Quasiplanar graphs, string graphs, and the Erdős–Gallai problem

An r-quasiplanar graph is a graph drawn in the plane with no r pairwise crossing edges. Let s≥3 be an integer and r=2s. We prove that there is a constant C such that every r-quasiplanar graph with n≥r vertices has at most nCs−1logn2s−4 edges. A graph whose vertices are continuous curves in the plane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics Jg. 119; S. 103811
Hauptverfasser: Fox, Jacob, Pach, János, Suk, Andrew
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.06.2024
ISSN:0195-6698
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An r-quasiplanar graph is a graph drawn in the plane with no r pairwise crossing edges. Let s≥3 be an integer and r=2s. We prove that there is a constant C such that every r-quasiplanar graph with n≥r vertices has at most nCs−1logn2s−4 edges. A graph whose vertices are continuous curves in the plane, two being connected by an edge if and only if they intersect, is called a string graph. We show that for every ϵ>0, there exists δ>0 such that every string graph with n vertices whose chromatic number is at least nϵ contains a clique of size at least nδ. A clique of this size or a coloring using fewer than nϵ colors can be found by a polynomial time algorithm in terms of the size of the geometric representation of the set of strings. In the process, we use, generalize, and strengthen previous results of Lee, Tomon, and others. All of our theorems are related to geometric variants of the following classical graph-theoretic problem of Erdős, Gallai, and Rogers. Given a Kr-free graph on n vertices and an integer s<r, at least how many vertices can we find such that the subgraph induced by them is Ks-free?
AbstractList An r-quasiplanar graph is a graph drawn in the plane with no r pairwise crossing edges. Let s≥3 be an integer and r=2s. We prove that there is a constant C such that every r-quasiplanar graph with n≥r vertices has at most nCs−1logn2s−4 edges. A graph whose vertices are continuous curves in the plane, two being connected by an edge if and only if they intersect, is called a string graph. We show that for every ϵ>0, there exists δ>0 such that every string graph with n vertices whose chromatic number is at least nϵ contains a clique of size at least nδ. A clique of this size or a coloring using fewer than nϵ colors can be found by a polynomial time algorithm in terms of the size of the geometric representation of the set of strings. In the process, we use, generalize, and strengthen previous results of Lee, Tomon, and others. All of our theorems are related to geometric variants of the following classical graph-theoretic problem of Erdős, Gallai, and Rogers. Given a Kr-free graph on n vertices and an integer s<r, at least how many vertices can we find such that the subgraph induced by them is Ks-free?
ArticleNumber 103811
Author Pach, János
Suk, Andrew
Fox, Jacob
Author_xml – sequence: 1
  givenname: Jacob
  surname: Fox
  fullname: Fox, Jacob
  email: jacobfox@stanford.edu
  organization: Stanford University, Stanford, CA, United States of America
– sequence: 2
  givenname: János
  surname: Pach
  fullname: Pach, János
  email: pach@cims.nyu.edu
  organization: Rényi Institute of Mathematics, POB 127, H-1364 Budapest, Hungary
– sequence: 3
  givenname: Andrew
  surname: Suk
  fullname: Suk, Andrew
  email: asuk@ucsd.edu
  organization: Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093, United States of America
BookMark eNp9j01OwzAUhL0oEm3hAOxyAFLsOD-OWEFVClIlhARr68V5bh2lTmQbJHZcAXGmXoSTkKqIBYuuRrP4RvNNyMh2Fgm5YHTGKMuvmhk2apbQhA-dC8ZGZExZmcV5XopTMvG-oZSxjPMxuX16BW_6Fiy4aO2g3_jLyAdn7Pqvgq2jsMFo4erdp__--FpC24KJetdVLW7PyImG1uP5b07Jy93ieX4frx6XD_ObVax4SkNcgFZZJjgwSLnClGpR65JVVYF5meQ4XMKSCqorUdAqVTxTWZokHFCruhQpnxJ22FWu896hlr0zW3DvklG5F5eNHMTlXlwexAem-McoEyCYzgYHpj1KXh9IHJTeDDrplUGrsDYOVZB1Z47QP--Sd9g
CitedBy_id crossref_primary_10_1016_j_ejc_2025_104212
crossref_primary_10_1016_j_jctb_2025_04_007
crossref_primary_10_1007_s00493_025_00154_2
Cites_doi 10.1016/0012-365X(85)90044-5
10.1007/s00493-013-2845-x
10.1112/blms.12447
10.1016/j.aim.2008.06.002
10.1016/j.ejc.2011.09.021
10.1016/j.jctb.2013.11.001
10.1007/PL00009364
10.1017/S0963548309990459
10.1007/PL00007228
10.1137/1.9781611976465.54
10.1016/j.jctb.2014.06.006
10.1007/s00493-016-3414-x
10.1007/s00493-014-2942-5
10.1002/rsa.20035
10.1137/17M1157374
10.1007/s00454-014-9645-y
10.1007/s00454-018-0031-z
10.1007/s00493-011-2626-3
10.1016/j.jcta.2006.08.002
10.7146/math.scand.a-10607
10.1007/BF01196127
10.1016/j.aim.2012.03.011
10.1016/S0012-365X(96)00344-5
10.1007/s00454-009-9143-9
10.1002/rsa.3240070204
10.1017/S0963548300001243
10.4153/CJM-1962-060-4
10.1017/S0963548313000412
10.1137/0716027
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ejc.2023.103811
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_ejc_2023_103811
S0195669823001282
GrantInformation_xml – fundername: Austrian Science Fund
– fundername: ERC
  funderid: http://dx.doi.org/10.13039/501100000781
– fundername: NKFIH, Hungary
  grantid: 882971
  funderid: http://dx.doi.org/10.13039/501100011019
– fundername: National Science Foundation, United States of America
– fundername: Packard Fellowship, United States of America
– fundername: National Science Foundation, United States of America
  grantid: DMS-1855635
– fundername: NSF CAREER, United States of America
GroupedDBID --K
--M
-ET
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXKI
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AEXQZ
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
UPT
~HD
ID FETCH-LOGICAL-c340t-7afc5583a1a43ce40f8df91bb7e6926e001e9080fb870b4c35c54223aefcd9843
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001248509200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0195-6698
IngestDate Sat Nov 29 02:54:38 EST 2025
Tue Nov 18 22:16:04 EST 2025
Sat Nov 09 15:59:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-7afc5583a1a43ce40f8df91bb7e6926e001e9080fb870b4c35c54223aefcd9843
OpenAccessLink https://dx.doi.org/10.1016/j.ejc.2023.103811
ParticipantIDs crossref_primary_10_1016_j_ejc_2023_103811
crossref_citationtrail_10_1016_j_ejc_2023_103811
elsevier_sciencedirect_doi_10_1016_j_ejc_2023_103811
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle European journal of combinatorics
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kostochka (b22) 1988; vol. 10
Suk (b36) 2014; 34
Fox, Pach (b17) 2012; 33
Pach, Radoičić, Tóth (b31) 2006; vol. 15
Lee (b27) 2017
Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter, Walczak (b32) 2014; 105
Walczak (b39) 2015; 53
Sudakov (b35) 2005; 26
Dudek, Rödl (b12) 2011; 31
Krawczyk, Walczak (b24) 2017; 37
Fox, Pach (b16) 2010; 19
Krivelevich (b26) 1995; 7
Fox, Pach (b18) 2012; 230
Davies (b9) 2022; 150
Fox, Pach (b15) 2008; 219
Rok, Walczak (b34) 2019; 33
Fox, Pach (b19) 2014; 23
Krivelevich (b25) 1994; 3
Janzer, Gowers (b21) 2020
Tomon (b37) 2020
Valtr (b38) 1998; 19
Ackerman (b1) 2009; 41
Burling (b7) 1965
Rok, Walczak (b33) 2019; 61
Dudek, Retter, Rödl (b11) 2014; 109
Erdős, Gallai (b13) 1961; 6
Agarwal, Aronov, Pach, Pollack, Sharir (b4) 1997; 17
Asplund, Grünbaum (b5) 1960; 8
Ackerman, Tardos (b3) 2007; 114
Gyárfás (b20) 1985; 55
Wolfovitz (b40) 2013; 33
Lipton, Rose, Tarjan (b28) 1979; 16
Ackerman (b2) 2020
Pach (b30) 1980
P. Chalermsook, B. Walczak, Coloring and maximum weight independent set of rectangles, in: Proc. 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2021, pp. 860–868.
Davies, McCarty (b10) 2021; 53
Erdős, Rogers (b14) 1962; 14
Kostochka, Kratochvíl (b23) 1997; 163
McGuinness (b29) 2000; 16
Brass, Moser, Pach (b6) 2005
Krawczyk (10.1016/j.ejc.2023.103811_b24) 2017; 37
Fox (10.1016/j.ejc.2023.103811_b18) 2012; 230
Asplund (10.1016/j.ejc.2023.103811_b5) 1960; 8
Ackerman (10.1016/j.ejc.2023.103811_b3) 2007; 114
Rok (10.1016/j.ejc.2023.103811_b34) 2019; 33
Tomon (10.1016/j.ejc.2023.103811_b37) 2020
Walczak (10.1016/j.ejc.2023.103811_b39) 2015; 53
Davies (10.1016/j.ejc.2023.103811_b10) 2021; 53
Erdős (10.1016/j.ejc.2023.103811_b13) 1961; 6
Valtr (10.1016/j.ejc.2023.103811_b38) 1998; 19
Ackerman (10.1016/j.ejc.2023.103811_b1) 2009; 41
Sudakov (10.1016/j.ejc.2023.103811_b35) 2005; 26
Dudek (10.1016/j.ejc.2023.103811_b12) 2011; 31
Pach (10.1016/j.ejc.2023.103811_b30) 1980
Erdős (10.1016/j.ejc.2023.103811_b14) 1962; 14
Fox (10.1016/j.ejc.2023.103811_b15) 2008; 219
Rok (10.1016/j.ejc.2023.103811_b33) 2019; 61
10.1016/j.ejc.2023.103811_b8
Krivelevich (10.1016/j.ejc.2023.103811_b26) 1995; 7
Wolfovitz (10.1016/j.ejc.2023.103811_b40) 2013; 33
Agarwal (10.1016/j.ejc.2023.103811_b4) 1997; 17
Fox (10.1016/j.ejc.2023.103811_b17) 2012; 33
Kostochka (10.1016/j.ejc.2023.103811_b23) 1997; 163
Brass (10.1016/j.ejc.2023.103811_b6) 2005
Fox (10.1016/j.ejc.2023.103811_b19) 2014; 23
Burling (10.1016/j.ejc.2023.103811_b7) 1965
Fox (10.1016/j.ejc.2023.103811_b16) 2010; 19
Suk (10.1016/j.ejc.2023.103811_b36) 2014; 34
Lee (10.1016/j.ejc.2023.103811_b27) 2017
Lipton (10.1016/j.ejc.2023.103811_b28) 1979; 16
McGuinness (10.1016/j.ejc.2023.103811_b29) 2000; 16
Krivelevich (10.1016/j.ejc.2023.103811_b25) 1994; 3
Gyárfás (10.1016/j.ejc.2023.103811_b20) 1985; 55
Pach (10.1016/j.ejc.2023.103811_b31) 2006; vol. 15
Ackerman (10.1016/j.ejc.2023.103811_b2) 2020
Dudek (10.1016/j.ejc.2023.103811_b11) 2014; 109
Pawlik (10.1016/j.ejc.2023.103811_b32) 2014; 105
Davies (10.1016/j.ejc.2023.103811_b9) 2022; 150
Janzer (10.1016/j.ejc.2023.103811_b21) 2020
Kostochka (10.1016/j.ejc.2023.103811_b22) 1988; vol. 10
References_xml – volume: 53
  start-page: 221
  year: 2015
  end-page: 225
  ident: b39
  article-title: Triangle-free geometric intersection graphs with no large independent sets
  publication-title: Discrete Comput. Geom.
– volume: 55
  start-page: 161
  year: 1985
  end-page: 166
  ident: b20
  article-title: On the chromatic number of multiple interval graphs and overlap graphs
  publication-title: Discrete Math.
– volume: 37
  start-page: 1139
  year: 2017
  end-page: 1179
  ident: b24
  article-title: On-line approach to off-line coloring problems on graphs with geometric representations
  publication-title: Combinatorica
– volume: 33
  start-page: 623
  year: 2013
  end-page: 631
  ident: b40
  article-title: -Free graphs without large induced triangle-free subgraphs
  publication-title: Combinatorica
– volume: 19
  start-page: 371
  year: 2010
  end-page: 390
  ident: b16
  article-title: A separator theorem for string graphs and its applications
  publication-title: Combin. Probab. Comput.
– volume: 3
  start-page: 349
  year: 1994
  end-page: 354
  ident: b25
  article-title: -Free graphs without large
  publication-title: Combin. Probab. Comput.
– volume: 219
  start-page: 1070
  year: 2008
  end-page: 1080
  ident: b15
  article-title: Separator theorems and Turán-type results for planar intersection graphs
  publication-title: Adv. Math.
– volume: 7
  start-page: 145
  year: 1995
  end-page: 155
  ident: b26
  article-title: Bounding Ramsey numbers through large deviation inequalities
  publication-title: Random Struct. Algorithms
– volume: 6
  start-page: 181
  year: 1961
  end-page: 203
  ident: b13
  article-title: On the minimal number of vertices representing the edges of a graph
  publication-title: Magyar Tud. Akad. Mat. Kutató Int. Közl.
– volume: 14
  start-page: 702
  year: 1962
  end-page: 707
  ident: b14
  article-title: The construction of certain graphs
  publication-title: Canad. J. Math.
– start-page: 169
  year: 1980
  end-page: 178
  ident: b30
  article-title: Decomposition of multiple packing and covering
  publication-title: Diskrete Geometrie, Vol. 2
– volume: vol. 15
  start-page: 285
  year: 2006
  end-page: 300
  ident: b31
  article-title: Relaxing planarity for topological graphs
  publication-title: More Sets, Graphs and Numbers
– volume: 114
  start-page: 563
  year: 2007
  end-page: 571
  ident: b3
  article-title: On the maximum number of edges in quasi-planar graphs
  publication-title: J. Combin. Theory Ser. A
– year: 2005
  ident: b6
  article-title: Research Problems in Discrete Geometry
– reference: P. Chalermsook, B. Walczak, Coloring and maximum weight independent set of rectangles, in: Proc. 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2021, pp. 860–868.
– volume: 230
  start-page: 1381
  year: 2012
  end-page: 1401
  ident: b18
  article-title: String graphs and incomparability graphs
  publication-title: Adv. Math.
– volume: 105
  start-page: 6
  year: 2014
  end-page: 10
  ident: b32
  article-title: Triangle-free intersection graphs of line segments with large chromatic number
  publication-title: J. Combin. Theory Ser. B
– year: 2020
  ident: b37
  article-title: String graphs have the Erdős–Hajnal property
– volume: 16
  start-page: 429
  year: 2000
  end-page: 439
  ident: b29
  article-title: Colouring arcwise connected sets in the plane, I
  publication-title: Graphs Combin.
– start-page: 27
  year: 2020
  ident: b21
  article-title: Improved bounds for the Erdős–Rogers function
  publication-title: Adv. Comb.
– volume: 163
  start-page: 299
  year: 1997
  end-page: 305
  ident: b23
  article-title: Covering and coloring polygon-circle graphs
  publication-title: Discrete Math.
– year: 1965
  ident: b7
  article-title: On Coloring Problems of Families of Polytopes
– volume: 61
  start-page: 830
  year: 2019
  end-page: 851
  ident: b33
  article-title: Coloring curves that cross a fixed curve
  publication-title: Discrete Comput. Geom.
– volume: 150
  start-page: 5121
  year: 2022
  end-page: 5135
  ident: b9
  article-title: Improved bounds for colouring circle graphs
  publication-title: Proc. Amer. Math. Soc.
– volume: 109
  start-page: 213
  year: 2014
  end-page: 227
  ident: b11
  article-title: On generalized Ramsey numbers of Erdős and Rogers
  publication-title: J. Combin. Theory Ser. B
– volume: 26
  start-page: 253
  year: 2005
  end-page: 265
  ident: b35
  article-title: Large
  publication-title: Random Struct. Algorithms
– volume: 17
  start-page: 1
  year: 1997
  end-page: 9
  ident: b4
  article-title: Quasi-planar graphs have a linear number of edges
  publication-title: Combinatorica
– volume: 16
  start-page: 346
  year: 1979
  end-page: 358
  ident: b28
  article-title: Generalized nested dissections
  publication-title: SIAM J. Numer. Anal.
– volume: 31
  start-page: 39
  year: 2011
  end-page: 53
  ident: b12
  article-title: On
  publication-title: Combinatorica
– year: 2020
  ident: b2
  article-title: Quasi-planar graphs
  publication-title: Beyond Planar Graphs
– volume: 33
  start-page: 853
  year: 2012
  end-page: 866
  ident: b17
  article-title: Coloring
  publication-title: European J. Combin.
– volume: 34
  start-page: 487
  year: 2014
  end-page: 505
  ident: b36
  article-title: Coloring intersection graphs of x-monotone curves in the plane
  publication-title: Combinatorica
– volume: 23
  start-page: 66
  year: 2014
  end-page: 74
  ident: b19
  article-title: Applications of a new separator theorem for string graphs
  publication-title: Combin. Probab. Comput.
– volume: 33
  start-page: 2181
  year: 2019
  end-page: 2199
  ident: b34
  article-title: Outerstring graphs are
  publication-title: SIAM J. Discrete Math.
– volume: 53
  start-page: 673
  year: 2021
  end-page: 679
  ident: b10
  article-title: Circle graphs are quadratically
  publication-title: Bull. Lond. Math. Soc.
– volume: 8
  start-page: 181
  year: 1960
  end-page: 188
  ident: b5
  article-title: On a coloring problem
  publication-title: Math. Scand.
– start-page: 1:1
  year: 2017
  end-page: 1:8
  ident: b27
  article-title: Separators in region intersection graphs
  publication-title: ITCS
– volume: 19
  start-page: 461
  year: 1998
  end-page: 469
  ident: b38
  article-title: On geometric graphs with no
  publication-title: Discrete Comput. Geom.
– volume: 41
  start-page: 365
  year: 2009
  end-page: 375
  ident: b1
  article-title: On the maximum number of edges in topological graphs with no four pairwise crossing edges
  publication-title: Discrete Comput. Geom.
– volume: vol. 10
  start-page: 204
  year: 1988
  end-page: 226
  ident: b22
  article-title: O verkhnikh otsenkakh khromaticheskogo chisla grafov (on upper bounds for the chromatic number of graphs)
  publication-title: Modeli I Metody Optimizacii
– volume: 55
  start-page: 161
  year: 1985
  ident: 10.1016/j.ejc.2023.103811_b20
  article-title: On the chromatic number of multiple interval graphs and overlap graphs
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(85)90044-5
– volume: 33
  start-page: 623
  year: 2013
  ident: 10.1016/j.ejc.2023.103811_b40
  article-title: K4-Free graphs without large induced triangle-free subgraphs
  publication-title: Combinatorica
  doi: 10.1007/s00493-013-2845-x
– volume: 53
  start-page: 673
  year: 2021
  ident: 10.1016/j.ejc.2023.103811_b10
  article-title: Circle graphs are quadratically χ-bounded
  publication-title: Bull. Lond. Math. Soc.
  doi: 10.1112/blms.12447
– volume: 150
  start-page: 5121
  year: 2022
  ident: 10.1016/j.ejc.2023.103811_b9
  article-title: Improved bounds for colouring circle graphs
  publication-title: Proc. Amer. Math. Soc.
– volume: 219
  start-page: 1070
  year: 2008
  ident: 10.1016/j.ejc.2023.103811_b15
  article-title: Separator theorems and Turán-type results for planar intersection graphs
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2008.06.002
– volume: 33
  start-page: 853
  year: 2012
  ident: 10.1016/j.ejc.2023.103811_b17
  article-title: Coloring Kk-free intersection graphs of geometric objects in the plane
  publication-title: European J. Combin.
  doi: 10.1016/j.ejc.2011.09.021
– year: 2005
  ident: 10.1016/j.ejc.2023.103811_b6
– start-page: 27
  issue: Paper No. 3
  year: 2020
  ident: 10.1016/j.ejc.2023.103811_b21
  article-title: Improved bounds for the Erdős–Rogers function
  publication-title: Adv. Comb.
– volume: vol. 15
  start-page: 285
  year: 2006
  ident: 10.1016/j.ejc.2023.103811_b31
  article-title: Relaxing planarity for topological graphs
– volume: 105
  start-page: 6
  year: 2014
  ident: 10.1016/j.ejc.2023.103811_b32
  article-title: Triangle-free intersection graphs of line segments with large chromatic number
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/j.jctb.2013.11.001
– volume: 19
  start-page: 461
  issue: 3
  year: 1998
  ident: 10.1016/j.ejc.2023.103811_b38
  article-title: On geometric graphs with no k pairwise parallel edges. Dedicated to the memory of Paul Erdős
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/PL00009364
– volume: 19
  start-page: 371
  year: 2010
  ident: 10.1016/j.ejc.2023.103811_b16
  article-title: A separator theorem for string graphs and its applications
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548309990459
– volume: 16
  start-page: 429
  year: 2000
  ident: 10.1016/j.ejc.2023.103811_b29
  article-title: Colouring arcwise connected sets in the plane, I
  publication-title: Graphs Combin.
  doi: 10.1007/PL00007228
– ident: 10.1016/j.ejc.2023.103811_b8
  doi: 10.1137/1.9781611976465.54
– volume: vol. 10
  start-page: 204
  year: 1988
  ident: 10.1016/j.ejc.2023.103811_b22
  article-title: O verkhnikh otsenkakh khromaticheskogo chisla grafov (on upper bounds for the chromatic number of graphs)
– start-page: 1:1
  year: 2017
  ident: 10.1016/j.ejc.2023.103811_b27
  article-title: Separators in region intersection graphs
– volume: 109
  start-page: 213
  year: 2014
  ident: 10.1016/j.ejc.2023.103811_b11
  article-title: On generalized Ramsey numbers of Erdős and Rogers
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/j.jctb.2014.06.006
– volume: 6
  start-page: 181
  year: 1961
  ident: 10.1016/j.ejc.2023.103811_b13
  article-title: On the minimal number of vertices representing the edges of a graph
  publication-title: Magyar Tud. Akad. Mat. Kutató Int. Közl.
– volume: 37
  start-page: 1139
  year: 2017
  ident: 10.1016/j.ejc.2023.103811_b24
  article-title: On-line approach to off-line coloring problems on graphs with geometric representations
  publication-title: Combinatorica
  doi: 10.1007/s00493-016-3414-x
– year: 1965
  ident: 10.1016/j.ejc.2023.103811_b7
– volume: 34
  start-page: 487
  year: 2014
  ident: 10.1016/j.ejc.2023.103811_b36
  article-title: Coloring intersection graphs of x-monotone curves in the plane
  publication-title: Combinatorica
  doi: 10.1007/s00493-014-2942-5
– volume: 26
  start-page: 253
  year: 2005
  ident: 10.1016/j.ejc.2023.103811_b35
  article-title: Large Kr-free subgraphs in Ks-free graphs and some other Ramsey-type problems
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.20035
– year: 2020
  ident: 10.1016/j.ejc.2023.103811_b2
  article-title: Quasi-planar graphs
– volume: 33
  start-page: 2181
  year: 2019
  ident: 10.1016/j.ejc.2023.103811_b34
  article-title: Outerstring graphs are χ-bounded
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/17M1157374
– volume: 53
  start-page: 221
  year: 2015
  ident: 10.1016/j.ejc.2023.103811_b39
  article-title: Triangle-free geometric intersection graphs with no large independent sets
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-014-9645-y
– volume: 61
  start-page: 830
  year: 2019
  ident: 10.1016/j.ejc.2023.103811_b33
  article-title: Coloring curves that cross a fixed curve
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-018-0031-z
– start-page: 169
  year: 1980
  ident: 10.1016/j.ejc.2023.103811_b30
  article-title: Decomposition of multiple packing and covering
– volume: 31
  start-page: 39
  year: 2011
  ident: 10.1016/j.ejc.2023.103811_b12
  article-title: On Ks-free subgraphs in Ks+k-free graphs and vertex Folkman numbers
  publication-title: Combinatorica
  doi: 10.1007/s00493-011-2626-3
– volume: 114
  start-page: 563
  year: 2007
  ident: 10.1016/j.ejc.2023.103811_b3
  article-title: On the maximum number of edges in quasi-planar graphs
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/j.jcta.2006.08.002
– volume: 8
  start-page: 181
  year: 1960
  ident: 10.1016/j.ejc.2023.103811_b5
  article-title: On a coloring problem
  publication-title: Math. Scand.
  doi: 10.7146/math.scand.a-10607
– volume: 17
  start-page: 1
  year: 1997
  ident: 10.1016/j.ejc.2023.103811_b4
  article-title: Quasi-planar graphs have a linear number of edges
  publication-title: Combinatorica
  doi: 10.1007/BF01196127
– volume: 230
  start-page: 1381
  year: 2012
  ident: 10.1016/j.ejc.2023.103811_b18
  article-title: String graphs and incomparability graphs
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2012.03.011
– volume: 163
  start-page: 299
  year: 1997
  ident: 10.1016/j.ejc.2023.103811_b23
  article-title: Covering and coloring polygon-circle graphs
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(96)00344-5
– volume: 41
  start-page: 365
  year: 2009
  ident: 10.1016/j.ejc.2023.103811_b1
  article-title: On the maximum number of edges in topological graphs with no four pairwise crossing edges
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-009-9143-9
– volume: 7
  start-page: 145
  year: 1995
  ident: 10.1016/j.ejc.2023.103811_b26
  article-title: Bounding Ramsey numbers through large deviation inequalities
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.3240070204
– volume: 3
  start-page: 349
  year: 1994
  ident: 10.1016/j.ejc.2023.103811_b25
  article-title: Ks-Free graphs without large Kr-free subgraphs
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548300001243
– volume: 14
  start-page: 702
  year: 1962
  ident: 10.1016/j.ejc.2023.103811_b14
  article-title: The construction of certain graphs
  publication-title: Canad. J. Math.
  doi: 10.4153/CJM-1962-060-4
– volume: 23
  start-page: 66
  year: 2014
  ident: 10.1016/j.ejc.2023.103811_b19
  article-title: Applications of a new separator theorem for string graphs
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548313000412
– volume: 16
  start-page: 346
  issue: 2
  year: 1979
  ident: 10.1016/j.ejc.2023.103811_b28
  article-title: Generalized nested dissections
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716027
– year: 2020
  ident: 10.1016/j.ejc.2023.103811_b37
SSID ssj0011533
Score 2.375905
Snippet An r-quasiplanar graph is a graph drawn in the plane with no r pairwise crossing edges. Let s≥3 be an integer and r=2s. We prove that there is a constant C...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103811
Title Quasiplanar graphs, string graphs, and the Erdős–Gallai problem
URI https://dx.doi.org/10.1016/j.ejc.2023.103811
Volume 119
WOSCitedRecordID wos001248509200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0195-6698
  databaseCode: AIEXJ
  dateStart: 20211209
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0011533
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEF5FoQc4IGhBBCjyoVygRnF2HXtPFaD0JxKICpBys3bXa5QQmShOEEdeAfFMfZE-CbN_TpoCAiQuVrLyOPJ8m9n5H4S-yJAJIuGPBNZF6hNOuM_gHPbjQFVlSiJJlOphE9Hxcdzp0JNK5ZurhbnuR3ke39zQwbtCDWsAtiqdfQXc5UNhAT4D6HAF2OH6IuB_j1nRHfRZzoa7uh21RkqN58gvphZc5mRrmG4fhts0KFzeA_6hnOvdXTtr5knfvdVj4R3Auma62Ugxc6i1Qd7ySZTKjJ1q6-B8kF-Vd5-OL2eSK60fokEm-VLGOeYKZCbZSNpfSUO_2TSDpkuBa4Tkf8Lb-BF6e7Kneks2sG7ebkXxvz2xT3WZIzwWDCh1wsIZPNeIQhpX0dz-r1anXQaSlDrrRlIqAhfY1il-Mz_0uGoypW6cLaFFayd4-wbfZVSR-Ue0cFQ22S0-oYMppD0D7FfP4Fx-BZQ9IPEA5T93xd_be4OtZ7FdQeffW2eHP307EsMXmNRHfsQyEYYxZgEjWEhSz-I0owHnkWzSRlPCG0sKRkDGQQ5zInAoQgIaIJOZSGlM8Cqq5le5XEMe2PWMZVkUCCxImmKuOgcqi4DXqYom11DdcSMRtl-8GlvST1xiYC8BBiaKgYlhYA3tlCQD0yzluZuJY3FitT2jxSWwH54mW38b2Qaan2zaTVQdDcfyM_ogrkfdYrhld80DPp90UA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasiplanar+graphs%2C+string+graphs%2C+and+the+Erd%C5%91s%E2%80%93Gallai+problem&rft.jtitle=European+journal+of+combinatorics&rft.au=Fox%2C+Jacob&rft.au=Pach%2C+J%C3%A1nos&rft.au=Suk%2C+Andrew&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0195-6698&rft.volume=119&rft_id=info:doi/10.1016%2Fj.ejc.2023.103811&rft.externalDocID=S0195669823001282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6698&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6698&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6698&client=summon