: 2012
  ident: 10.1016/j.asr.2020.12.014_b0005
  article-title: Adaptive controller design for spacecraft formation flying using sliding mode controller and neural networks
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2011.08.009
– volume: 30
  start-page: 727
  issue: 603
  year: 2005
  ident: 10.1016/j.asr.2020.12.014_b0040
  article-title: Autonomous and distributed motion planning for satellite swarm
  publication-title: European Space Agency, (Special Publication) ESA SP
– volume: 26
  start-page: 491
  issue: 3
  year: 2003
  ident: 10.1016/j.asr.2020.12.014_b0035
  article-title: Adaptive neural control of deep-space formation flying
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/2.5072
– volume: 28
  start-page: 2442
  issue: 6
  year: 2018
  ident: 10.1016/j.asr.2020.12.014_b0110
  article-title: Neural network-based reconfiguration control for spacecraft formation in obstacle environments
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.4025
– volume: 1
  start-page: 105527
  year: 2020
  ident: 10.1016/j.asr.2020.12.014_b0065
  article-title: Radial basis function neural network aided adaptive extended Kalman filter for spacecraft relative navigation
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.105527
– volume: 41
  start-page: 301
  issue: 2
  year: 2016
  ident: 10.1016/j.asr.2020.12.014_b0010
  article-title: New closed-form solutions for optimal impulsive control of spacecraft relative motion
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G002848
– volume: 62
  start-page: 2586
  issue: 9
  year: 2018
  ident: 10.1016/j.asr.2020.12.014_b0055
  article-title: Potential function based robust safety control for spacecraft rendezvous and proximity operations under path constraint
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2018.08.003
– ident: 10.1016/j.asr.2020.12.014_b0100
– volume: 29
  start-page: 146
  issue: 1
  year: 2006
  ident: 10.1016/j.asr.2020.12.014_b0050
  article-title: Formation design in eccentric orbits using linearized equations of relative motion
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.13173
– volume: 65
  start-page: 2003
  issue: 8
  year: 2020
  ident: 10.1016/j.asr.2020.12.014_b0070
  article-title: A guidance approach to satellite formation reconfiguration based on convex optimization and genetic algorithms
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2020.01.033
– volume: 48
  start-page: 69
  issue: 1
  year: 2000
  ident: 10.1016/j.asr.2020.12.014_b0080
  article-title: Spacecraft formation flying control using mean orbit elements
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/BF03546219
– ident: 10.1016/j.asr.2020.12.014_b0020
– year: 2019
  ident: 10.1016/j.asr.2020.12.014_b0060
  article-title: DANCE: Design and characterization of a 5 DOF facility for relative GNC
– start-page: 1
  year: 2019
  ident: 10.1016/j.asr.2020.12.014_b0085
  article-title: Distributed autonomous guidance, navigation and control loop for formation flying spacecraft reconfiguration
– ident: 10.1016/j.asr.2020.12.014_b0095
  doi: 10.1007/978-1-4614-4541-8_4
– volume: 2012
  start-page: 1
  issue: March
  year: 2012
  ident: 10.1016/j.asr.2020.12.014_b0105
  article-title: Using radial basis function networks for function approximation and classification
  publication-title: ISRN Appl. Math.
  doi: 10.5402/2012/324194
– volume: 160
  start-page: 3563
  year: 2017
  ident: 10.1016/j.asr.2020.12.014_b0090
  article-title: Constrained low-thrust satellite formation-flying using relative orbit elements
  publication-title: Adv. Astronaut. Sci.
SSID ssj0012770
Score 2.4029968
Snippet This paper presents a neural-aided Guidance, Navigation & Control algorithm for reconfiguration of distributed space systems. The guidance algorithm is based...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1490
SubjectTerms ANN
Distributed
Formation flying
GNC
PIL test
Spacecraft
Title Neural-aided GNC reconfiguration algorithm for distributed space system: development and PIL test
URI https://dx.doi.org/10.1016/j.asr.2020.12.014
Volume 67
WOSCitedRecordID wos000615282600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012770
  issn: 0273-1177
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBhJ7QFBAGzf5AfFAZZQ4cezwVk0DhqZq0obUt8hxnK5Tlk5tVo3X_XKOL8miMhAg8RJFadwk_b6eHJ_LZ4TeSsoE5YwTpjQnsUxCkgdxTlRZMsm1CqS0kvlHfDIR02l6PBjctL0w64rXtbi-Ti__K9RwDMA2rbN_AXf3pXAA9gF02ALssP0j4I3chqyIkX4sRp8n-yM75y3nsysPtqxmi-W8ObuwJYaFUc41i17B2WBdjOKsFXc2oYLitqLIdRUcHo2aNh_VSte6IgJbVuvGe_2gLs58Mq-MlodJFfm6slLWi64SSK7lzDWmmbJUm7gX_ol8NIL2yrFciOynNhlrycBHIiY77F46ztIKnpIwdTKbrSl2K3N4yrGeXYV5XNB7R4MXy-60_y4Ucf5BrozWKw1sqNd1qW7Iap-YmzL3RK0oYjC9h7aBtClYxu3x4cH0a5eLopy7SJ1_iDY3bqsENy50t3fT81hOH6NHfqqBx44iT9BA10O0O16Z5Mfi4jt-h-2-i22thminp005RA-O3fGnSPYZhYFReINRuGMUBkbhHqOwZQR2jPqIe3zCwCcMfMKGT8_Qt08Hp_tfiF-Zg6goDhoihJK5UEWZ80SHRa6TAgw5U5HUmscqokqwWItCgfcHn4cx10FYKgneKsuFptFztFUvar2LcE5TnUhRFkUcmaXTJEyxZUpLLRKlApHuoaD9RTPlZevN6ilV1tYnnmcAQmZAyEKaAQh76H035NJptvzu5LiFKfNOp3MmM-DUr4e9-LdhL9HD23_NK7TVLK_0a3RfrZv5avnGM-8HieCniQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-aided+GNC+reconfiguration+algorithm+for+distributed+space+system%3A+development+and+PIL+test&rft.jtitle=Advances+in+space+research&rft.au=Silvestrini%2C+Stefano&rft.au=Lavagna%2C+Mich%C3%A8le&rft.date=2021-03-01&rft.pub=Elsevier+B.V&rft.issn=0273-1177&rft.eissn=1879-1948&rft.volume=67&rft.issue=5&rft.spage=1490&rft.epage=1505&rft_id=info:doi/10.1016%2Fj.asr.2020.12.014&rft.externalDocID=S027311772030870X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon