Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082)

A rapid two-step anodization process was developed to prepare semi-ordered nanoporous anodized aluminium oxide (AAO) layers using an inexpensive aluminium (Al) alloy, Al6082 (97.53% Al) as the Al source material. Al anodizing was performed at various anodization voltages (30, 45, 60 V) and temperatu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Surface & coatings technology Ročník 378; s. 124970
Hlavní autoři: Kozhukhova, A.E., du Preez, S.P., Bessarabov, D.G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Lausanne Elsevier B.V 25.11.2019
Elsevier BV
Témata:
ISSN:0257-8972, 1879-3347
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A rapid two-step anodization process was developed to prepare semi-ordered nanoporous anodized aluminium oxide (AAO) layers using an inexpensive aluminium (Al) alloy, Al6082 (97.53% Al) as the Al source material. Al anodizing was performed at various anodization voltages (30, 45, 60 V) and temperatures (20, 30, 40 °C) using 0.4 M oxalic acid as the electrolyte. The effects of temperature and voltage on the morphological characteristics of the obtained AAO formed by one- and two-step anodization were investigated. The obtained AAO surfaces were characterized by scanning electron microscopy. Morphological characteristics of importance here were the pore diameter, inter-pore distance, porosity and pore density. An AAO layer with a semi-ordered pore arrangement was prepared using a two-step anodization process, which included an AAO etching step before the second anodization. The obtained AAO had a pore diameter of 43.8 ± 6.0 nm, inter-pore distance of 82.6 ± 19 nm, 25% porosity, pore density of 169 pores/μm2 and layer thickness of 53 μm. Energy-dispersive X-ray spectroscopy results suggested that non-Al elements present in Al6082 were present on the surface of AAO. From an economic perspective, the AAO preparation process proposed in this study makes the fabrication of AAO more attractive. •AAO layers have been prepared by anodization of Al6082 at elevated temperatures.•Al6082 as the Al source material significantly decreases AAO preparation cost.•Two-step anodization process yields AAO layer with semi-ordered pore arrangement.•Etching time greatly affects AAO pore arrangement.•Non-Al elements present in Al6082 did not significantly affect the AAO layer morphology.
AbstractList A rapid two-step anodization process was developed to prepare semi-ordered nanoporous anodized aluminium oxide (AAO) layers using an inexpensive aluminium (Al) alloy, Al6082 (97.53% Al) as the Al source material. Al anodizing was performed at various anodization voltages (30, 45, 60 V) and temperatures (20, 30, 40 °C) using 0.4 M oxalic acid as the electrolyte. The effects of temperature and voltage on the morphological characteristics of the obtained AAO formed by one- and two-step anodization were investigated. The obtained AAO surfaces were characterized by scanning electron microscopy. Morphological characteristics of importance here were the pore diameter, inter-pore distance, porosity and pore density. An AAO layer with a semi-ordered pore arrangement was prepared using a two-step anodization process, which included an AAO etching step before the second anodization. The obtained AAO had a pore diameter of 43.8 ± 6.0 nm, inter-pore distance of 82.6 ± 19 nm, 25% porosity, pore density of 169 pores/μm2 and layer thickness of 53 μm. Energy-dispersive X-ray spectroscopy results suggested that non-Al elements present in Al6082 were present on the surface of AAO. From an economic perspective, the AAO preparation process proposed in this study makes the fabrication of AAO more attractive.
A rapid two-step anodization process was developed to prepare semi-ordered nanoporous anodized aluminium oxide (AAO) layers using an inexpensive aluminium (Al) alloy, Al6082 (97.53% Al) as the Al source material. Al anodizing was performed at various anodization voltages (30, 45, 60 V) and temperatures (20, 30, 40 °C) using 0.4 M oxalic acid as the electrolyte. The effects of temperature and voltage on the morphological characteristics of the obtained AAO formed by one- and two-step anodization were investigated. The obtained AAO surfaces were characterized by scanning electron microscopy. Morphological characteristics of importance here were the pore diameter, inter-pore distance, porosity and pore density. An AAO layer with a semi-ordered pore arrangement was prepared using a two-step anodization process, which included an AAO etching step before the second anodization. The obtained AAO had a pore diameter of 43.8 ± 6.0 nm, inter-pore distance of 82.6 ± 19 nm, 25% porosity, pore density of 169 pores/μm2 and layer thickness of 53 μm. Energy-dispersive X-ray spectroscopy results suggested that non-Al elements present in Al6082 were present on the surface of AAO. From an economic perspective, the AAO preparation process proposed in this study makes the fabrication of AAO more attractive. •AAO layers have been prepared by anodization of Al6082 at elevated temperatures.•Al6082 as the Al source material significantly decreases AAO preparation cost.•Two-step anodization process yields AAO layer with semi-ordered pore arrangement.•Etching time greatly affects AAO pore arrangement.•Non-Al elements present in Al6082 did not significantly affect the AAO layer morphology.
ArticleNumber 124970
Author du Preez, S.P.
Bessarabov, D.G.
Kozhukhova, A.E.
Author_xml – sequence: 1
  givenname: A.E.
  surname: Kozhukhova
  fullname: Kozhukhova, A.E.
– sequence: 2
  givenname: S.P.
  surname: du Preez
  fullname: du Preez, S.P.
  email: Faan.DuPreez@nwu.ac.za
– sequence: 3
  givenname: D.G.
  surname: Bessarabov
  fullname: Bessarabov, D.G.
  email: Dmitri.Bessarabov@nwu.ac.za
BookMark eNqFkMtKAzEUhoMo2KqvIAE3upiay3QyAy4U8QaCLnQd08xJmzKdjElGrU9vahXETSFwFvm_c_mGaLt1LSB0SMmIElqczkeh90Y7FUeM0GpEWV4JsoUGtBRVxnkuttGAsLHIykqwXTQMYU4IoaLKB-jl0UOnvIrWtdgZrFpX20-osWr6hW1tv8Duw9aAVcQzO53hCIsOUr73EHAfbDvFjXvHXe9tXP6hji-agpTsZB_tGNUEOPipe-j5-urp8ja7f7i5u7y4zzTPScxE2twIk1bOVUHzko1rwtMrJ7lSrADNoWZ0ArXmfFIZDVRPGAUCxhBeMc730NG6b-fdaw8hyrnrfZtGyvTLx1VeUpFSZ-uU9i4ED0ZqG7-Pj17ZRlIiV07lXP46lSuncu004cU_vPN2ofxyM3i-BiEpeLPgZdAWWg219aCjrJ3d1OIL5b6YUw
CitedBy_id crossref_primary_10_32604_cmes_2022_022093
crossref_primary_10_3390_nano11071657
crossref_primary_10_3390_applnano2030015
crossref_primary_10_3390_coatings13010013
crossref_primary_10_1088_1361_6528_ac4355
crossref_primary_10_1016_j_surfcoat_2020_126627
crossref_primary_10_1016_j_optmat_2025_116741
crossref_primary_10_5604_01_3001_0054_8424
crossref_primary_10_3390_s22228856
crossref_primary_10_1002_bio_4363
crossref_primary_10_1007_s11468_023_02004_7
crossref_primary_10_1016_j_ijhydene_2022_01_246
crossref_primary_10_1016_j_surfcoat_2020_126483
crossref_primary_10_3390_ma15238482
crossref_primary_10_1016_j_surfcoat_2019_125234
crossref_primary_10_3390_app9214525
crossref_primary_10_3390_ma16062428
crossref_primary_10_3390_ma15031051
crossref_primary_10_1016_j_nucengdes_2024_113481
crossref_primary_10_1016_j_jallcom_2023_170464
crossref_primary_10_1177_02670844241298671
crossref_primary_10_1515_rams_2023_0108
crossref_primary_10_5604_01_3001_0054_9069
crossref_primary_10_3390_catal11040491
crossref_primary_10_3390_ma14175066
crossref_primary_10_3390_mi13122236
Cites_doi 10.1016/j.electacta.2004.02.030
10.1021/nl025758q
10.1016/j.surfcoat.2007.01.044
10.1002/anie.200501341
10.1016/j.tsf.2011.08.053
10.1016/j.electacta.2009.12.054
10.1063/1.124911
10.1016/j.apsusc.2012.01.025
10.1021/am1001713
10.1364/OE.20.021272
10.1002/1521-4095(200007)12:14<1031::AID-ADMA1031>3.0.CO;2-R
10.1149/1.1837634
10.1007/s11837-010-0088-5
10.1016/j.tsf.2014.08.046
10.1155/2012/752926
10.1016/j.matlet.2017.01.015
10.1016/j.surfcoat.2007.01.033
10.1080/00202967.1997.11871137
10.1088/0960-1317/6/2/012
10.1016/j.tsf.2005.12.094
10.1088/0957-4484/18/47/475713
10.3390/coatings9020115
10.1016/j.surfcoat.2011.07.020
10.1021/ie048956w
10.1088/0022-3727/25/8/017
10.1002/adfm.200901213
10.1016/j.corsci.2017.05.027
10.1063/1.121004
10.1016/j.electacta.2009.01.046
10.1016/j.mser.2003.12.001
10.1080/17458080.2011.630151
10.1002/cphc.200500690
10.1021/nn7001322
10.1006/jcat.1999.2627
10.1038/nmeth.2089
10.1016/S0010-938X(01)00115-9
10.1016/j.jcat.2004.06.016
10.1126/science.268.5216.1466
10.1016/j.matchemphys.2008.05.003
10.1007/s10853-006-0410-3
10.1016/j.surfcoat.2011.09.004
10.1016/j.sna.2011.11.033
10.1002/anie.200352216
10.1016/0010-938X(78)90012-4
10.1016/j.apsusc.2011.08.041
10.1016/S0010-938X(97)83347-1
10.4139/sfj.46.402
10.1143/JJAP.37.L1340
10.1016/j.apcatb.2007.09.024
10.1038/nmat1717
10.1016/S0010-938X(99)00025-6
10.1039/C6RA05484F
10.1002/adma.200400446
10.1016/j.surfcoat.2007.12.002
10.1063/1.1788843
10.1016/j.electacta.2013.04.160
10.1016/j.electacta.2003.10.024
10.1063/1.1846137
10.1016/j.apcata.2008.07.033
10.1002/1521-4095(200102)13:3<189::AID-ADMA189>3.0.CO;2-Z
10.1016/j.electacta.2006.07.053
10.1016/j.surfcoat.2006.12.003
10.1149/1.2176891
10.1016/j.spmi.2007.10.005
10.1016/S0257-8972(02)00144-5
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Nov 25, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 25, 2019
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
DOI 10.1016/j.surfcoat.2019.124970
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
ExternalDocumentID 10_1016_j_surfcoat_2019_124970
S0257897219309594
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
~HD
7QQ
7SR
8BQ
8FD
AFXIZ
AGCQF
AGRNS
JG9
SSH
ID FETCH-LOGICAL-c340t-7019f7f1874a614825d03d038b4aa26ec3ed21bedc33b9fce1cb21e0eff039233
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503100800042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0257-8972
IngestDate Mon Jul 14 10:35:49 EDT 2025
Sat Nov 29 07:20:36 EST 2025
Tue Nov 18 22:27:41 EST 2025
Fri Feb 23 02:49:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Al6082
Oxalic acid
Anodized aluminium oxide
Low purity aluminium
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-7019f7f1874a614825d03d038b4aa26ec3ed21bedc33b9fce1cb21e0eff039233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2333594817
PQPubID 2045394
ParticipantIDs proquest_journals_2333594817
crossref_citationtrail_10_1016_j_surfcoat_2019_124970
crossref_primary_10_1016_j_surfcoat_2019_124970
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2019_124970
PublicationCentury 2000
PublicationDate 2019-11-25
PublicationDateYYYYMMDD 2019-11-25
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-25
  day: 25
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Takahashi, Nagayama (bb0185) 1978; 18
Parkhutik, Shershulsky (bb0225) 1992
Bruera, Kramer, Vera, Ares (bb0215) 2019; 9
Michalska-Domanska, Norek, Stepniowski, Budner (bb0150) 2013; 105
Voon, Derman, Hashim, Ahmad, Foo (bb0265) 2013
Lee, Kim, Gösele (bb0110) 2010; 20
Sulka, Parkola (bb0325) 2007; 52
Aerts, Dimogerontakis, De Graeve, Fransaer, Terryn (bb0130) 2007; 201
Wieβmeier, Hönicke (bb0010) 1996; 6
Stepniowski, Zasada, Bojar (bb0175) 2011; 206
Sun, Luo, Wu, Zhang (bb0095) 2010; 2
Lee (bb0005) 2010; 62
Lee, Scholz, Nielsch, Gösele (bb0040) 2005; 44
Abd-Elnaiem, Mebed, El-Said, Abdel-Rahim (bb0285) 2014; 570
Masuda, Asoh, Watanabe, Nishio, Nakao, Tamamura (bb0105) 2001; 13
Zaraska, Sulka, Szeremeta, Jaskuła (bb0120) 2010; 55
Schwirn, Lee, Hillebrand, Steinhart, Nielsch, Gösele (bb0075) 2008; 2
Chung, Tsai, Hsu, Kuo, Chen, Chung (bb0245) 2017; 125
Sanz, Almeida, Zamaro, Ulla, Miro, Montes (bb0065) 2008; 78
Mei, Siu, Fu, Chen, Wu, Hung, Chu, Yang (bb0335) 2005; 97
Chung, Liao, Chang, Lee (bb0235) 2011; 520
Cao, Wang, Qiu, Wu, Wang, Zhang, Liu (bb0035) 2006; 7
Yu, Hu, Bai, Yang (bb0135) 2007; 201
Li, He, Zhang, Que (bb0295) 2012; 20
Stepniowski, Bojar (bb0090) 2011; 206
Johansson, Lu, Carlsson, Boman (bb0025) 2004; 96
Sulka (bb0205) 2008; Ch. 1
Ganley, Riechmann, Seebauer, Masel (bb0240) 2004; 227
Schneider, Rasband, Eliceiri (bb0190) 2012; 9
Montero-Moreno, Sarret, Muller (bb0125) 2007; 201
Voon, Derman, Hashim (bb0260) 2012; 2012
Shimizu, Kobayashi, Thompson, Skeldon, Wood (bb0165) 1997; 39
Xiao, Han, Welp, Wang, Kwok, Willing, Hiller, Cook, Miller, Crabtree (bb0330) 2002; 2
Masuda, Fukuda (bb0115) 1995; 268
Fratila-Apachitei, Tichelaar, Thompson, Terryn, Skeldon, Duszczyk, Katgerman (bb0155) 2004; 49
Suh, Lee (bb0210) 1999; 75
Sulka, Stepniowski (bb0170) 2009; 54
O’Sullivan, Wood (bb0320) 1970; 317
Masuda, Yasui, Nishio (bb0055) 2000; 12
Fratila-Apachitei, Terryn, Skeldon, Thompson, Duszczyk, Katgerman (bb0160) 2004; 49
Vojkuvka, Marsal, Ferré-Borrull, Formentin, Pallarés (bb0195) 2008; 44
Fernandez-Romero, Montero-Moreno, Pellicer, Peiro, Cornet, Morante, Sarret, Muller (bb0140) 2008; 111
Lee, Nielsch, Gosele (bb0340) 2007; 18
Zhao, Jiang, Shi, Li, Zhao, Du (bb0315) 2007; 42
Liu, Skeldon, Thompson, Habazaki, Shimizu (bb0250) 2002; 44
Voon, Derman, Hashim, Ahmad, Ho (bb0270) 2014; 9
Ni, Seebauer, Masel (bb0070) 2005; 44
Masuda, Hasegwa, Ono (bb0080) 1997; 144
Patermarakis, Nicolopoulos (bb0015) 1999; 187
Fratila-Apachitei, Duszczyk, Katgerman (bb0230) 2002; 157
Shih, Wei, Huang (bb0145) 2008; 202
Lahav, Sehayek, Vaskevich, Rubinstein (bb0020) 2003; 42
Chung, Chu, Tsai, Hsu (bb0275) 2017; 190
Almasi Kashi, Ramazani, Abbasian, Khayyatian (bb0280) 2012; 174
Erdogan, Yuksel, Birol (bb0310) 2012; 258
Araoyinbo, Noor, Sreekantan, Aziz (bb0305) 2010; 5
Chik, Xu (bb0045) 2004; 43
Habazaki, Shimizu, Skeldon, Thompson, Wood, Zhou (bb0255) 1997; 75
Zhang, Zhao, Li, Hou (bb0300) 2016; 6
Shimizu, Nagayanagi, Ishida, Sakata, Oku, Sakaue, Takahagi, Shingubara (bb0050) 2006; 9
Wang, Tran, Vo, Sakurai, Kameyama (bb0060) 2008; 350
Zhang, Jiang, Zhu, Qi, Ding (bb0180) 2011; 258
Sander, Cote, Gu, Kile, Tripp (bb0030) 2004; 16
Lee, Ji, Gösele, Nielsch (bb0085) 2006; 5
Crossland, Thompson, Smith, Habazaki, Shimizu, Skeldon (bb0345) 1999; 41
Shimizu, Kobayashi (bb0350) 1995; 46
Masuda, Yada, Osaka (bb0100) 1998; 37
Sulka, Parkola (bb0200) 2006; 515
Zhang, Jiang, Zhu, Qi, Ding (bb0290) 2011; 258
Jessensky, Müller, Gösele (bb0220) 1998; 72
Wang (10.1016/j.surfcoat.2019.124970_bb0060) 2008; 350
Erdogan (10.1016/j.surfcoat.2019.124970_bb0310) 2012; 258
Masuda (10.1016/j.surfcoat.2019.124970_bb0115) 1995; 268
Yu (10.1016/j.surfcoat.2019.124970_bb0135) 2007; 201
O’Sullivan (10.1016/j.surfcoat.2019.124970_bb0320) 1970; 317
Sun (10.1016/j.surfcoat.2019.124970_bb0095) 2010; 2
Vojkuvka (10.1016/j.surfcoat.2019.124970_bb0195) 2008; 44
Sander (10.1016/j.surfcoat.2019.124970_bb0030) 2004; 16
Cao (10.1016/j.surfcoat.2019.124970_bb0035) 2006; 7
Zhao (10.1016/j.surfcoat.2019.124970_bb0315) 2007; 42
Sulka (10.1016/j.surfcoat.2019.124970_bb0205) 2008; Ch. 1
Voon (10.1016/j.surfcoat.2019.124970_bb0260) 2012; 2012
Lee (10.1016/j.surfcoat.2019.124970_bb0110) 2010; 20
Habazaki (10.1016/j.surfcoat.2019.124970_bb0255) 1997; 75
Chung (10.1016/j.surfcoat.2019.124970_bb0275) 2017; 190
Voon (10.1016/j.surfcoat.2019.124970_bb0265) 2013
Crossland (10.1016/j.surfcoat.2019.124970_bb0345) 1999; 41
Zhang (10.1016/j.surfcoat.2019.124970_bb0180) 2011; 258
Araoyinbo (10.1016/j.surfcoat.2019.124970_bb0305) 2010; 5
Jessensky (10.1016/j.surfcoat.2019.124970_bb0220) 1998; 72
Stepniowski (10.1016/j.surfcoat.2019.124970_bb0175) 2011; 206
Sulka (10.1016/j.surfcoat.2019.124970_bb0325) 2007; 52
Ganley (10.1016/j.surfcoat.2019.124970_bb0240) 2004; 227
Almasi Kashi (10.1016/j.surfcoat.2019.124970_bb0280) 2012; 174
Schwirn (10.1016/j.surfcoat.2019.124970_bb0075) 2008; 2
Suh (10.1016/j.surfcoat.2019.124970_bb0210) 1999; 75
Masuda (10.1016/j.surfcoat.2019.124970_bb0080) 1997; 144
Parkhutik (10.1016/j.surfcoat.2019.124970_bb0225) 1992
Michalska-Domanska (10.1016/j.surfcoat.2019.124970_bb0150) 2013; 105
Montero-Moreno (10.1016/j.surfcoat.2019.124970_bb0125) 2007; 201
Lee (10.1016/j.surfcoat.2019.124970_bb0085) 2006; 5
Zhang (10.1016/j.surfcoat.2019.124970_bb0300) 2016; 6
Aerts (10.1016/j.surfcoat.2019.124970_bb0130) 2007; 201
Abd-Elnaiem (10.1016/j.surfcoat.2019.124970_bb0285) 2014; 570
Li (10.1016/j.surfcoat.2019.124970_bb0295) 2012; 20
Masuda (10.1016/j.surfcoat.2019.124970_bb0105) 2001; 13
Patermarakis (10.1016/j.surfcoat.2019.124970_bb0015) 1999; 187
Masuda (10.1016/j.surfcoat.2019.124970_bb0100) 1998; 37
Shimizu (10.1016/j.surfcoat.2019.124970_bb0350) 1995; 46
Sulka (10.1016/j.surfcoat.2019.124970_bb0200) 2006; 515
Xiao (10.1016/j.surfcoat.2019.124970_bb0330) 2002; 2
Lee (10.1016/j.surfcoat.2019.124970_bb0005) 2010; 62
Shimizu (10.1016/j.surfcoat.2019.124970_bb0165) 1997; 39
Shih (10.1016/j.surfcoat.2019.124970_bb0145) 2008; 202
Lahav (10.1016/j.surfcoat.2019.124970_bb0020) 2003; 42
Voon (10.1016/j.surfcoat.2019.124970_bb0270) 2014; 9
Fernandez-Romero (10.1016/j.surfcoat.2019.124970_bb0140) 2008; 111
Chik (10.1016/j.surfcoat.2019.124970_bb0045) 2004; 43
Stepniowski (10.1016/j.surfcoat.2019.124970_bb0090) 2011; 206
Lee (10.1016/j.surfcoat.2019.124970_bb0340) 2007; 18
Mei (10.1016/j.surfcoat.2019.124970_bb0335) 2005; 97
Wieβmeier (10.1016/j.surfcoat.2019.124970_bb0010) 1996; 6
Zaraska (10.1016/j.surfcoat.2019.124970_bb0120) 2010; 55
Liu (10.1016/j.surfcoat.2019.124970_bb0250) 2002; 44
Bruera (10.1016/j.surfcoat.2019.124970_bb0215) 2019; 9
Fratila-Apachitei (10.1016/j.surfcoat.2019.124970_bb0160) 2004; 49
Zhang (10.1016/j.surfcoat.2019.124970_bb0290) 2011; 258
Masuda (10.1016/j.surfcoat.2019.124970_bb0055) 2000; 12
Takahashi (10.1016/j.surfcoat.2019.124970_bb0185) 1978; 18
Sulka (10.1016/j.surfcoat.2019.124970_bb0170) 2009; 54
Fratila-Apachitei (10.1016/j.surfcoat.2019.124970_bb0230) 2002; 157
Fratila-Apachitei (10.1016/j.surfcoat.2019.124970_bb0155) 2004; 49
Shimizu (10.1016/j.surfcoat.2019.124970_bb0050) 2006; 9
Lee (10.1016/j.surfcoat.2019.124970_bb0040) 2005; 44
Ni (10.1016/j.surfcoat.2019.124970_bb0070) 2005; 44
Schneider (10.1016/j.surfcoat.2019.124970_bb0190) 2012; 9
Chung (10.1016/j.surfcoat.2019.124970_bb0235) 2011; 520
Chung (10.1016/j.surfcoat.2019.124970_bb0245) 2017; 125
Sanz (10.1016/j.surfcoat.2019.124970_bb0065) 2008; 78
Johansson (10.1016/j.surfcoat.2019.124970_bb0025) 2004; 96
References_xml – volume: 174
  start-page: 69
  year: 2012
  end-page: 74
  ident: bb0280
  article-title: Capacitive humidity sensors based on large diameter porous alumina prepared by high current anodization
  publication-title: Sens. Actuators, A
– volume: 6
  start-page: 285
  year: 1996
  end-page: 289
  ident: bb0010
  article-title: Microfabricated components for heterogeneously catalysed reactions
  publication-title: J. Micromech. Microeng.
– volume: 258
  start-page: 586
  year: 2011
  end-page: 589
  ident: bb0180
  article-title: Ultrasond-assisted anodization of aluminium in oxalic acid
  publication-title: Appl. Surf. Sci.
– volume: 202
  start-page: 3298
  year: 2008
  end-page: 3305
  ident: bb0145
  article-title: Optical properties of anodic aluminum oxide films on Al1050 alloys
  publication-title: Surf. Coat. Technol.
– volume: 206
  start-page: 265
  year: 2011
  end-page: 272
  ident: bb0090
  article-title: Synthesis of AAO at relatively high temperatures. Study of the influence of anodizing conditions on the alumina structural features
  publication-title: Surf. Coat. Technol.
– volume: 49
  start-page: 1127
  year: 2004
  end-page: 1140
  ident: bb0160
  article-title: Influence of substrate microstructure on the growth of anodic oxide layers
  publication-title: Electrochim. Acta
– volume: 125
  start-page: 40
  year: 2017
  end-page: 47
  ident: bb0245
  article-title: Impurity and temperature enhanced growth behaviour of anodic aluminium oxide from AA5052 Al-Mg alloy using hybrid pulse anodization at room temperature
  publication-title: Corros. Sci.
– start-page: 1258
  year: 1992
  end-page: 1263
  ident: bb0225
  article-title: Theoretical modelling of porous oxide growth on aluminium
  publication-title: J. Phys. D. Appl. Phys.
– volume: 258
  start-page: 586
  year: 2011
  end-page: 589
  ident: bb0290
  article-title: Ultrasound-assisted anodization of aluminum in oxalic acid
  publication-title: Appl. Surf. Sci.
– volume: 43
  start-page: 103
  year: 2004
  end-page: 138
  ident: bb0045
  article-title: Nanometric superlattices: non-lithographic fabrication, materials, and prospects
  publication-title: Mater. Sci. Eng. R
– volume: 258
  start-page: 4544
  year: 2012
  end-page: 4550
  ident: bb0310
  article-title: Effect of chemical etching on the morphology of anodic aluminum oxides in the two-step anodization process
  publication-title: Appl. Surf. Sci.
– start-page: 40
  year: 2013
  end-page: 48
  ident: bb0265
  article-title: Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from Al-Mn alloys
  publication-title: J. Nanomater.
– volume: 42
  start-page: 5576
  year: 2003
  end-page: 5579
  ident: bb0020
  article-title: Nanoparticle nanotubes
  publication-title: Angew. Chem. Int. Ed.
– volume: 18
  year: 2007
  ident: bb0340
  article-title: Self-ordering behaviour of nanoporous anodic aluminium oxide (AAO) in malonic acid anodization
  publication-title: Nanotechnology
– volume: 20
  start-page: 21272
  year: 2012
  end-page: 21277
  ident: bb0295
  article-title: Aluminum oxide nanostructure-based substrates for fluorescence enhancement
  publication-title: Opt. Express
– volume: 9
  start-page: 115
  year: 2019
  ident: bb0215
  article-title: Synthesis and morphological characterization of nanoporous aluminium oxide films by using a single anodization step
  publication-title: Coatings
– volume: 72
  start-page: 1173
  year: 1998
  end-page: 1175
  ident: bb0220
  article-title: Self-organized formation of hexagonal pore arrays in anodic alumina
  publication-title: Appl. Phys. Lett.
– volume: 42
  start-page: 3878
  year: 2007
  end-page: 3882
  ident: bb0315
  article-title: Effects of anodizing conditions on anodic alumina structure
  publication-title: J. Mater. Sci.
– volume: 570
  start-page: 49
  year: 2014
  end-page: 56
  ident: bb0285
  article-title: Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage
  publication-title: Thin Solid Films
– volume: 97
  year: 2005
  ident: bb0335
  article-title: Formation mechanism of alumina nanotubes and nanowires from highly ordered porous anodic alumina template
  publication-title: J. Appl. Phys.
– volume: 105
  start-page: 424
  year: 2013
  end-page: 432
  ident: bb0150
  article-title: Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum–a comparative study with the AAO produced on high purity aluminum
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 741
  year: 2006
  end-page: 747
  ident: bb0085
  article-title: Fast fabrication of long-range ordered porous alumina membranes by hard anodization
  publication-title: Nat. Mater.
– volume: 12
  start-page: 1031
  year: 2000
  end-page: 1033
  ident: bb0055
  article-title: Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaporation mask
  publication-title: Adv. Mater.
– volume: 111
  start-page: 542
  year: 2008
  end-page: 547
  ident: bb0140
  article-title: Assessment of the thermal stability of anodic alumina membranes at high temperatures
  publication-title: Mater. Chem. Phys.
– volume: 201
  start-page: 7259
  year: 2007
  end-page: 7265
  ident: bb0135
  article-title: Pore-size dependence of AAO films on surface roughness of Al-1050 sheets controlled by electropolishing coupled with fractional factorial design
  publication-title: Surf. Coat. Technol.
– volume: 18
  start-page: 911
  year: 1978
  end-page: 925
  ident: bb0185
  article-title: The determination of the porosity of anodic oxide films on aluminium by the pore-filling method
  publication-title: Coros. Sci.
– volume: 20
  start-page: 21
  year: 2010
  end-page: 27
  ident: bb0110
  article-title: Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions
  publication-title: Adv. Funct. Mater.
– volume: 96
  start-page: 5189
  year: 2004
  end-page: 5194
  ident: bb0025
  article-title: Deposition of palladium nanoparticles on the pore walls of anodic alumina using sequential electroless deposition
  publication-title: J. Appl. Phys.
– volume: 2
  start-page: 1299
  year: 2010
  end-page: 1302
  ident: bb0095
  article-title: Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm
  publication-title: ACS Appl. Mater. Interfaces
– volume: Ch. 1
  year: 2008
  ident: bb0205
  article-title: Highly ordered anodic porous alumina formation by self-organised anodizing
  publication-title: Nanostructured Materials in Electrochemistry
– volume: 9
  start-page: 106
  year: 2014
  end-page: 112
  ident: bb0270
  article-title: A simple one-step anodising method for the synthesis of ordered porous anodic alumina
  publication-title: J. Exp. Nanosci.
– volume: 78
  start-page: 166
  year: 2008
  end-page: 175
  ident: bb0065
  article-title: Washcoating of Pt-ZSM5 onto aluminium foams
  publication-title: Appl. Catal., B
– volume: 39
  start-page: 281
  year: 1997
  end-page: 284
  ident: bb0165
  article-title: The influence of ‘θ’ precipitates on the anodizing behaviour of binary Al-Cu alloys
  publication-title: Corros. Sci.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 9
  ident: bb0260
  article-title: Effect of manganese content on the fabrication of porous anodic alumina
  publication-title: J. Nanomater.
– volume: 9
  start-page: J13
  year: 2006
  end-page: J16
  ident: bb0050
  article-title: Epitaxial growth of Cu nanodot arrays using an AAO template on a Si substrate
  publication-title: Electrochem. Solid State Lett.
– volume: 6
  start-page: 35455
  year: 2016
  end-page: 35465
  ident: bb0300
  article-title: Fabrication of durable anticorrosion superhydrophobic surfaces on aluminium substrates via a facile one-step electrodeposition approach
  publication-title: RSC Adv.
– volume: 187
  start-page: 311
  year: 1999
  end-page: 320
  ident: bb0015
  article-title: Catalysis over porous anodic alumina film catalysts with different pore surface concentrations
  publication-title: J. Catal.
– volume: 49
  start-page: 3169
  year: 2004
  end-page: 3177
  ident: bb0155
  article-title: A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys
  publication-title: Electrochim. Acta
– volume: 75
  start-page: 18
  year: 1997
  end-page: 23
  ident: bb0255
  article-title: Effects of alloying elements in anodizing of aluminium
  publication-title: Trans. Int. Met. Finish.
– volume: 52
  start-page: 1880
  year: 2007
  end-page: 1888
  ident: bb0325
  article-title: Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid
  publication-title: Electrochim. Acta
– volume: 62
  start-page: 57
  year: 2010
  end-page: 63
  ident: bb0005
  article-title: The anodization of aluminum for nanotechnology applications
  publication-title: JOM
– volume: 54
  start-page: 3683
  year: 2009
  end-page: 3691
  ident: bb0170
  article-title: Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures
  publication-title: Electrochim. Acta
– volume: 268
  start-page: 1466
  year: 1995
  end-page: 1468
  ident: bb0115
  article-title: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina
  publication-title: Science
– volume: 2
  start-page: 1293
  year: 2002
  end-page: 1297
  ident: bb0330
  article-title: Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes
  publication-title: Nano Lett.
– volume: 55
  start-page: 4377
  year: 2010
  end-page: 4386
  ident: bb0120
  article-title: Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum
  publication-title: Electrochim. Acta
– volume: 201
  start-page: 6352
  year: 2007
  end-page: 6357
  ident: bb0125
  article-title: Influence of the aluminum surface on the final results of a two-step anodizing
  publication-title: Surf. Coat. Technol.
– volume: 144
  start-page: L127
  year: 1997
  end-page: L130
  ident: bb0080
  article-title: Self-ordering of cell arrangement of anodic porous alumina formed in sulphuric acid solution
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 1500
  year: 2006
  end-page: 1504
  ident: bb0035
  article-title: Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays
  publication-title: ChemPhysChem
– volume: 5
  start-page: 53
  year: 2010
  end-page: 58
  ident: bb0305
  article-title: Voltage effect on electrochemical anodization of aluminum at ambient temperature
  publication-title: Int. J. Mech. Mat. Eng.
– volume: 41
  start-page: 2053
  year: 1999
  end-page: 2069
  ident: bb0345
  article-title: Formation of manganese-rich layers during anodizing of Al-Mn alloys
  publication-title: Corros. Sci.
– volume: 317
  start-page: 511
  year: 1970
  end-page: 543
  ident: bb0320
  article-title: The morphology and mechanism of formation of porous anodic films on aluminium
  publication-title: Proc. R. Soc., A
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bb0190
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– volume: 350
  start-page: 150
  year: 2008
  end-page: 156
  ident: bb0060
  article-title: Design of novel Pt-structured catalyst on anodic aluminum support for VOC’s catalytic combustion
  publication-title: Appl. Catal., A
– volume: 515
  start-page: 338
  year: 2006
  end-page: 345
  ident: bb0200
  article-title: Anodising potential influence on well-ordered nanostructures formed by anodisation of aluminium in sulphuric acid
  publication-title: Thin Solid Films
– volume: 2
  start-page: 302
  year: 2008
  end-page: 310
  ident: bb0075
  article-title: Self-ordered anodic aluminum oxide formed by H
  publication-title: ACS Nano
– volume: 37
  start-page: L1340
  year: 1998
  end-page: L1342
  ident: bb0100
  article-title: Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution
  publication-title: Jpn. J. Appl. Phys.
– volume: 44
  start-page: 577
  year: 2008
  end-page: 582
  ident: bb0195
  article-title: Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization
  publication-title: Superlattice. Microst.
– volume: 201
  start-page: 7310
  year: 2007
  end-page: 7317
  ident: bb0130
  article-title: Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film
  publication-title: Surf. Coat. Technol.
– volume: 227
  start-page: 26
  year: 2004
  end-page: 32
  ident: bb0240
  article-title: Porous anodic alumina optimized as a catalyst support for microreactors
  publication-title: J. Catal.
– volume: 44
  start-page: 1133
  year: 2002
  end-page: 1142
  ident: bb0250
  article-title: Anodic film growth on an Al–21at.%Mg alloy
  publication-title: Corros. Sci.
– volume: 75
  start-page: 2047
  year: 1999
  end-page: 2049
  ident: bb0210
  article-title: Highly ordered two-dimensional carbon nanotube arrays
  publication-title: Appl. Phys. Lett.
– volume: 46
  start-page: 402
  year: 1995
  end-page: 409
  ident: bb0350
  article-title: Anodic oxide growth on valve metals-future prospects
  publication-title: J. Surf. Finish. Soc.
– volume: 206
  start-page: 1416
  year: 2011
  end-page: 1422
  ident: bb0175
  article-title: First step of anodization influences the final nanopore arrangement in anodized alumina
  publication-title: Surf. Coat. Technol.
– volume: 157
  start-page: 80
  year: 2002
  end-page: 94
  ident: bb0230
  article-title: Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H
  publication-title: Surf. Coat. Technol.
– volume: 190
  start-page: 157
  year: 2017
  end-page: 160
  ident: bb0275
  article-title: Photoluminescence enhancement of nanoporous alumina using one-step anodization of high- and low-purity aluminum at room temperature
  publication-title: Mater. Lett.
– volume: 13
  start-page: 189
  year: 2001
  end-page: 192
  ident: bb0105
  article-title: Square and triangular nanohole array architectures in anodic alumina
  publication-title: Adv. Mater.
– volume: 16
  start-page: 2052
  year: 2004
  end-page: 2057
  ident: bb0030
  article-title: Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates
  publication-title: Adv. Mater.
– volume: 44
  start-page: 4267
  year: 2005
  end-page: 4271
  ident: bb0070
  article-title: Effects of microreactor geometry on performance: differences between posted reactors and channel reactors
  publication-title: Ind. Eng. Chem. Res.
– volume: 44
  start-page: 6050
  year: 2005
  end-page: 6054
  ident: bb0040
  article-title: A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes
  publication-title: Angew. Chem. Int. Ed.
– volume: 520
  start-page: 1554
  year: 2011
  end-page: 1558
  ident: bb0235
  article-title: Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization
  publication-title: Thin Solid Films
– volume: 49
  start-page: 3169
  year: 2004
  ident: 10.1016/j.surfcoat.2019.124970_bb0155
  article-title: A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.02.030
– volume: 2
  start-page: 1293
  issue: 11
  year: 2002
  ident: 10.1016/j.surfcoat.2019.124970_bb0330
  article-title: Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes
  publication-title: Nano Lett.
  doi: 10.1021/nl025758q
– volume: 201
  start-page: 7310
  year: 2007
  ident: 10.1016/j.surfcoat.2019.124970_bb0130
  article-title: Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2007.01.044
– volume: Ch. 1
  year: 2008
  ident: 10.1016/j.surfcoat.2019.124970_bb0205
  article-title: Highly ordered anodic porous alumina formation by self-organised anodizing
– volume: 44
  start-page: 6050
  year: 2005
  ident: 10.1016/j.surfcoat.2019.124970_bb0040
  article-title: A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200501341
– volume: 520
  start-page: 1554
  year: 2011
  ident: 10.1016/j.surfcoat.2019.124970_bb0235
  article-title: Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.08.053
– volume: 55
  start-page: 4377
  year: 2010
  ident: 10.1016/j.surfcoat.2019.124970_bb0120
  article-title: Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.12.054
– volume: 75
  start-page: 2047
  year: 1999
  ident: 10.1016/j.surfcoat.2019.124970_bb0210
  article-title: Highly ordered two-dimensional carbon nanotube arrays
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.124911
– volume: 258
  start-page: 4544
  year: 2012
  ident: 10.1016/j.surfcoat.2019.124970_bb0310
  article-title: Effect of chemical etching on the morphology of anodic aluminum oxides in the two-step anodization process
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.01.025
– volume: 2
  start-page: 1299
  issue: 5
  year: 2010
  ident: 10.1016/j.surfcoat.2019.124970_bb0095
  article-title: Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am1001713
– volume: 20
  start-page: 21272
  year: 2012
  ident: 10.1016/j.surfcoat.2019.124970_bb0295
  article-title: Aluminum oxide nanostructure-based substrates for fluorescence enhancement
  publication-title: Opt. Express
  doi: 10.1364/OE.20.021272
– volume: 12
  start-page: 1031
  year: 2000
  ident: 10.1016/j.surfcoat.2019.124970_bb0055
  article-title: Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaporation mask
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200007)12:14<1031::AID-ADMA1031>3.0.CO;2-R
– volume: 144
  start-page: L127
  year: 1997
  ident: 10.1016/j.surfcoat.2019.124970_bb0080
  article-title: Self-ordering of cell arrangement of anodic porous alumina formed in sulphuric acid solution
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837634
– volume: 62
  start-page: 57
  issue: 6
  year: 2010
  ident: 10.1016/j.surfcoat.2019.124970_bb0005
  article-title: The anodization of aluminum for nanotechnology applications
  publication-title: JOM
  doi: 10.1007/s11837-010-0088-5
– volume: 570
  start-page: 49
  year: 2014
  ident: 10.1016/j.surfcoat.2019.124970_bb0285
  article-title: Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2014.08.046
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.surfcoat.2019.124970_bb0260
  article-title: Effect of manganese content on the fabrication of porous anodic alumina
  publication-title: J. Nanomater.
  doi: 10.1155/2012/752926
– volume: 190
  start-page: 157
  year: 2017
  ident: 10.1016/j.surfcoat.2019.124970_bb0275
  article-title: Photoluminescence enhancement of nanoporous alumina using one-step anodization of high- and low-purity aluminum at room temperature
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.01.015
– volume: 201
  start-page: 7259
  year: 2007
  ident: 10.1016/j.surfcoat.2019.124970_bb0135
  article-title: Pore-size dependence of AAO films on surface roughness of Al-1050 sheets controlled by electropolishing coupled with fractional factorial design
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2007.01.033
– volume: 75
  start-page: 18
  year: 1997
  ident: 10.1016/j.surfcoat.2019.124970_bb0255
  article-title: Effects of alloying elements in anodizing of aluminium
  publication-title: Trans. Int. Met. Finish.
  doi: 10.1080/00202967.1997.11871137
– volume: 6
  start-page: 285
  year: 1996
  ident: 10.1016/j.surfcoat.2019.124970_bb0010
  article-title: Microfabricated components for heterogeneously catalysed reactions
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/6/2/012
– volume: 515
  start-page: 338
  year: 2006
  ident: 10.1016/j.surfcoat.2019.124970_bb0200
  article-title: Anodising potential influence on well-ordered nanostructures formed by anodisation of aluminium in sulphuric acid
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.12.094
– volume: 18
  year: 2007
  ident: 10.1016/j.surfcoat.2019.124970_bb0340
  article-title: Self-ordering behaviour of nanoporous anodic aluminium oxide (AAO) in malonic acid anodization
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/47/475713
– volume: 9
  start-page: 115
  year: 2019
  ident: 10.1016/j.surfcoat.2019.124970_bb0215
  article-title: Synthesis and morphological characterization of nanoporous aluminium oxide films by using a single anodization step
  publication-title: Coatings
  doi: 10.3390/coatings9020115
– volume: 206
  start-page: 265
  year: 2011
  ident: 10.1016/j.surfcoat.2019.124970_bb0090
  article-title: Synthesis of AAO at relatively high temperatures. Study of the influence of anodizing conditions on the alumina structural features
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2011.07.020
– volume: 44
  start-page: 4267
  year: 2005
  ident: 10.1016/j.surfcoat.2019.124970_bb0070
  article-title: Effects of microreactor geometry on performance: differences between posted reactors and channel reactors
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie048956w
– start-page: 1258
  issue: D25
  year: 1992
  ident: 10.1016/j.surfcoat.2019.124970_bb0225
  article-title: Theoretical modelling of porous oxide growth on aluminium
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/0022-3727/25/8/017
– volume: 20
  start-page: 21
  year: 2010
  ident: 10.1016/j.surfcoat.2019.124970_bb0110
  article-title: Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200901213
– volume: 125
  start-page: 40
  year: 2017
  ident: 10.1016/j.surfcoat.2019.124970_bb0245
  article-title: Impurity and temperature enhanced growth behaviour of anodic aluminium oxide from AA5052 Al-Mg alloy using hybrid pulse anodization at room temperature
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2017.05.027
– volume: 72
  start-page: 1173
  issue: 10
  year: 1998
  ident: 10.1016/j.surfcoat.2019.124970_bb0220
  article-title: Self-organized formation of hexagonal pore arrays in anodic alumina
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121004
– volume: 54
  start-page: 3683
  year: 2009
  ident: 10.1016/j.surfcoat.2019.124970_bb0170
  article-title: Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.01.046
– volume: 43
  start-page: 103
  year: 2004
  ident: 10.1016/j.surfcoat.2019.124970_bb0045
  article-title: Nanometric superlattices: non-lithographic fabrication, materials, and prospects
  publication-title: Mater. Sci. Eng. R
  doi: 10.1016/j.mser.2003.12.001
– volume: 9
  start-page: 106
  year: 2014
  ident: 10.1016/j.surfcoat.2019.124970_bb0270
  article-title: A simple one-step anodising method for the synthesis of ordered porous anodic alumina
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080.2011.630151
– volume: 5
  start-page: 53
  year: 2010
  ident: 10.1016/j.surfcoat.2019.124970_bb0305
  article-title: Voltage effect on electrochemical anodization of aluminum at ambient temperature
  publication-title: Int. J. Mech. Mat. Eng.
– volume: 7
  start-page: 1500
  year: 2006
  ident: 10.1016/j.surfcoat.2019.124970_bb0035
  article-title: Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200500690
– volume: 2
  start-page: 302
  year: 2008
  ident: 10.1016/j.surfcoat.2019.124970_bb0075
  article-title: Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization
  publication-title: ACS Nano
  doi: 10.1021/nn7001322
– volume: 187
  start-page: 311
  issue: 2
  year: 1999
  ident: 10.1016/j.surfcoat.2019.124970_bb0015
  article-title: Catalysis over porous anodic alumina film catalysts with different pore surface concentrations
  publication-title: J. Catal.
  doi: 10.1006/jcat.1999.2627
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.surfcoat.2019.124970_bb0190
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 44
  start-page: 1133
  year: 2002
  ident: 10.1016/j.surfcoat.2019.124970_bb0250
  article-title: Anodic film growth on an Al–21at.%Mg alloy
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(01)00115-9
– volume: 227
  start-page: 26
  year: 2004
  ident: 10.1016/j.surfcoat.2019.124970_bb0240
  article-title: Porous anodic alumina optimized as a catalyst support for microreactors
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.06.016
– volume: 268
  start-page: 1466
  issue: 5216
  year: 1995
  ident: 10.1016/j.surfcoat.2019.124970_bb0115
  article-title: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina
  publication-title: Science
  doi: 10.1126/science.268.5216.1466
– volume: 111
  start-page: 542
  year: 2008
  ident: 10.1016/j.surfcoat.2019.124970_bb0140
  article-title: Assessment of the thermal stability of anodic alumina membranes at high temperatures
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2008.05.003
– volume: 42
  start-page: 3878
  year: 2007
  ident: 10.1016/j.surfcoat.2019.124970_bb0315
  article-title: Effects of anodizing conditions on anodic alumina structure
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-0410-3
– volume: 206
  start-page: 1416
  year: 2011
  ident: 10.1016/j.surfcoat.2019.124970_bb0175
  article-title: First step of anodization influences the final nanopore arrangement in anodized alumina
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2011.09.004
– volume: 174
  start-page: 69
  year: 2012
  ident: 10.1016/j.surfcoat.2019.124970_bb0280
  article-title: Capacitive humidity sensors based on large diameter porous alumina prepared by high current anodization
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2011.11.033
– volume: 42
  start-page: 5576
  year: 2003
  ident: 10.1016/j.surfcoat.2019.124970_bb0020
  article-title: Nanoparticle nanotubes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200352216
– volume: 18
  start-page: 911
  year: 1978
  ident: 10.1016/j.surfcoat.2019.124970_bb0185
  article-title: The determination of the porosity of anodic oxide films on aluminium by the pore-filling method
  publication-title: Coros. Sci.
  doi: 10.1016/0010-938X(78)90012-4
– volume: 258
  start-page: 586
  year: 2011
  ident: 10.1016/j.surfcoat.2019.124970_bb0180
  article-title: Ultrasond-assisted anodization of aluminium in oxalic acid
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.08.041
– volume: 258
  start-page: 586
  year: 2011
  ident: 10.1016/j.surfcoat.2019.124970_bb0290
  article-title: Ultrasound-assisted anodization of aluminum in oxalic acid
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.08.041
– volume: 39
  start-page: 281
  issue: 2
  year: 1997
  ident: 10.1016/j.surfcoat.2019.124970_bb0165
  article-title: The influence of ‘θ’ precipitates on the anodizing behaviour of binary Al-Cu alloys
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(97)83347-1
– volume: 46
  start-page: 402
  year: 1995
  ident: 10.1016/j.surfcoat.2019.124970_bb0350
  article-title: Anodic oxide growth on valve metals-future prospects
  publication-title: J. Surf. Finish. Soc.
  doi: 10.4139/sfj.46.402
– volume: 37
  start-page: L1340
  year: 1998
  ident: 10.1016/j.surfcoat.2019.124970_bb0100
  article-title: Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.37.L1340
– volume: 78
  start-page: 166
  year: 2008
  ident: 10.1016/j.surfcoat.2019.124970_bb0065
  article-title: Washcoating of Pt-ZSM5 onto aluminium foams
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2007.09.024
– volume: 5
  start-page: 741
  year: 2006
  ident: 10.1016/j.surfcoat.2019.124970_bb0085
  article-title: Fast fabrication of long-range ordered porous alumina membranes by hard anodization
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1717
– volume: 41
  start-page: 2053
  year: 1999
  ident: 10.1016/j.surfcoat.2019.124970_bb0345
  article-title: Formation of manganese-rich layers during anodizing of Al-Mn alloys
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(99)00025-6
– volume: 6
  start-page: 35455
  year: 2016
  ident: 10.1016/j.surfcoat.2019.124970_bb0300
  article-title: Fabrication of durable anticorrosion superhydrophobic surfaces on aluminium substrates via a facile one-step electrodeposition approach
  publication-title: RSC Adv.
  doi: 10.1039/C6RA05484F
– volume: 16
  start-page: 2052
  year: 2004
  ident: 10.1016/j.surfcoat.2019.124970_bb0030
  article-title: Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400446
– volume: 202
  start-page: 3298
  year: 2008
  ident: 10.1016/j.surfcoat.2019.124970_bb0145
  article-title: Optical properties of anodic aluminum oxide films on Al1050 alloys
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2007.12.002
– volume: 96
  start-page: 5189
  year: 2004
  ident: 10.1016/j.surfcoat.2019.124970_bb0025
  article-title: Deposition of palladium nanoparticles on the pore walls of anodic alumina using sequential electroless deposition
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1788843
– volume: 105
  start-page: 424
  year: 2013
  ident: 10.1016/j.surfcoat.2019.124970_bb0150
  article-title: Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum–a comparative study with the AAO produced on high purity aluminum
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.04.160
– volume: 49
  start-page: 1127
  year: 2004
  ident: 10.1016/j.surfcoat.2019.124970_bb0160
  article-title: Influence of substrate microstructure on the growth of anodic oxide layers
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2003.10.024
– volume: 317
  start-page: 511
  year: 1970
  ident: 10.1016/j.surfcoat.2019.124970_bb0320
  article-title: The morphology and mechanism of formation of porous anodic films on aluminium
  publication-title: Proc. R. Soc., A
– volume: 97
  year: 2005
  ident: 10.1016/j.surfcoat.2019.124970_bb0335
  article-title: Formation mechanism of alumina nanotubes and nanowires from highly ordered porous anodic alumina template
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1846137
– volume: 350
  start-page: 150
  year: 2008
  ident: 10.1016/j.surfcoat.2019.124970_bb0060
  article-title: Design of novel Pt-structured catalyst on anodic aluminum support for VOC’s catalytic combustion
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2008.07.033
– volume: 13
  start-page: 189
  year: 2001
  ident: 10.1016/j.surfcoat.2019.124970_bb0105
  article-title: Square and triangular nanohole array architectures in anodic alumina
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200102)13:3<189::AID-ADMA189>3.0.CO;2-Z
– volume: 52
  start-page: 1880
  year: 2007
  ident: 10.1016/j.surfcoat.2019.124970_bb0325
  article-title: Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.07.053
– volume: 201
  start-page: 6352
  issue: 14
  year: 2007
  ident: 10.1016/j.surfcoat.2019.124970_bb0125
  article-title: Influence of the aluminum surface on the final results of a two-step anodizing
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2006.12.003
– volume: 9
  start-page: J13
  year: 2006
  ident: 10.1016/j.surfcoat.2019.124970_bb0050
  article-title: Epitaxial growth of Cu nanodot arrays using an AAO template on a Si substrate
  publication-title: Electrochem. Solid State Lett.
  doi: 10.1149/1.2176891
– volume: 44
  start-page: 577
  year: 2008
  ident: 10.1016/j.surfcoat.2019.124970_bb0195
  article-title: Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2007.10.005
– start-page: 40
  issue: 2013
  year: 2013
  ident: 10.1016/j.surfcoat.2019.124970_bb0265
  article-title: Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from Al-Mn alloys
  publication-title: J. Nanomater.
– volume: 157
  start-page: 80
  year: 2002
  ident: 10.1016/j.surfcoat.2019.124970_bb0230
  article-title: Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(02)00144-5
SSID ssj0001794
Score 2.4375222
Snippet A rapid two-step anodization process was developed to prepare semi-ordered nanoporous anodized aluminium oxide (AAO) layers using an inexpensive aluminium (Al)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124970
SubjectTerms Al6082
Aluminum base alloys
Aluminum oxide
Anodized aluminium oxide
Anodizing
Density
Diameters
Low purity aluminium
Morphology
Oxalic acid
Porosity
Temperature effects
Thickness
Title Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082)
URI https://dx.doi.org/10.1016/j.surfcoat.2019.124970
https://www.proquest.com/docview/2333594817
Volume 378
WOSCitedRecordID wos000503100800042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKh8Q4IBggNgbygQOoSmjipGmOZSo_pakSQ-ot2LGtpZSkSpNS7cK_zrMdZ9kGjB2Qqqhy9ayk78vz85Pf9yH0ggVkREOPOET41Al8nzlMSuJIEYgRjQTsyJgWm4iOj8fzeTzr9X7aXpjNMsrz8XYbr_6rq2EMnK1aZ2_g7nZSGIDv4HS4gtvh-k-On5XC8HmbTJDmBc_OIK2kEIayPKu_D4ptxoXqYlRcxQNFTtUwK68HtS4dLIsfg5WWtetYQSo6WY5gLbfFg4XtJSklTYXGUFrQSuuAVlcq9p-Ks9P622mxMYVcd-raX3itDoKYSvZnd9aOv1HqLCWAdKMDo_vO7ZYovFj16pl25iaSQVxwxnF0IewSI93TBE6lgW0URK7EdFNeWMBiUkr1GOo8XuyeG1wk0b60uLVHDu1ptkVi50nUPImZ5xba8aMwHvfRzuTDdP6xXcxVvNJluuYJOk3mv7-jP-U3l1Z6nb6c3Ef3mn0Hnhi8PEA9ke-hO0dW7m8P3e0wUz5EXzsowoXEFkW4xQPWKMK0wgpFuIsirFGEAUXYoKhj9dJg6NUj9OXt9OTovdOIcTgpCYaVo2j7ZSSVhCPV5LEhHxL4jFlAqT8SKRHc95jgKSEslqnwUuZ7YiikHEIOTshj1M-LXDxBGAJCKCIGuSKJA0I55ZAlMtipc49FPA73UWj_wiRtmOqVYMoy-bsT99Hr1m5luFqutYith5Im4zSZZALgu9b20Lo0aV7_dQLPSTQBUnRw45t5inbPX55D1K_KWjxDt9NNla3L5w0wfwFZ1rBf
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+anodized+aluminium+oxide+at+high+temperatures+using+low+purity+aluminium+%28Al6082%29&rft.jtitle=Surface+%26+coatings+technology&rft.au=Kozhukhova%2C+A.E.&rft.au=du+Preez%2C+S.P.&rft.au=Bessarabov%2C+D.G.&rft.date=2019-11-25&rft.issn=0257-8972&rft.volume=378&rft.spage=124970&rft_id=info:doi/10.1016%2Fj.surfcoat.2019.124970&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2019_124970
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon