Population-based Algorithm Portfolios with automated constituent algorithms selection

Population-based Algorithm Portfolios (PAP) is an appealing framework for integrating different Evolutionary Algorithms (EAs) to solve challenging numerical optimization problems. Particularly, PAP has shown significant advantages to single EAs when a number of problems need to be solved simultaneou...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 279; s. 94 - 104
Hlavní autoři: Tang, Ke, Peng, Fei, Chen, Guoliang, Yao, Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 20.09.2014
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Population-based Algorithm Portfolios (PAP) is an appealing framework for integrating different Evolutionary Algorithms (EAs) to solve challenging numerical optimization problems. Particularly, PAP has shown significant advantages to single EAs when a number of problems need to be solved simultaneously. Previous investigation on PAP reveals that choosing appropriate constituent algorithms is crucial to the success of PAP. However, no method has been developed for this purpose. In this paper, an extended version of PAP, namely PAP based on Estimated Performance Matrix (EPM-PAP) is proposed. EPM-PAP is equipped with a novel constituent algorithms selection module, which is based on the EPM of each candidate EAs. Empirical studies demonstrate that the EPM-based selection method can successfully identify appropriate constituent EAs, and thus EPM-PAP outperformed all single EAs considered in this work.
AbstractList Population-based Algorithm Portfolios (PAP) is an appealing framework for integrating different Evolutionary Algorithms (EAs) to solve challenging numerical optimization problems. Particularly, PAP has shown significant advantages to single EAs when a number of problems need to be solved simultaneously. Previous investigation on PAP reveals that choosing appropriate constituent algorithms is crucial to the success of PAP. However, no method has been developed for this purpose. In this paper, an extended version of PAP, namely PAP based on Estimated Performance Matrix (EPM-PAP) is proposed. EPM-PAP is equipped with a novel constituent algorithms selection module, which is based on the EPM of each candidate EAs. Empirical studies demonstrate that the EPM-based selection method can successfully identify appropriate constituent EAs, and thus EPM-PAP outperformed all single EAs considered in this work.
Author Tang, Ke
Yao, Xin
Peng, Fei
Chen, Guoliang
Author_xml – sequence: 1
  givenname: Ke
  surname: Tang
  fullname: Tang, Ke
  email: ketang@ustc.edu.cn
  organization: USTC-Birmingham Joint Research Institute in Intelligent Computation and Its Applications (UBRI), School of Computer Science and Technology, University of Science and Technology of China, China
– sequence: 2
  givenname: Fei
  surname: Peng
  fullname: Peng, Fei
  organization: USTC-Birmingham Joint Research Institute in Intelligent Computation and Its Applications (UBRI), School of Computer Science and Technology, University of Science and Technology of China, China
– sequence: 3
  givenname: Guoliang
  surname: Chen
  fullname: Chen, Guoliang
  organization: USTC-Birmingham Joint Research Institute in Intelligent Computation and Its Applications (UBRI), School of Computer Science and Technology, University of Science and Technology of China, China
– sequence: 4
  givenname: Xin
  surname: Yao
  fullname: Yao, Xin
  organization: USTC-Birmingham Joint Research Institute in Intelligent Computation and Its Applications (UBRI), School of Computer Science and Technology, University of Science and Technology of China, China
BookMark eNp9kM9KAzEYxINUsK0-gLd9ga1fspuki6dS_AeCPdhzyCbfasp2U5JU8e1NrV489DQwzG9gZkJGgx-QkGsKMwpU3GxmbogzBrSeQZUtfkbGdC5ZKVhDR2QMwKAExvkFmcS4AYBaCjEm65Xf7XudnB_KVke0xaJ_88Gl922x8iF1vnc-Fp_ZKPQ--a1OOWP8EJNLexxSof_ysYjYozlUXZLzTvcRr351Stb3d6_Lx_L55eFpuXguTVVDKiXYjpq2tsIKZBVvOlGDka3WrGqZlQabms-5bREb3lVzI0WONEZzyWjb2WpK5LHXBB9jwE4Zl37GpKBdryiowztqo_I76vCOgipbPJP0H7kLbqvD10nm9shgnvThMKhoHA4GrQt5t7LenaC_ATwMgp8
CitedBy_id crossref_primary_10_1016_j_ins_2015_05_010
crossref_primary_10_1016_j_knosys_2024_111628
crossref_primary_10_1016_j_engappai_2021_104284
crossref_primary_10_1016_j_ins_2014_11_023
crossref_primary_10_1007_s12293_022_00367_8
crossref_primary_10_1007_s11590_015_0927_y
crossref_primary_10_1016_j_swevo_2018_07_001
crossref_primary_10_1109_TEVC_2022_3197298
crossref_primary_10_1016_j_ins_2017_09_053
crossref_primary_10_1109_TASE_2021_3084741
crossref_primary_10_1016_j_neucom_2017_03_061
crossref_primary_10_1007_s12293_016_0221_2
crossref_primary_10_1016_j_swevo_2018_08_015
crossref_primary_10_1109_MCI_2023_3277772
crossref_primary_10_1016_j_swevo_2016_05_003
crossref_primary_10_3390_electronics12224639
crossref_primary_10_1007_s00521_018_3457_6
crossref_primary_10_1109_TCYB_2017_2772849
crossref_primary_10_1007_s00500_018_3302_y
crossref_primary_10_1109_TAI_2025_3545792
crossref_primary_10_1007_s11721_019_00170_1
crossref_primary_10_1007_s10586_018_1725_y
crossref_primary_10_1016_j_swevo_2018_04_005
crossref_primary_10_1109_TEVC_2022_3169770
crossref_primary_10_1109_MCI_2020_2976182
crossref_primary_10_1007_s00500_015_1955_3
crossref_primary_10_1007_s12293_015_0159_9
crossref_primary_10_1109_TEVC_2014_2362558
crossref_primary_10_1016_j_swevo_2020_100694
crossref_primary_10_1016_j_tcs_2019_10_033
crossref_primary_10_1093_nsr_nwae132
crossref_primary_10_1007_s11432_016_0089_7
crossref_primary_10_1007_s00500_017_2817_y
crossref_primary_10_1007_s10898_022_01162_y
crossref_primary_10_1007_s13593_015_0303_4
crossref_primary_10_1016_j_ejor_2017_10_013
crossref_primary_10_1016_j_swevo_2017_12_002
crossref_primary_10_1007_s00500_017_2742_0
crossref_primary_10_1007_s10462_020_09882_x
crossref_primary_10_1007_s00500_015_1630_8
crossref_primary_10_1109_TITS_2015_2446985
crossref_primary_10_1016_j_asoc_2015_12_021
Cites_doi 10.1023/A:1019956318069
10.1109/TEVC.2010.2040183
10.1016/j.ins.2014.01.002
10.1016/S0004-3702(97)00043-X
10.1109/4235.585893
10.1162/106365602760972767
10.1109/4235.771163
10.1016/j.ins.2013.03.060
10.1016/j.ins.2013.11.032
10.1007/978-3-540-30115-8_15
10.1016/S0004-3702(00)00081-3
10.1007/978-3-540-30217-9_18
10.1109/TEVC.2003.816583
10.1023/B:MACH.0000015878.60765.42
10.1145/1538902.1538906
10.1109/TEVC.2011.2166159
10.1109/TEVC.2008.924428
10.1109/TEVC.2009.2033582
10.1126/science.275.5296.51
ContentType Journal Article
Copyright 2014 The Authors
Copyright_xml – notice: 2014 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ins.2014.03.105
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 104
ExternalDocumentID 10_1016_j_ins_2014_03_105
S0020025514004022
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
ID FETCH-LOGICAL-c340t-70df1cb4d6d6e2359f640c7baa23b2d7ce94585dbee95f38c769f69ca5721bfd3
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337985200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 06:24:54 EST 2025
Tue Nov 18 22:25:52 EST 2025
Fri Feb 23 02:23:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Algorithm subset selection
Global optimization
Population-based Algorithm Portfolios
Evolutionary optimization
Language English
License http://creativecommons.org/licenses/by/3.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-70df1cb4d6d6e2359f640c7baa23b2d7ce94585dbee95f38c769f69ca5721bfd3
OpenAccessLink https://dx.doi.org/10.1016/j.ins.2014.03.105
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2014_03_105
crossref_primary_10_1016_j_ins_2014_03_105
elsevier_sciencedirect_doi_10_1016_j_ins_2014_03_105
PublicationCentury 2000
PublicationDate 2014-09-20
PublicationDateYYYYMMDD 2014-09-20
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-20
  day: 20
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Deb, Anand, Joshi (b0030) 2002; 10
Giraud-Carrier, Vilalta, Brazdil (b0045) 2004; 54
Gomes, Selmon (b0050) 2001; 126
Lee, Yao (b0070) 2004; 8
Vrugt, Robinson, Hyman (b0125) 2009; 13
E. Tsang, A. Kwan, Mapping Constraint Satisfaction Problems to Algorithms and Heuristics, Technical Report CSM-198, University of Essex, UK, 1993.
Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proc. 1998 IEEE International Conference on Evolutionary Computation, ICEC’98, Anchorage, AK, USA, 1998, pp. 69–73.
Tang, Suganthan, Yao (b0110) 2006; 65
P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC-2005 special session on real-parameter optimization, Technical report, Nanyang Technological University, Singapore, 2005.
A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in: Proc. 2005 IEEE Congress on Evolutionary Computation, CEC’05, Edinburgh, UK, 2005, pp. 1769–1776.
B. Yuan, M. Gallagher, Statistical racing techniques for improved empirical evaluation of evolutionary algorithms, in: Proc. 8th International Conference on Parallel Problem Solving From Nature, PPSN’04, Birmingham, UK, 2004, pp. 172–181.
M. Birattari, T. Stützle, L. Paquete, K. Varrentrapp, A racing algorithm for configuring metaheuristics, in: Proc. 4th annual Conference on Genetic and Evolutionary Computation, GECCO’02, New York, USA, 2002, pp. 11–18.
Yao, Liu, Lin (b0140) 1999; 3
Vilalta, Drissi (b0120) 2002; 18
Huberman, Lukose, Hogg (b0055) 1997; 275
Mallipeddi, Suganthan (b0080) 2010; 14
Conover (b0025) 1999
M. Gagliolo, V. Zhumatiy, J. Schmidhuber, Adaptive online time allocation to search algorithms, in: Proc. 15th European Conference on Machine Learning, ECML’04, Pisa, Italy, 2004, pp. 134–143.
Ali, Awad (b0005) 2014; 267
Leyton-Brown, Nudelman, Shoham (b0075) 2009; 56
Zhao, Suganthan, Zhang (b0150) 2012; 16
A. Auger, N. Hansen, Performance evaluation of an advanced local search evolutionary algorithm, in: Proc. 2005 IEEE Congress on Evolutionary Computation, CEC’05, Edinburgh, UK, 2005, pp. 1777–1784.
Demšar (b0035) 2006; 7
Siegel (b0100) 1956
Wolpert, Macready (b0130) 1997; 1
Lacroix, Molina, Herrera (b0065) 2014; 262
Z. Yang, K. Tang, X. Yao, Self-adaptive differential evolution with neighborhood search, in: Proc. 2008 IEEE Congress on Evolutionary Computation, CEC’08, Hong Kong, China, 2008, pp. 1110–1116.
Peng, Tang, Chen, Yao (b0085) 2010; 14
Piotrowski (b0090) 2013; 241
Kohavi, John (b0060) 1997; 97
Demšar (10.1016/j.ins.2014.03.105_b0035) 2006; 7
Piotrowski (10.1016/j.ins.2014.03.105_b0090) 2013; 241
Mallipeddi (10.1016/j.ins.2014.03.105_b0080) 2010; 14
Yao (10.1016/j.ins.2014.03.105_b0140) 1999; 3
Wolpert (10.1016/j.ins.2014.03.105_b0130) 1997; 1
10.1016/j.ins.2014.03.105_b0115
Conover (10.1016/j.ins.2014.03.105_b0025) 1999
Deb (10.1016/j.ins.2014.03.105_b0030) 2002; 10
10.1016/j.ins.2014.03.105_b0145
Kohavi (10.1016/j.ins.2014.03.105_b0060) 1997; 97
Siegel (10.1016/j.ins.2014.03.105_b0100) 1956
10.1016/j.ins.2014.03.105_b0020
Lee (10.1016/j.ins.2014.03.105_b0070) 2004; 8
Leyton-Brown (10.1016/j.ins.2014.03.105_b0075) 2009; 56
Peng (10.1016/j.ins.2014.03.105_b0085) 2010; 14
10.1016/j.ins.2014.03.105_b0040
Vrugt (10.1016/j.ins.2014.03.105_b0125) 2009; 13
Ali (10.1016/j.ins.2014.03.105_b0005) 2014; 267
Gomes (10.1016/j.ins.2014.03.105_b0050) 2001; 126
Huberman (10.1016/j.ins.2014.03.105_b0055) 1997; 275
10.1016/j.ins.2014.03.105_b0105
Tang (10.1016/j.ins.2014.03.105_b0110) 2006; 65
Zhao (10.1016/j.ins.2014.03.105_b0150) 2012; 16
Vilalta (10.1016/j.ins.2014.03.105_b0120) 2002; 18
10.1016/j.ins.2014.03.105_b0015
Giraud-Carrier (10.1016/j.ins.2014.03.105_b0045) 2004; 54
10.1016/j.ins.2014.03.105_b0135
Lacroix (10.1016/j.ins.2014.03.105_b0065) 2014; 262
10.1016/j.ins.2014.03.105_b0010
10.1016/j.ins.2014.03.105_b0095
References_xml – volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: b0140
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
– reference: A. Auger, N. Hansen, Performance evaluation of an advanced local search evolutionary algorithm, in: Proc. 2005 IEEE Congress on Evolutionary Computation, CEC’05, Edinburgh, UK, 2005, pp. 1777–1784.
– volume: 16
  start-page: 442
  year: 2012
  end-page: 446
  ident: b0150
  article-title: Decomposition based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes
  publication-title: IEEE Trans. Evol. Comput.
– reference: B. Yuan, M. Gallagher, Statistical racing techniques for improved empirical evaluation of evolutionary algorithms, in: Proc. 8th International Conference on Parallel Problem Solving From Nature, PPSN’04, Birmingham, UK, 2004, pp. 172–181.
– volume: 8
  start-page: 1
  year: 2004
  end-page: 13
  ident: b0070
  article-title: Evolutionary programming using the mutations based on the Levy probability distribution
  publication-title: IEEE Trans. Evol. Comput.
– reference: Z. Yang, K. Tang, X. Yao, Self-adaptive differential evolution with neighborhood search, in: Proc. 2008 IEEE Congress on Evolutionary Computation, CEC’08, Hong Kong, China, 2008, pp. 1110–1116.
– volume: 262
  start-page: 15
  year: 2014
  end-page: 31
  ident: b0065
  article-title: Region based memetic algorithm for real-parameter optimization
  publication-title: Inf. Sci.
– volume: 275
  start-page: 51
  year: 1997
  end-page: 54
  ident: b0055
  article-title: An economics approach to hard computational problems
  publication-title: Science
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0130
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b0035
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– year: 1999
  ident: b0025
  article-title: Practical Nonparametric Statistics
– reference: A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in: Proc. 2005 IEEE Congress on Evolutionary Computation, CEC’05, Edinburgh, UK, 2005, pp. 1769–1776.
– volume: 65
  start-page: 247
  year: 2006
  end-page: 271
  ident: b0110
  publication-title: An analysis of diversity measures
– volume: 54
  start-page: 187
  year: 2004
  end-page: 193
  ident: b0045
  article-title: Introduction to the special issue on meta-learning
  publication-title: Mach. Learn.
– volume: 56
  start-page: 1
  year: 2009
  end-page: 52
  ident: b0075
  article-title: Empirical hardness models: methodology and a case study on combinatorial auctions
  publication-title: J. ACM
– volume: 14
  start-page: 782
  year: 2010
  end-page: 800
  ident: b0085
  article-title: Population-based algorithm portfolios for numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: M. Gagliolo, V. Zhumatiy, J. Schmidhuber, Adaptive online time allocation to search algorithms, in: Proc. 15th European Conference on Machine Learning, ECML’04, Pisa, Italy, 2004, pp. 134–143.
– volume: 10
  start-page: 371
  year: 2002
  end-page: 395
  ident: b0030
  article-title: A computationally efficient evolutionary algorithm for real-parameter optimization
  publication-title: Evol. Comput.
– volume: 13
  start-page: 243
  year: 2009
  end-page: 259
  ident: b0125
  article-title: Self-adaptive multimethod search for global optimization in real-parameter spaces
  publication-title: IEEE Trans. Evol. Comput.
– reference: Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proc. 1998 IEEE International Conference on Evolutionary Computation, ICEC’98, Anchorage, AK, USA, 1998, pp. 69–73.
– volume: 241
  start-page: 164
  year: 2013
  end-page: 194
  ident: b0090
  article-title: Adaptive memetic differential evolution with global and local neighborhood-based mutation operators
  publication-title: Inf. Sci.
– reference: M. Birattari, T. Stützle, L. Paquete, K. Varrentrapp, A racing algorithm for configuring metaheuristics, in: Proc. 4th annual Conference on Genetic and Evolutionary Computation, GECCO’02, New York, USA, 2002, pp. 11–18.
– year: 1956
  ident: b0100
  article-title: Nonparametric Statistics for the Behavioral Sciences
– volume: 14
  start-page: 561
  year: 2010
  end-page: 597
  ident: b0080
  article-title: Ensemble of constraint handling techniques
  publication-title: IEEE Trans. Evol. Comput.
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: b0060
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– reference: P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC-2005 special session on real-parameter optimization, Technical report, Nanyang Technological University, Singapore, 2005.
– volume: 18
  start-page: 77
  year: 2002
  end-page: 95
  ident: b0120
  article-title: A perspective view and survey of meta-learning
  publication-title: Artif. Intell. Rev.
– volume: 267
  start-page: 158
  year: 2014
  end-page: 190
  ident: b0005
  article-title: A novel class of niche hybrid cultural algorithms for continuous engineering optimization
  publication-title: Inf. Sci.
– volume: 126
  start-page: 43
  year: 2001
  end-page: 62
  ident: b0050
  article-title: Algorithm portfolios
  publication-title: Artif. Intell.
– reference: E. Tsang, A. Kwan, Mapping Constraint Satisfaction Problems to Algorithms and Heuristics, Technical Report CSM-198, University of Essex, UK, 1993.
– ident: 10.1016/j.ins.2014.03.105_b0095
– ident: 10.1016/j.ins.2014.03.105_b0020
– volume: 18
  start-page: 77
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2014.03.105_b0120
  article-title: A perspective view and survey of meta-learning
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1019956318069
– volume: 14
  start-page: 782
  issue: 5
  year: 2010
  ident: 10.1016/j.ins.2014.03.105_b0085
  article-title: Population-based algorithm portfolios for numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2040183
– ident: 10.1016/j.ins.2014.03.105_b0135
– volume: 267
  start-page: 158
  year: 2014
  ident: 10.1016/j.ins.2014.03.105_b0005
  article-title: A novel class of niche hybrid cultural algorithms for continuous engineering optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.01.002
– ident: 10.1016/j.ins.2014.03.105_b0010
– volume: 65
  start-page: 247
  year: 2006
  ident: 10.1016/j.ins.2014.03.105_b0110
  publication-title: An analysis of diversity measures
– volume: 97
  start-page: 273
  issue: 1–2
  year: 1997
  ident: 10.1016/j.ins.2014.03.105_b0060
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.ins.2014.03.105_b0130
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 10
  start-page: 371
  issue: 4
  year: 2002
  ident: 10.1016/j.ins.2014.03.105_b0030
  article-title: A computationally efficient evolutionary algorithm for real-parameter optimization
  publication-title: Evol. Comput.
  doi: 10.1162/106365602760972767
– ident: 10.1016/j.ins.2014.03.105_b0115
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.ins.2014.03.105_b0140
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– ident: 10.1016/j.ins.2014.03.105_b0105
– volume: 241
  start-page: 164
  year: 2013
  ident: 10.1016/j.ins.2014.03.105_b0090
  article-title: Adaptive memetic differential evolution with global and local neighborhood-based mutation operators
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.03.060
– volume: 262
  start-page: 15
  year: 2014
  ident: 10.1016/j.ins.2014.03.105_b0065
  article-title: Region based memetic algorithm for real-parameter optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.11.032
– ident: 10.1016/j.ins.2014.03.105_b0040
  doi: 10.1007/978-3-540-30115-8_15
– volume: 126
  start-page: 43
  issue: 1–2
  year: 2001
  ident: 10.1016/j.ins.2014.03.105_b0050
  article-title: Algorithm portfolios
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(00)00081-3
– year: 1956
  ident: 10.1016/j.ins.2014.03.105_b0100
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.ins.2014.03.105_b0035
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.ins.2014.03.105_b0145
  doi: 10.1007/978-3-540-30217-9_18
– year: 1999
  ident: 10.1016/j.ins.2014.03.105_b0025
– volume: 8
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.ins.2014.03.105_b0070
  article-title: Evolutionary programming using the mutations based on the Levy probability distribution
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.816583
– volume: 54
  start-page: 187
  issue: 3
  year: 2004
  ident: 10.1016/j.ins.2014.03.105_b0045
  article-title: Introduction to the special issue on meta-learning
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000015878.60765.42
– volume: 56
  start-page: 1
  issue: 4
  year: 2009
  ident: 10.1016/j.ins.2014.03.105_b0075
  article-title: Empirical hardness models: methodology and a case study on combinatorial auctions
  publication-title: J. ACM
  doi: 10.1145/1538902.1538906
– volume: 16
  start-page: 442
  issue: 3
  year: 2012
  ident: 10.1016/j.ins.2014.03.105_b0150
  article-title: Decomposition based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2011.2166159
– ident: 10.1016/j.ins.2014.03.105_b0015
– volume: 13
  start-page: 243
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2014.03.105_b0125
  article-title: Self-adaptive multimethod search for global optimization in real-parameter spaces
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.924428
– volume: 14
  start-page: 561
  issue: 4
  year: 2010
  ident: 10.1016/j.ins.2014.03.105_b0080
  article-title: Ensemble of constraint handling techniques
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033582
– volume: 275
  start-page: 51
  issue: 5296
  year: 1997
  ident: 10.1016/j.ins.2014.03.105_b0055
  article-title: An economics approach to hard computational problems
  publication-title: Science
  doi: 10.1126/science.275.5296.51
SSID ssj0004766
Score 2.4061093
Snippet Population-based Algorithm Portfolios (PAP) is an appealing framework for integrating different Evolutionary Algorithms (EAs) to solve challenging numerical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 94
SubjectTerms Algorithm subset selection
Evolutionary optimization
Global optimization
Population-based Algorithm Portfolios
Title Population-based Algorithm Portfolios with automated constituent algorithms selection
URI https://dx.doi.org/10.1016/j.ins.2014.03.105
Volume 279
WOSCitedRecordID wos000337985200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagywEOCBYQCyzyAXGgshQ_YifHCu3yklZ76Eq9RY7tLK1KsmpTtD8fO36kLA8BEpeosuy28nwZz4y_mQHglTRaSlwbZHhNESswR1KQHBWKCC4MFVgWQ7MJcXZWLBblebgu2A7tBETbFtfX5dV_FbUds8J2qbN_Ie70pXbAfrZCt08rdvv8I8Gfp5ZcyB1RejpbX3abZf_5y9TRRptuvexiTtuu76zFalxmmycNDIzzOH873Q5dcqLoVpH1njIep-EATYb5PISfP5lR5_qRU7McqQRe173bdS7Icpk0jxzitotQDDzEIjBzxAmSjQGymCTzHYfTWaTIuS7-yPF6thAEceIbdUVFTHxbmaBKfe_jcCiHHsU_6HsfelhZJ8WVXsfMFazFWT4eboly6G6lBwcKO61lLZfb4ICIvCwm4GD24WTxccymFf6GO_7teBc-sAJv_NDPrZk9C2X-ANwPrgWceUg8BLdMewju7RWcPATHIU0FvoZ7UoRBwT8CFzfBAxN44Age6MADE3jgHnjgCB6YwPMYXJyezN--R6HxBlKUZT0SmW6wqpnmmhtC87LhLFOilpLQmmihTMmsm6lrY8q8oYUS3E4plcwFwXWj6RMwabvWPAXQkLo0MtPWkMSs4daY1YLm0ggi3ebrI5DFDaxUqErvmqOsq0g_XFV2zyu351VG7VB-BN6kJVe-JMvvJrMolSq8Et5WrCyEfr3s2b8tew7ujq_FCzDpNztzDO6or_1yu3kZgPYNaaid-Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population-based+Algorithm+Portfolios+with+automated+constituent+algorithms+selection&rft.jtitle=Information+sciences&rft.au=Tang%2C+Ke&rft.au=Peng%2C+Fei&rft.au=Chen%2C+Guoliang&rft.au=Yao%2C+Xin&rft.date=2014-09-20&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=279&rft.spage=94&rft.epage=104&rft_id=info:doi/10.1016%2Fj.ins.2014.03.105&rft.externalDocID=S0020025514004022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon