A new formulation for symbolic regression to identify physico-chemical laws from experimental data

•Automated identification of physical laws from noisy experimental data demonstrated.•Symbolic regression problem is formulated using directed acyclic graphs.•Demonstration of physical knowledge generated from the robotically collected data. A modification to the mixed-integer nonlinear programming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Jg. 387; S. 123412
Hauptverfasser: Neumann, Pascal, Cao, Liwei, Russo, Danilo, Vassiliadis, Vassilios S., Lapkin, Alexei A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.05.2020
Schlagworte:
ISSN:1385-8947, 1873-3212
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Automated identification of physical laws from noisy experimental data demonstrated.•Symbolic regression problem is formulated using directed acyclic graphs.•Demonstration of physical knowledge generated from the robotically collected data. A modification to the mixed-integer nonlinear programming (MINLP) formulation for symbolic regression was proposed with the aim of identification of physical models from noisy experimental data. In the proposed formulation, a binary tree in which equations are represented as directed, acyclic graphs, is fully constructed for a pre-defined number of layers. The introduced modification results in the reduction in the number of required binary variables and removal of redundancy due to possible symmetry of the tree formulation. The formulation was tested using numerical models and was found to be more efficient than the previous literature example with respect to the numbers of predictor variables and training data points. The globally optimal search was extended to identify physical models and to cope with noise in the experimental data predictor variable. The methodology was proven to be successful in identifying the correct physical models describing the relationship between shear stress and shear rate for both Newtonian and non-Newtonian fluids, and simple kinetic laws of chemical reactions. Future work will focus on addressing the limitations of the present formulation and solver to enable extension of target problems to larger, more complex physical models.
AbstractList •Automated identification of physical laws from noisy experimental data demonstrated.•Symbolic regression problem is formulated using directed acyclic graphs.•Demonstration of physical knowledge generated from the robotically collected data. A modification to the mixed-integer nonlinear programming (MINLP) formulation for symbolic regression was proposed with the aim of identification of physical models from noisy experimental data. In the proposed formulation, a binary tree in which equations are represented as directed, acyclic graphs, is fully constructed for a pre-defined number of layers. The introduced modification results in the reduction in the number of required binary variables and removal of redundancy due to possible symmetry of the tree formulation. The formulation was tested using numerical models and was found to be more efficient than the previous literature example with respect to the numbers of predictor variables and training data points. The globally optimal search was extended to identify physical models and to cope with noise in the experimental data predictor variable. The methodology was proven to be successful in identifying the correct physical models describing the relationship between shear stress and shear rate for both Newtonian and non-Newtonian fluids, and simple kinetic laws of chemical reactions. Future work will focus on addressing the limitations of the present formulation and solver to enable extension of target problems to larger, more complex physical models.
ArticleNumber 123412
Author Vassiliadis, Vassilios S.
Neumann, Pascal
Russo, Danilo
Cao, Liwei
Lapkin, Alexei A.
Author_xml – sequence: 1
  givenname: Pascal
  surname: Neumann
  fullname: Neumann, Pascal
  organization: Aachener Verfahrenstchnik – Process Systems Engineering, RWTH Aachen University, Aachen, Germany
– sequence: 2
  givenname: Liwei
  surname: Cao
  fullname: Cao, Liwei
  organization: Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
– sequence: 3
  givenname: Danilo
  surname: Russo
  fullname: Russo, Danilo
  organization: Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
– sequence: 4
  givenname: Vassilios S.
  surname: Vassiliadis
  fullname: Vassiliadis, Vassilios S.
  organization: Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
– sequence: 5
  givenname: Alexei A.
  surname: Lapkin
  fullname: Lapkin, Alexei A.
  email: aal35@cam.ac.uk
  organization: Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
BookMark eNp9kMtOwzAQRS1UJNrCB7DzDyTYcR6OWFUVL6kSG1hbzmRMHSVxZQdK_p6EsmLR1VyN5ox0z4osetcjIbecxZzx_K6JAZs4YbyMeSJSnlyQJZeFiETCk8WUhcwiWabFFVmF0DDG8pKXS1JtaI9HapzvPls9WNfPmYaxq1xrgXr88BjCvB8ctTX2gzUjPezHYMFFsMfOgm5pq4-BGu86it8H9LabDqd1rQd9TS6NbgPe_M01eX98eNs-R7vXp5ftZheBSNkQSZlXHApTZJAXwqRYyQwrU2ZSJEKDzqVEXqHMdVojYipYLdHkJXAja56AWJPi9Be8C8GjUWCH30qD17ZVnKlZlWrUpErNqtRJ1UTyf-RhaqD9eJa5PzE4Vfqy6FUAiz1gbT3CoGpnz9A_5yKGEw
CitedBy_id crossref_primary_10_1021_jacs_3c04783
crossref_primary_10_1016_j_ces_2024_120391
crossref_primary_10_1007_s11831_023_09922_z
crossref_primary_10_1002_cite_202100083
crossref_primary_10_1016_j_cma_2023_116096
crossref_primary_10_1016_j_compchemeng_2022_108083
crossref_primary_10_1007_s10661_022_10595_7
crossref_primary_10_1145_3735634
crossref_primary_10_1016_j_heliyon_2024_e32547
crossref_primary_10_1016_j_ces_2024_120606
crossref_primary_10_1016_j_ces_2024_119881
crossref_primary_10_1007_s11356_023_28608_4
crossref_primary_10_1007_s11433_023_2346_2
crossref_primary_10_1002_aic_17248
crossref_primary_10_3390_mi14071446
crossref_primary_10_3390_pr13071981
crossref_primary_10_1016_j_cep_2025_110350
crossref_primary_10_1016_j_ces_2023_119670
crossref_primary_10_1016_j_spc_2021_12_025
crossref_primary_10_1016_j_seppur_2024_129494
crossref_primary_10_1109_ACCESS_2020_2969997
crossref_primary_10_1016_j_compchemeng_2020_107051
crossref_primary_10_1016_j_compchemeng_2025_109281
crossref_primary_10_1007_s00707_025_04325_6
crossref_primary_10_1016_j_jmrt_2025_01_154
crossref_primary_10_1016_j_inffus_2022_11_030
crossref_primary_10_1109_TIM_2024_3449968
crossref_primary_10_1287_ijoc_2022_0050
crossref_primary_10_1002_aic_17695
crossref_primary_10_1016_j_actbio_2024_09_005
crossref_primary_10_1016_j_compchemeng_2022_108108
crossref_primary_10_1002_aic_17457
crossref_primary_10_1021_acs_iecr_5c00107
crossref_primary_10_3390_ijms26146748
Cites_doi 10.1021/ed074p1440
10.1080/10556788.2017.1350178
10.1038/nchem.1489
10.1007/s11081-018-9411-8
10.3762/bjoc.13.18
10.1126/sciadv.1602614
10.1002/aic.14418
10.1016/j.compchemeng.2017.02.010
10.2174/1874149501913010001
10.1037/a0027127
10.1021/acs.accounts.6b00261
10.1126/science.1165893
10.1007/s10898-014-0166-2
10.1016/j.compchemeng.2018.08.010
10.1111/j.1432-1033.1974.tb03267.x
10.1021/acscentsci.8b00357
10.1016/j.tet.2018.02.061
10.1016/j.coche.2015.07.001
10.1016/j.compchemeng.2014.11.010
10.1016/j.cep.2011.06.005
10.1080/10556780902753221
10.3389/fphys.2014.00021
10.1098/rspa.2017.0009
10.1021/acscentsci.7b00064
10.1103/PhysRevE.94.012214
10.1002/anie.201002590
10.1016/B978-0-444-63578-5.50113-4
10.1002/spe.4380181104
10.7717/peerj-cs.103
10.1073/pnas.0609476104
10.1039/C8SC04228D
10.2166/hydro.2008.015
10.1002/anie.201705721
10.1038/s41598-017-02303-0
10.1126/science.1207922
10.1080/10556788.2017.1335312
10.1021/ed081p870
10.1007/s12532-011-0026-8
10.1080/10556780903087124
10.1098/rspa.2016.0446
10.1039/C7FD00073A
10.1023/A:1021039126272
10.1073/pnas.1517384113
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2019.123412
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2019_123412
S1385894719328256
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
ZY4
~HD
ID FETCH-LOGICAL-c340t-886b1c7f75c673f4eb85ebf958323aca688e1be86a4deee430d8ef69c1f8d12c3
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527331600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-8947
IngestDate Sat Nov 29 07:04:21 EST 2025
Tue Nov 18 22:37:51 EST 2025
Fri Feb 23 02:49:29 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Symbolic regression
Mixed-integer nonlinear programming (MINLP)
Global optimization
Chemical process development
Automated model construction
Model identification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-886b1c7f75c673f4eb85ebf958323aca688e1be86a4deee430d8ef69c1f8d12c3
OpenAccessLink https://www.repository.cam.ac.uk/handle/1810/298772
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2019_123412
crossref_primary_10_1016_j_cej_2019_123412
elsevier_sciencedirect_doi_10_1016_j_cej_2019_123412
PublicationCentury 2000
PublicationDate 2020-05-01
2020-05-00
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References (accessed 05.08.19).
Cozad, Sahinidis, Miller (b0100) 2014; 60
Solomatine, Ostfeld (b0075) 2008; 10
Duros, Grizou, Xuan, Hosni, Long, Miras, Cronin (b0030) 2017; 56
Vigerske, Gleixner (b0215) 2018; 33
Meurer, Smith, Paprocki, Čertík, Kirpichev, Rocklin, Kumar, Ivanov, Moore, Singh, Rathnayake, Vig, Granger, Muller, Bonazzi, Gupta, Vats, Johansson, Pedregosa, Curry, Terrel, Roučka, Saboo, Fernando, Kulal, Cimrman, Scopatz (b0230) 2017; 3
Akaike (b0240) 1974
Coley, Barzilay, Jaakkola, Green, Jensen (b0005) 2017; 3
Quade, Abel, Shafi, Niven, Noack (b0235) 2016; 94
Lapkin, Plucinski (b0050) 2009
Skoraczyński, Dittwald, Miasojedow, Szymkuć, Gajewska, Grzybowski, Gambin (b0035) 2017; 7
Klausen, Meier, Schwarzenbach (b0250) 1997; 74
Lin, Schrage (b0210) 2009; 24
Gao, Struble, Coley, Wang, Green, Jensen (b0015) 2018; 4
H. Schaeffer, G. Tran, R. Ward, L. Zhang, Extracting structured dynamical systems using sparse optimization with very few samples
Robbins, Hartwig, MacMillan (b0060) 2011; 333
Wilson, Sahinidis (b0110) 2017; 106
Hart, Watson, Woodruff (b0225) 2011; 3
Schmidt, Lipson (b0080) 2009; 324
Goren, Fridkin (b0260) 1974; 41
Cozad, Sahinidis, Miller (b0105) 2015; 73
Coley, Jin, Rogers, Jamison, Jaakkola, Green, Barzilay, Jensen (b0025) 2019; 10
Reizman, Jensen (b0040) 2016; 49
Lapkin, Voutchkova, Anastas (b0095) 2011; 50
Wolkenhauer (b0085) 2014; 5
Narasingam, Sang-Il Kwon (b0125) 2018; 119
Jeraal, Holmes, Akien, Bourne (b0020) 2018; 74
(accessed August 5, 2019).
Y. Wang, N. Wagner, J.M. Rondinelli, Symbolic regression in materials science
Rudy, Brunton, Proctor, Kutz (b0120) 2017; 3
Schaeffer (b0130) 2017; 473
(accessed April 9, 2019).
Belotti, Lee, Liberti, Margot, Wächter (b0205) 2009; 24
Horbaczewskyj, Willans, Lapkin, Bourne (b0090) 2018
S. Li, E. Kaiser, S. Laima, H. Li, S.L. Brunton, J. Nathan Kutz, Discovering time-varying aeroelastic models of a long-span suspension bridge from field measurements by sparse identification of nonlinear dynamical systems
Tarawneh, Bodour, Al (b0160) 2019; 13
Richmond, Miras, de la Oliva, Zang, Sans, Paramonov, Makatsoris, Inglis, Brechin, Long, Cronin (b0055) 2012; 4
Grossmann (b0185) 2002; 3
J. Kronqvist, D. E. Bernal, A. Lundell, I. E. Grossmann, A review and comparison of solvers for convex MINLP, 20 (2019) 397–455. doi: 10.1007/s11081-018-9411-8.
Kılınç, Sahinidis (b0200) 2018; 33
Echtermeyer, Amar, Zakrzewski, Lapkin (b0010) 2017; 13
Bongard, Lipson (b0155) 2007; 104
Misener, Floudas (b0195) 2014; 59
Lapkin, Heer, Jacob, Hutchby, Cunningham, Bull, Davidson (b0065) 2017; 202
Vrieze (b0245) 2012; 17
Vassiliadis, Wang, Arellano-Garcia, Yuan (b0170) 2015; 37
(accessed August 6, 2019).
Brunton, Proctor, Kutz (b0150) 2016; 113
Mangan, Kutz, Brunton, Proctor (b0115) 2017; 473
Gansner, North, Vo (b0180) 1988; 18
Houben, Lapkin (b0045) 2015; 9
ILOG CPLEX Optimization Studio - Overview | IBM
McMullen, Stone, Buchwald, Jensen (b0070) 2010; 49
(accessed 22.01.19).
Lin, Zhang (b0145) 2018; 474
Cozad, Sahinidis (b0175) 2018
P.S. Marrs, Class Projects in Physical Organic Chemistry: The Hydrolysis of Aspirin, J. Chem. Educ. 81 (2004) 870–873.
Reizman (10.1016/j.cej.2019.123412_b0040) 2016; 49
Richmond (10.1016/j.cej.2019.123412_b0055) 2012; 4
Mangan (10.1016/j.cej.2019.123412_b0115) 2017; 473
Meurer (10.1016/j.cej.2019.123412_b0230) 2017; 3
Coley (10.1016/j.cej.2019.123412_b0005) 2017; 3
Quade (10.1016/j.cej.2019.123412_b0235) 2016; 94
Akaike (10.1016/j.cej.2019.123412_b0240) 1974
Lapkin (10.1016/j.cej.2019.123412_b0050) 2009
Tarawneh (10.1016/j.cej.2019.123412_b0160) 2019; 13
Lapkin (10.1016/j.cej.2019.123412_b0095) 2011; 50
10.1016/j.cej.2019.123412_b0190
Hart (10.1016/j.cej.2019.123412_b0225) 2011; 3
Kılınç (10.1016/j.cej.2019.123412_b0200) 2018; 33
Goren (10.1016/j.cej.2019.123412_b0260) 1974; 41
Jeraal (10.1016/j.cej.2019.123412_b0020) 2018; 74
Echtermeyer (10.1016/j.cej.2019.123412_b0010) 2017; 13
Robbins (10.1016/j.cej.2019.123412_b0060) 2011; 333
Lapkin (10.1016/j.cej.2019.123412_b0065) 2017; 202
Schmidt (10.1016/j.cej.2019.123412_b0080) 2009; 324
Cozad (10.1016/j.cej.2019.123412_b0100) 2014; 60
10.1016/j.cej.2019.123412_b0140
Misener (10.1016/j.cej.2019.123412_b0195) 2014; 59
Coley (10.1016/j.cej.2019.123412_b0025) 2019; 10
Narasingam (10.1016/j.cej.2019.123412_b0125) 2018; 119
Wolkenhauer (10.1016/j.cej.2019.123412_b0085) 2014; 5
Wilson (10.1016/j.cej.2019.123412_b0110) 2017; 106
Vigerske (10.1016/j.cej.2019.123412_b0215) 2018; 33
10.1016/j.cej.2019.123412_b0220
Grossmann (10.1016/j.cej.2019.123412_b0185) 2002; 3
Lin (10.1016/j.cej.2019.123412_b0210) 2009; 24
Solomatine (10.1016/j.cej.2019.123412_b0075) 2008; 10
Vrieze (10.1016/j.cej.2019.123412_b0245) 2012; 17
Skoraczyński (10.1016/j.cej.2019.123412_b0035) 2017; 7
Lin (10.1016/j.cej.2019.123412_b0145) 2018; 474
Horbaczewskyj (10.1016/j.cej.2019.123412_b0090) 2018
Bongard (10.1016/j.cej.2019.123412_b0155) 2007; 104
Houben (10.1016/j.cej.2019.123412_b0045) 2015; 9
10.1016/j.cej.2019.123412_b0255
10.1016/j.cej.2019.123412_b0135
Cozad (10.1016/j.cej.2019.123412_b0105) 2015; 73
Gao (10.1016/j.cej.2019.123412_b0015) 2018; 4
Rudy (10.1016/j.cej.2019.123412_b0120) 2017; 3
Cozad (10.1016/j.cej.2019.123412_b0175) 2018
Vassiliadis (10.1016/j.cej.2019.123412_b0170) 2015; 37
McMullen (10.1016/j.cej.2019.123412_b0070) 2010; 49
Duros (10.1016/j.cej.2019.123412_b0030) 2017; 56
Brunton (10.1016/j.cej.2019.123412_b0150) 2016; 113
Klausen (10.1016/j.cej.2019.123412_b0250) 1997; 74
Belotti (10.1016/j.cej.2019.123412_b0205) 2009; 24
Gansner (10.1016/j.cej.2019.123412_b0180) 1988; 18
10.1016/j.cej.2019.123412_b0165
Schaeffer (10.1016/j.cej.2019.123412_b0130) 2017; 473
References_xml – volume: 74
  start-page: 1440
  year: 1997
  end-page: 1444
  ident: b0250
  article-title: Assessing the fate of organic contaminants in aquatic environments: mechanism and kinetics of hydrolysis of a carboxylic ester
  publication-title: J. Chem. Educ.
– reference: J. Kronqvist, D. E. Bernal, A. Lundell, I. E. Grossmann, A review and comparison of solvers for convex MINLP, 20 (2019) 397–455. doi: 10.1007/s11081-018-9411-8.
– volume: 33
  start-page: 563
  year: 2018
  end-page: 593
  ident: b0215
  article-title: SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework
  publication-title: Optim. Methods Softw.
– reference: S. Li, E. Kaiser, S. Laima, H. Li, S.L. Brunton, J. Nathan Kutz, Discovering time-varying aeroelastic models of a long-span suspension bridge from field measurements by sparse identification of nonlinear dynamical systems,
– volume: 10
  start-page: 370
  year: 2019
  end-page: 377
  ident: b0025
  article-title: A graph-convolutional neural network model for the prediction of chemical reactivity
  publication-title: Chem. Sci.
– volume: 10
  start-page: 3
  year: 2008
  end-page: 22
  ident: b0075
  article-title: Data-driven modelling: some past experiences and new approaches
  publication-title: J. Hydroinf.
– volume: 49
  start-page: 1786
  year: 2016
  end-page: 1796
  ident: b0040
  article-title: Feedback in flow for accelerated reaction development
  publication-title: Acc. Chem. Res.
– reference: (accessed April 9, 2019).
– start-page: 1
  year: 2018
  end-page: 23
  ident: b0175
  article-title: A global MINLP approach to symbolic regression
  publication-title: Math. Program.
– volume: 474
  start-page: 0305
  year: 2018
  ident: b0145
  article-title: Robust data-driven discovery of governing physical laws with error bars
  publication-title: Proc. R. Soc. A
– volume: 4
  start-page: 1037
  year: 2012
  end-page: 1043
  ident: b0055
  article-title: A flow-system array for the discovery and scale up of inorganic clusters
  publication-title: Nat. Chem.
– volume: 7
  start-page: 3582
  year: 2017
  ident: b0035
  article-title: Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient?
  publication-title: Sci. Rep.
– volume: 3
  start-page: 434
  year: 2017
  end-page: 443
  ident: b0005
  article-title: Prediction of organic reaction outcomes using machine learning
  publication-title: ACS Cent. Sci.
– volume: 3
  year: 2017
  ident: b0120
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
– reference: (accessed August 6, 2019).
– reference: P.S. Marrs, Class Projects in Physical Organic Chemistry: The Hydrolysis of Aspirin, J. Chem. Educ. 81 (2004) 870–873.
– start-page: 1
  year: 2009
  end-page: 43
  ident: b0050
  article-title: Engineering factors for efficient flow processes in chemical industries
– volume: 73
  start-page: 116
  year: 2015
  end-page: 127
  ident: b0105
  article-title: A combined first-principles and data-driven approach to model building
  publication-title: Comput. Chem. Eng.
– reference: . (accessed 05.08.19).
– reference: (accessed 22.01.19).
– start-page: 215
  year: 1974
  end-page: 222
  ident: b0240
  article-title: A new look at the statistical model identification
  publication-title: Selected Papers of Hirotugu Akaike
– volume: 17
  start-page: 228
  year: 2012
  end-page: 243
  ident: b0245
  article-title: Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
  publication-title: Psychol. Methods
– reference: (accessed August 5, 2019).
– volume: 13
  start-page: 1
  year: 2019
  end-page: 9
  ident: b0160
  article-title: Ajmi, intelligent computing based formulas to predict the settlement of shallow foundations on cohesionless soils
  publication-title: Open Civ. Eng. J.
– volume: 50
  start-page: 1027
  year: 2011
  end-page: 1034
  ident: b0095
  article-title: A conceptual framework for description of complexity in intensive chemical processes
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 3
  start-page: 227
  year: 2002
  end-page: 252
  ident: b0185
  article-title: Review of nonlinear mixed-integer and disjunctive programming techniques
  publication-title: Optim. Eng.
– volume: 49
  start-page: 7076
  year: 2010
  end-page: 7080
  ident: b0070
  article-title: An integrated microreactor system for self-optimization of a heck reaction: from micro- to mesoscale flow systems
  publication-title: Angew. Chemie Int. Ed.
– volume: 104
  start-page: 9943
  year: 2007
  end-page: 9948
  ident: b0155
  article-title: Automated reverse engineering of nonlinear dynamical systems
  publication-title: Proc. Nat. Acad. Sci.
– volume: 74
  start-page: 3158
  year: 2018
  end-page: 3164
  ident: b0020
  article-title: Enhanced process development using automated continuous reactors by self-optimisation algorithms and statistical empirical modelling
  publication-title: Tetrahedron
– volume: 473
  start-page: 0009
  year: 2017
  ident: b0115
  article-title: Model selection for dynamical systems via sparse regression and information criteria
  publication-title: Proc. R. Soc. A
– reference: Y. Wang, N. Wagner, J.M. Rondinelli, Symbolic regression in materials science,
– volume: 59
  start-page: 503
  year: 2014
  end-page: 526
  ident: b0195
  article-title: ANTIGONE: algorithms for coNTinuous/Integer global optimization of nonlinear equations
  publication-title: J. Glob. Optim.
– volume: 94
  start-page: 12214
  year: 2016
  ident: b0235
  article-title: Prediction of dynamical systems by symbolic regression
  publication-title: Phys. Rev. E.
– volume: 9
  start-page: 1
  year: 2015
  end-page: 7
  ident: b0045
  article-title: Automatic discovery and optimization of chemical processes
  publication-title: Curr. Opin. Chem. Eng.
– volume: 3
  start-page: 219
  year: 2011
  end-page: 260
  ident: b0225
  article-title: Pyomo: modeling and solving mathematical programs in Python
  publication-title: Math. Program. Comput.
– volume: 473
  start-page: 0446
  year: 2017
  ident: b0130
  article-title: Learning partial differential equations via data discovery and sparse optimization
  publication-title: Proc. R. Soc. A.
– volume: 33
  start-page: 540
  year: 2018
  end-page: 562
  ident: b0200
  article-title: Exploiting integrality in the global optimization of mixed-integer nonlinear programming problems with BARON
  publication-title: Optim. Methods Softw.
– volume: 13
  start-page: 150
  year: 2017
  end-page: 163
  ident: b0010
  article-title: Self-optimisation and model-based design of experiments for developing a C-H activation flow process
  publication-title: Beilstein J. Org. Chem.
– volume: 202
  start-page: 483
  year: 2017
  end-page: 496
  ident: b0065
  article-title: Automation of route identification and optimisation based on data-mining and chemical intuition
  publication-title: Faraday Discuss.
– volume: 60
  start-page: 2211
  year: 2014
  end-page: 2227
  ident: b0100
  article-title: Learning surrogate models for simulation-based optimization
  publication-title: AIChE J.
– volume: 324
  start-page: 81
  year: 2009
  end-page: 85
  ident: b0080
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
– year: 2018
  ident: b0090
  article-title: An introduction to closed-loop process optimization and online analysis
  publication-title: Green Chemical Engineering
– volume: 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: b0150
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 333
  start-page: 1423
  year: 2011
  end-page: 1427
  ident: b0060
  article-title: A simple, multidimensional approach to high-throughput discovery of catalytic reactions
  publication-title: Science
– reference: ILOG CPLEX Optimization Studio - Overview | IBM,
– volume: 3
  start-page: e103
  year: 2017
  ident: b0230
  article-title: SymPy: symbolic computing in Python
  publication-title: PeerJ Comput. Sci.
– volume: 119
  start-page: 101
  year: 2018
  end-page: 111
  ident: b0125
  article-title: Data-driven identification of interpretable reduced-order models using sparse regression
  publication-title: Comput. Chem. Eng.
– volume: 56
  start-page: 10815
  year: 2017
  end-page: 10820
  ident: b0030
  article-title: Human versus robots in the discovery and crystallization of gigantic polyoxometalates
  publication-title: Angew. Chem. Int. Ed.
– volume: 18
  start-page: 1047
  year: 1988
  end-page: 1062
  ident: b0180
  article-title: DAG—a program that draws directed graphs
  publication-title: Softw. Pract. Exp.
– volume: 24
  start-page: 657
  year: 2009
  end-page: 668
  ident: b0210
  article-title: The global solver in the LINDO API
  publication-title: Optim. Methods Softw.
– volume: 5
  start-page: 21
  year: 2014
  ident: b0085
  article-title: Why model?
  publication-title: Front. Physiol.
– reference: H. Schaeffer, G. Tran, R. Ward, L. Zhang, Extracting structured dynamical systems using sparse optimization with very few samples,
– volume: 106
  start-page: 785
  year: 2017
  end-page: 795
  ident: b0110
  article-title: The ALAMO approach to machine learning
  publication-title: Comput. Chem. Eng.
– volume: 24
  start-page: 597
  year: 2009
  end-page: 634
  ident: b0205
  article-title: Branching and bounds tightening techniques for non-convex MINLP
  publication-title: Optim. Methods Softw.
– volume: 41
  start-page: 263
  year: 1974
  end-page: 272
  ident: b0260
  article-title: The hydrolysis of p-nitrophenylacetate in water. Mechanism and method of measurement
  publication-title: Eur. J. Biochem.
– volume: 37
  start-page: 707
  year: 2015
  end-page: 712
  ident: b0170
  article-title: A novel rigorous mathematical programming approach to construct phenomenological models
  publication-title: Comput. Aided Chem. Eng.
– volume: 4
  start-page: 1465
  year: 2018
  end-page: 1476
  ident: b0015
  article-title: Using machine learning to predict suitable conditions for organic reactions
  publication-title: ACS Cent. Sci.
– volume: 74
  start-page: 1440
  year: 1997
  ident: 10.1016/j.cej.2019.123412_b0250
  article-title: Assessing the fate of organic contaminants in aquatic environments: mechanism and kinetics of hydrolysis of a carboxylic ester
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed074p1440
– start-page: 1
  year: 2009
  ident: 10.1016/j.cej.2019.123412_b0050
– start-page: 1
  year: 2018
  ident: 10.1016/j.cej.2019.123412_b0175
  article-title: A global MINLP approach to symbolic regression
  publication-title: Math. Program.
– volume: 33
  start-page: 540
  year: 2018
  ident: 10.1016/j.cej.2019.123412_b0200
  article-title: Exploiting integrality in the global optimization of mixed-integer nonlinear programming problems with BARON
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2017.1350178
– volume: 4
  start-page: 1037
  year: 2012
  ident: 10.1016/j.cej.2019.123412_b0055
  article-title: A flow-system array for the discovery and scale up of inorganic clusters
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1489
– ident: 10.1016/j.cej.2019.123412_b0190
  doi: 10.1007/s11081-018-9411-8
– volume: 13
  start-page: 150
  year: 2017
  ident: 10.1016/j.cej.2019.123412_b0010
  article-title: Self-optimisation and model-based design of experiments for developing a C-H activation flow process
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.13.18
– year: 2018
  ident: 10.1016/j.cej.2019.123412_b0090
  article-title: An introduction to closed-loop process optimization and online analysis
– volume: 474
  start-page: 0305
  year: 2018
  ident: 10.1016/j.cej.2019.123412_b0145
  article-title: Robust data-driven discovery of governing physical laws with error bars
  publication-title: Proc. R. Soc. A
– volume: 3
  year: 2017
  ident: 10.1016/j.cej.2019.123412_b0120
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602614
– volume: 60
  start-page: 2211
  year: 2014
  ident: 10.1016/j.cej.2019.123412_b0100
  article-title: Learning surrogate models for simulation-based optimization
  publication-title: AIChE J.
  doi: 10.1002/aic.14418
– volume: 106
  start-page: 785
  year: 2017
  ident: 10.1016/j.cej.2019.123412_b0110
  article-title: The ALAMO approach to machine learning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.02.010
– volume: 13
  start-page: 1
  year: 2019
  ident: 10.1016/j.cej.2019.123412_b0160
  article-title: Ajmi, intelligent computing based formulas to predict the settlement of shallow foundations on cohesionless soils
  publication-title: Open Civ. Eng. J.
  doi: 10.2174/1874149501913010001
– volume: 17
  start-page: 228
  year: 2012
  ident: 10.1016/j.cej.2019.123412_b0245
  article-title: Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
  publication-title: Psychol. Methods
  doi: 10.1037/a0027127
– volume: 49
  start-page: 1786
  year: 2016
  ident: 10.1016/j.cej.2019.123412_b0040
  article-title: Feedback in flow for accelerated reaction development
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00261
– volume: 324
  start-page: 81
  year: 2009
  ident: 10.1016/j.cej.2019.123412_b0080
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
  doi: 10.1126/science.1165893
– volume: 59
  start-page: 503
  year: 2014
  ident: 10.1016/j.cej.2019.123412_b0195
  article-title: ANTIGONE: algorithms for coNTinuous/Integer global optimization of nonlinear equations
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-014-0166-2
– ident: 10.1016/j.cej.2019.123412_b0220
– volume: 119
  start-page: 101
  year: 2018
  ident: 10.1016/j.cej.2019.123412_b0125
  article-title: Data-driven identification of interpretable reduced-order models using sparse regression
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.08.010
– volume: 41
  start-page: 263
  year: 1974
  ident: 10.1016/j.cej.2019.123412_b0260
  article-title: The hydrolysis of p-nitrophenylacetate in water. Mechanism and method of measurement
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1974.tb03267.x
– volume: 4
  start-page: 1465
  year: 2018
  ident: 10.1016/j.cej.2019.123412_b0015
  article-title: Using machine learning to predict suitable conditions for organic reactions
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00357
– ident: 10.1016/j.cej.2019.123412_b0135
– volume: 74
  start-page: 3158
  year: 2018
  ident: 10.1016/j.cej.2019.123412_b0020
  article-title: Enhanced process development using automated continuous reactors by self-optimisation algorithms and statistical empirical modelling
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2018.02.061
– volume: 9
  start-page: 1
  year: 2015
  ident: 10.1016/j.cej.2019.123412_b0045
  article-title: Automatic discovery and optimization of chemical processes
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2015.07.001
– volume: 73
  start-page: 116
  year: 2015
  ident: 10.1016/j.cej.2019.123412_b0105
  article-title: A combined first-principles and data-driven approach to model building
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.11.010
– volume: 50
  start-page: 1027
  year: 2011
  ident: 10.1016/j.cej.2019.123412_b0095
  article-title: A conceptual framework for description of complexity in intensive chemical processes
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2011.06.005
– volume: 24
  start-page: 657
  year: 2009
  ident: 10.1016/j.cej.2019.123412_b0210
  article-title: The global solver in the LINDO API
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780902753221
– volume: 5
  start-page: 21
  year: 2014
  ident: 10.1016/j.cej.2019.123412_b0085
  article-title: Why model?
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2014.00021
– volume: 473
  start-page: 0009
  year: 2017
  ident: 10.1016/j.cej.2019.123412_b0115
  article-title: Model selection for dynamical systems via sparse regression and information criteria
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2017.0009
– volume: 3
  start-page: 434
  year: 2017
  ident: 10.1016/j.cej.2019.123412_b0005
  article-title: Prediction of organic reaction outcomes using machine learning
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00064
– volume: 94
  start-page: 12214
  year: 2016
  ident: 10.1016/j.cej.2019.123412_b0235
  article-title: Prediction of dynamical systems by symbolic regression
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.94.012214
– volume: 49
  start-page: 7076
  year: 2010
  ident: 10.1016/j.cej.2019.123412_b0070
  article-title: An integrated microreactor system for self-optimization of a heck reaction: from micro- to mesoscale flow systems
  publication-title: Angew. Chemie Int. Ed.
  doi: 10.1002/anie.201002590
– volume: 37
  start-page: 707
  year: 2015
  ident: 10.1016/j.cej.2019.123412_b0170
  article-title: A novel rigorous mathematical programming approach to construct phenomenological models
  publication-title: Comput. Aided Chem. Eng.
  doi: 10.1016/B978-0-444-63578-5.50113-4
– volume: 18
  start-page: 1047
  year: 1988
  ident: 10.1016/j.cej.2019.123412_b0180
  article-title: DAG—a program that draws directed graphs
  publication-title: Softw. Pract. Exp.
  doi: 10.1002/spe.4380181104
– volume: 3
  start-page: e103
  year: 2017
  ident: 10.1016/j.cej.2019.123412_b0230
  article-title: SymPy: symbolic computing in Python
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.103
– volume: 104
  start-page: 9943
  year: 2007
  ident: 10.1016/j.cej.2019.123412_b0155
  article-title: Automated reverse engineering of nonlinear dynamical systems
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.0609476104
– volume: 10
  start-page: 370
  year: 2019
  ident: 10.1016/j.cej.2019.123412_b0025
  article-title: A graph-convolutional neural network model for the prediction of chemical reactivity
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04228D
– volume: 10
  start-page: 3
  year: 2008
  ident: 10.1016/j.cej.2019.123412_b0075
  article-title: Data-driven modelling: some past experiences and new approaches
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2008.015
– ident: 10.1016/j.cej.2019.123412_b0165
– volume: 56
  start-page: 10815
  year: 2017
  ident: 10.1016/j.cej.2019.123412_b0030
  article-title: Human versus robots in the discovery and crystallization of gigantic polyoxometalates
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201705721
– volume: 7
  start-page: 3582
  year: 2017
  ident: 10.1016/j.cej.2019.123412_b0035
  article-title: Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient?
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-02303-0
– volume: 333
  start-page: 1423
  year: 2011
  ident: 10.1016/j.cej.2019.123412_b0060
  article-title: A simple, multidimensional approach to high-throughput discovery of catalytic reactions
  publication-title: Science
  doi: 10.1126/science.1207922
– volume: 33
  start-page: 563
  year: 2018
  ident: 10.1016/j.cej.2019.123412_b0215
  article-title: SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556788.2017.1335312
– ident: 10.1016/j.cej.2019.123412_b0255
  doi: 10.1021/ed081p870
– volume: 3
  start-page: 219
  year: 2011
  ident: 10.1016/j.cej.2019.123412_b0225
  article-title: Pyomo: modeling and solving mathematical programs in Python
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-011-0026-8
– volume: 24
  start-page: 597
  year: 2009
  ident: 10.1016/j.cej.2019.123412_b0205
  article-title: Branching and bounds tightening techniques for non-convex MINLP
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780903087124
– start-page: 215
  year: 1974
  ident: 10.1016/j.cej.2019.123412_b0240
  article-title: A new look at the statistical model identification
– volume: 473
  start-page: 0446
  year: 2017
  ident: 10.1016/j.cej.2019.123412_b0130
  article-title: Learning partial differential equations via data discovery and sparse optimization
  publication-title: Proc. R. Soc. A.
  doi: 10.1098/rspa.2016.0446
– volume: 202
  start-page: 483
  year: 2017
  ident: 10.1016/j.cej.2019.123412_b0065
  article-title: Automation of route identification and optimisation based on data-mining and chemical intuition
  publication-title: Faraday Discuss.
  doi: 10.1039/C7FD00073A
– ident: 10.1016/j.cej.2019.123412_b0140
– volume: 3
  start-page: 227
  year: 2002
  ident: 10.1016/j.cej.2019.123412_b0185
  article-title: Review of nonlinear mixed-integer and disjunctive programming techniques
  publication-title: Optim. Eng.
  doi: 10.1023/A:1021039126272
– volume: 113
  start-page: 3932
  year: 2016
  ident: 10.1016/j.cej.2019.123412_b0150
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1517384113
SSID ssj0006919
Score 2.5302248
Snippet •Automated identification of physical laws from noisy experimental data demonstrated.•Symbolic regression problem is formulated using directed acyclic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123412
SubjectTerms Automated model construction
Chemical process development
Global optimization
Mixed-integer nonlinear programming (MINLP)
Model identification
Symbolic regression
Title A new formulation for symbolic regression to identify physico-chemical laws from experimental data
URI https://dx.doi.org/10.1016/j.cej.2019.123412
Volume 387
WOSCitedRecordID wos000527331600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-3212
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006919
  issn: 1385-8947
  databaseCode: AIEXJ
  dateStart: 19970115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKBE1VWmziJ7eOqKgKEVkhb0N4i23FQViGpNmm37V_iTzKO4yTbAgIkLlFixXHk-WTPjOebQeh1IBjToIp6knIGBgqhHldp6HFBYmKYnNpvicIf6WLBViv-aTL57rgw5wUtS3ZxwU__q6ihDYRtqLN_Ie7-o9AA9yB0uILY4fpHgp-bKuEtKbGrzNVGEtaX36RJAXy40V9t6Gtp1M685elmzsNRecolECjEtrbkk50iAB2Xbchu4N7XQ2LDPh2FKRciTNiPdZsut3lzZdnFnSeCxyNPxEKbA4XS6rW1En3sx5GorPtgq_P-gOgMptFx5IvKNX8BWyAvcpF2Vd7tY1UfLqdj_0YwG6IJrdPtBvGmXacJizzGbbLOqbZtjBKPBP7O4k7sdn5jo7A-i_VU6bWJ7-NT2MHDrutu_u2lGcsMZVRdsKfjW2g_oBGHJXR__v549aHf-GPe1pHp_80dorfhhNcG-rkaNFJtTu6je51NgucWSw_QRJcP0d1RpspHSM4xoAqPUGXusUMVHlCFmwo7VOHrqMIGVdigCo9RhQ2qHqPPb49Pjt55XXkOT5Fw1niMxdJXNKORiinJQi1ZpGXGI9gkiFAihlXAl5rFIky11iGZpUxnMVd-xlI_UOQJ2iurUj9FmAqfKsqIjnQcChlICYaIHwoB9oCUkh2gmZutRHW5600JlSJxQYrrBCY4MROc2Ak-QG_6Lqc2ccvvXg6dCJJO87QaZQJ4-XW3Z__W7Tm6MwD9BdprNmf6Jbqtzpu83rzqUPUDvSeppA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+formulation+for+symbolic+regression+to+identify+physico-chemical+laws+from+experimental+data&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Neumann%2C+Pascal&rft.au=Cao%2C+Liwei&rft.au=Russo%2C+Danilo&rft.au=Vassiliadis%2C+Vassilios+S.&rft.date=2020-05-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=387&rft_id=info:doi/10.1016%2Fj.cej.2019.123412&rft.externalDocID=S1385894719328256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon