Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082)
A rapid two-step anodization process was developed to prepare semi-ordered nanoporous anodized aluminium oxide (AAO) layers using an inexpensive aluminium (Al) alloy, Al6082 (97.53% Al) as the Al source material. Al anodizing was performed at various anodization voltages (30, 45, 60 V) and temperatu...
Gespeichert in:
| Veröffentlicht in: | Surface & coatings technology Jg. 378; S. 124970 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Lausanne
Elsevier B.V
25.11.2019
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0257-8972, 1879-3347 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A rapid two-step anodization process was developed to prepare semi-ordered nanoporous anodized aluminium oxide (AAO) layers using an inexpensive aluminium (Al) alloy, Al6082 (97.53% Al) as the Al source material. Al anodizing was performed at various anodization voltages (30, 45, 60 V) and temperatures (20, 30, 40 °C) using 0.4 M oxalic acid as the electrolyte. The effects of temperature and voltage on the morphological characteristics of the obtained AAO formed by one- and two-step anodization were investigated. The obtained AAO surfaces were characterized by scanning electron microscopy. Morphological characteristics of importance here were the pore diameter, inter-pore distance, porosity and pore density. An AAO layer with a semi-ordered pore arrangement was prepared using a two-step anodization process, which included an AAO etching step before the second anodization. The obtained AAO had a pore diameter of 43.8 ± 6.0 nm, inter-pore distance of 82.6 ± 19 nm, 25% porosity, pore density of 169 pores/μm2 and layer thickness of 53 μm. Energy-dispersive X-ray spectroscopy results suggested that non-Al elements present in Al6082 were present on the surface of AAO. From an economic perspective, the AAO preparation process proposed in this study makes the fabrication of AAO more attractive.
•AAO layers have been prepared by anodization of Al6082 at elevated temperatures.•Al6082 as the Al source material significantly decreases AAO preparation cost.•Two-step anodization process yields AAO layer with semi-ordered pore arrangement.•Etching time greatly affects AAO pore arrangement.•Non-Al elements present in Al6082 did not significantly affect the AAO layer morphology. |
|---|---|
| AbstractList | A rapid two-step anodization process was developed to prepare semi-ordered nanoporous anodized aluminium oxide (AAO) layers using an inexpensive aluminium (Al) alloy, Al6082 (97.53% Al) as the Al source material. Al anodizing was performed at various anodization voltages (30, 45, 60 V) and temperatures (20, 30, 40 °C) using 0.4 M oxalic acid as the electrolyte. The effects of temperature and voltage on the morphological characteristics of the obtained AAO formed by one- and two-step anodization were investigated. The obtained AAO surfaces were characterized by scanning electron microscopy. Morphological characteristics of importance here were the pore diameter, inter-pore distance, porosity and pore density. An AAO layer with a semi-ordered pore arrangement was prepared using a two-step anodization process, which included an AAO etching step before the second anodization. The obtained AAO had a pore diameter of 43.8 ± 6.0 nm, inter-pore distance of 82.6 ± 19 nm, 25% porosity, pore density of 169 pores/μm2 and layer thickness of 53 μm. Energy-dispersive X-ray spectroscopy results suggested that non-Al elements present in Al6082 were present on the surface of AAO. From an economic perspective, the AAO preparation process proposed in this study makes the fabrication of AAO more attractive. A rapid two-step anodization process was developed to prepare semi-ordered nanoporous anodized aluminium oxide (AAO) layers using an inexpensive aluminium (Al) alloy, Al6082 (97.53% Al) as the Al source material. Al anodizing was performed at various anodization voltages (30, 45, 60 V) and temperatures (20, 30, 40 °C) using 0.4 M oxalic acid as the electrolyte. The effects of temperature and voltage on the morphological characteristics of the obtained AAO formed by one- and two-step anodization were investigated. The obtained AAO surfaces were characterized by scanning electron microscopy. Morphological characteristics of importance here were the pore diameter, inter-pore distance, porosity and pore density. An AAO layer with a semi-ordered pore arrangement was prepared using a two-step anodization process, which included an AAO etching step before the second anodization. The obtained AAO had a pore diameter of 43.8 ± 6.0 nm, inter-pore distance of 82.6 ± 19 nm, 25% porosity, pore density of 169 pores/μm2 and layer thickness of 53 μm. Energy-dispersive X-ray spectroscopy results suggested that non-Al elements present in Al6082 were present on the surface of AAO. From an economic perspective, the AAO preparation process proposed in this study makes the fabrication of AAO more attractive. •AAO layers have been prepared by anodization of Al6082 at elevated temperatures.•Al6082 as the Al source material significantly decreases AAO preparation cost.•Two-step anodization process yields AAO layer with semi-ordered pore arrangement.•Etching time greatly affects AAO pore arrangement.•Non-Al elements present in Al6082 did not significantly affect the AAO layer morphology. |
| ArticleNumber | 124970 |
| Author | du Preez, S.P. Bessarabov, D.G. Kozhukhova, A.E. |
| Author_xml | – sequence: 1 givenname: A.E. surname: Kozhukhova fullname: Kozhukhova, A.E. – sequence: 2 givenname: S.P. surname: du Preez fullname: du Preez, S.P. email: Faan.DuPreez@nwu.ac.za – sequence: 3 givenname: D.G. surname: Bessarabov fullname: Bessarabov, D.G. email: Dmitri.Bessarabov@nwu.ac.za |
| BookMark | eNqFkMtKAzEUhoMo2KqvIAE3upiay3QyAy4U8QaCLnQd08xJmzKdjElGrU9vahXETSFwFvm_c_mGaLt1LSB0SMmIElqczkeh90Y7FUeM0GpEWV4JsoUGtBRVxnkuttGAsLHIykqwXTQMYU4IoaLKB-jl0UOnvIrWtdgZrFpX20-osWr6hW1tv8Duw9aAVcQzO53hCIsOUr73EHAfbDvFjXvHXe9tXP6hji-agpTsZB_tGNUEOPipe-j5-urp8ja7f7i5u7y4zzTPScxE2twIk1bOVUHzko1rwtMrJ7lSrADNoWZ0ArXmfFIZDVRPGAUCxhBeMc730NG6b-fdaw8hyrnrfZtGyvTLx1VeUpFSZ-uU9i4ED0ZqG7-Pj17ZRlIiV07lXP46lSuncu004cU_vPN2ofxyM3i-BiEpeLPgZdAWWg219aCjrJ3d1OIL5b6YUw |
| CitedBy_id | crossref_primary_10_32604_cmes_2022_022093 crossref_primary_10_3390_nano11071657 crossref_primary_10_3390_applnano2030015 crossref_primary_10_3390_coatings13010013 crossref_primary_10_1088_1361_6528_ac4355 crossref_primary_10_1016_j_surfcoat_2020_126627 crossref_primary_10_1016_j_optmat_2025_116741 crossref_primary_10_5604_01_3001_0054_8424 crossref_primary_10_3390_s22228856 crossref_primary_10_1002_bio_4363 crossref_primary_10_1007_s11468_023_02004_7 crossref_primary_10_1016_j_ijhydene_2022_01_246 crossref_primary_10_1016_j_surfcoat_2020_126483 crossref_primary_10_3390_ma15238482 crossref_primary_10_1016_j_surfcoat_2019_125234 crossref_primary_10_3390_app9214525 crossref_primary_10_3390_ma16062428 crossref_primary_10_3390_ma15031051 crossref_primary_10_1016_j_nucengdes_2024_113481 crossref_primary_10_1016_j_jallcom_2023_170464 crossref_primary_10_1177_02670844241298671 crossref_primary_10_1515_rams_2023_0108 crossref_primary_10_5604_01_3001_0054_9069 crossref_primary_10_3390_catal11040491 crossref_primary_10_3390_ma14175066 crossref_primary_10_3390_mi13122236 |
| Cites_doi | 10.1016/j.electacta.2004.02.030 10.1021/nl025758q 10.1016/j.surfcoat.2007.01.044 10.1002/anie.200501341 10.1016/j.tsf.2011.08.053 10.1016/j.electacta.2009.12.054 10.1063/1.124911 10.1016/j.apsusc.2012.01.025 10.1021/am1001713 10.1364/OE.20.021272 10.1002/1521-4095(200007)12:14<1031::AID-ADMA1031>3.0.CO;2-R 10.1149/1.1837634 10.1007/s11837-010-0088-5 10.1016/j.tsf.2014.08.046 10.1155/2012/752926 10.1016/j.matlet.2017.01.015 10.1016/j.surfcoat.2007.01.033 10.1080/00202967.1997.11871137 10.1088/0960-1317/6/2/012 10.1016/j.tsf.2005.12.094 10.1088/0957-4484/18/47/475713 10.3390/coatings9020115 10.1016/j.surfcoat.2011.07.020 10.1021/ie048956w 10.1088/0022-3727/25/8/017 10.1002/adfm.200901213 10.1016/j.corsci.2017.05.027 10.1063/1.121004 10.1016/j.electacta.2009.01.046 10.1016/j.mser.2003.12.001 10.1080/17458080.2011.630151 10.1002/cphc.200500690 10.1021/nn7001322 10.1006/jcat.1999.2627 10.1038/nmeth.2089 10.1016/S0010-938X(01)00115-9 10.1016/j.jcat.2004.06.016 10.1126/science.268.5216.1466 10.1016/j.matchemphys.2008.05.003 10.1007/s10853-006-0410-3 10.1016/j.surfcoat.2011.09.004 10.1016/j.sna.2011.11.033 10.1002/anie.200352216 10.1016/0010-938X(78)90012-4 10.1016/j.apsusc.2011.08.041 10.1016/S0010-938X(97)83347-1 10.4139/sfj.46.402 10.1143/JJAP.37.L1340 10.1016/j.apcatb.2007.09.024 10.1038/nmat1717 10.1016/S0010-938X(99)00025-6 10.1039/C6RA05484F 10.1002/adma.200400446 10.1016/j.surfcoat.2007.12.002 10.1063/1.1788843 10.1016/j.electacta.2013.04.160 10.1016/j.electacta.2003.10.024 10.1063/1.1846137 10.1016/j.apcata.2008.07.033 10.1002/1521-4095(200102)13:3<189::AID-ADMA189>3.0.CO;2-Z 10.1016/j.electacta.2006.07.053 10.1016/j.surfcoat.2006.12.003 10.1149/1.2176891 10.1016/j.spmi.2007.10.005 10.1016/S0257-8972(02)00144-5 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Nov 25, 2019 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Nov 25, 2019 |
| DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD JG9 |
| DOI | 10.1016/j.surfcoat.2019.124970 |
| DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1879-3347 |
| ExternalDocumentID | 10_1016_j_surfcoat_2019_124970 S0257897219309594 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- SEW SMS SPG WUQ ~HD 7QQ 7SR 8BQ 8FD AFXIZ AGCQF AGRNS JG9 SSH |
| ID | FETCH-LOGICAL-c340t-7019f7f1874a614825d03d038b4aa26ec3ed21bedc33b9fce1cb21e0eff039233 |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503100800042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0257-8972 |
| IngestDate | Mon Jul 14 10:35:49 EDT 2025 Sat Nov 29 07:20:36 EST 2025 Tue Nov 18 22:27:41 EST 2025 Fri Feb 23 02:49:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Al6082 Oxalic acid Anodized aluminium oxide Low purity aluminium |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-7019f7f1874a614825d03d038b4aa26ec3ed21bedc33b9fce1cb21e0eff039233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2333594817 |
| PQPubID | 2045394 |
| ParticipantIDs | proquest_journals_2333594817 crossref_citationtrail_10_1016_j_surfcoat_2019_124970 crossref_primary_10_1016_j_surfcoat_2019_124970 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2019_124970 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-25 |
| PublicationDateYYYYMMDD | 2019-11-25 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Surface & coatings technology |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Takahashi, Nagayama (bb0185) 1978; 18 Parkhutik, Shershulsky (bb0225) 1992 Bruera, Kramer, Vera, Ares (bb0215) 2019; 9 Michalska-Domanska, Norek, Stepniowski, Budner (bb0150) 2013; 105 Voon, Derman, Hashim, Ahmad, Foo (bb0265) 2013 Lee, Kim, Gösele (bb0110) 2010; 20 Sulka, Parkola (bb0325) 2007; 52 Aerts, Dimogerontakis, De Graeve, Fransaer, Terryn (bb0130) 2007; 201 Wieβmeier, Hönicke (bb0010) 1996; 6 Stepniowski, Zasada, Bojar (bb0175) 2011; 206 Sun, Luo, Wu, Zhang (bb0095) 2010; 2 Lee (bb0005) 2010; 62 Lee, Scholz, Nielsch, Gösele (bb0040) 2005; 44 Abd-Elnaiem, Mebed, El-Said, Abdel-Rahim (bb0285) 2014; 570 Masuda, Asoh, Watanabe, Nishio, Nakao, Tamamura (bb0105) 2001; 13 Zaraska, Sulka, Szeremeta, Jaskuła (bb0120) 2010; 55 Schwirn, Lee, Hillebrand, Steinhart, Nielsch, Gösele (bb0075) 2008; 2 Chung, Tsai, Hsu, Kuo, Chen, Chung (bb0245) 2017; 125 Sanz, Almeida, Zamaro, Ulla, Miro, Montes (bb0065) 2008; 78 Mei, Siu, Fu, Chen, Wu, Hung, Chu, Yang (bb0335) 2005; 97 Chung, Liao, Chang, Lee (bb0235) 2011; 520 Cao, Wang, Qiu, Wu, Wang, Zhang, Liu (bb0035) 2006; 7 Yu, Hu, Bai, Yang (bb0135) 2007; 201 Li, He, Zhang, Que (bb0295) 2012; 20 Stepniowski, Bojar (bb0090) 2011; 206 Johansson, Lu, Carlsson, Boman (bb0025) 2004; 96 Sulka (bb0205) 2008; Ch. 1 Ganley, Riechmann, Seebauer, Masel (bb0240) 2004; 227 Schneider, Rasband, Eliceiri (bb0190) 2012; 9 Montero-Moreno, Sarret, Muller (bb0125) 2007; 201 Voon, Derman, Hashim (bb0260) 2012; 2012 Shimizu, Kobayashi, Thompson, Skeldon, Wood (bb0165) 1997; 39 Xiao, Han, Welp, Wang, Kwok, Willing, Hiller, Cook, Miller, Crabtree (bb0330) 2002; 2 Masuda, Fukuda (bb0115) 1995; 268 Fratila-Apachitei, Tichelaar, Thompson, Terryn, Skeldon, Duszczyk, Katgerman (bb0155) 2004; 49 Suh, Lee (bb0210) 1999; 75 Sulka, Stepniowski (bb0170) 2009; 54 O’Sullivan, Wood (bb0320) 1970; 317 Masuda, Yasui, Nishio (bb0055) 2000; 12 Fratila-Apachitei, Terryn, Skeldon, Thompson, Duszczyk, Katgerman (bb0160) 2004; 49 Vojkuvka, Marsal, Ferré-Borrull, Formentin, Pallarés (bb0195) 2008; 44 Fernandez-Romero, Montero-Moreno, Pellicer, Peiro, Cornet, Morante, Sarret, Muller (bb0140) 2008; 111 Lee, Nielsch, Gosele (bb0340) 2007; 18 Zhao, Jiang, Shi, Li, Zhao, Du (bb0315) 2007; 42 Liu, Skeldon, Thompson, Habazaki, Shimizu (bb0250) 2002; 44 Voon, Derman, Hashim, Ahmad, Ho (bb0270) 2014; 9 Ni, Seebauer, Masel (bb0070) 2005; 44 Masuda, Hasegwa, Ono (bb0080) 1997; 144 Patermarakis, Nicolopoulos (bb0015) 1999; 187 Fratila-Apachitei, Duszczyk, Katgerman (bb0230) 2002; 157 Shih, Wei, Huang (bb0145) 2008; 202 Lahav, Sehayek, Vaskevich, Rubinstein (bb0020) 2003; 42 Chung, Chu, Tsai, Hsu (bb0275) 2017; 190 Almasi Kashi, Ramazani, Abbasian, Khayyatian (bb0280) 2012; 174 Erdogan, Yuksel, Birol (bb0310) 2012; 258 Araoyinbo, Noor, Sreekantan, Aziz (bb0305) 2010; 5 Chik, Xu (bb0045) 2004; 43 Habazaki, Shimizu, Skeldon, Thompson, Wood, Zhou (bb0255) 1997; 75 Zhang, Zhao, Li, Hou (bb0300) 2016; 6 Shimizu, Nagayanagi, Ishida, Sakata, Oku, Sakaue, Takahagi, Shingubara (bb0050) 2006; 9 Wang, Tran, Vo, Sakurai, Kameyama (bb0060) 2008; 350 Zhang, Jiang, Zhu, Qi, Ding (bb0180) 2011; 258 Sander, Cote, Gu, Kile, Tripp (bb0030) 2004; 16 Lee, Ji, Gösele, Nielsch (bb0085) 2006; 5 Crossland, Thompson, Smith, Habazaki, Shimizu, Skeldon (bb0345) 1999; 41 Shimizu, Kobayashi (bb0350) 1995; 46 Masuda, Yada, Osaka (bb0100) 1998; 37 Sulka, Parkola (bb0200) 2006; 515 Zhang, Jiang, Zhu, Qi, Ding (bb0290) 2011; 258 Jessensky, Müller, Gösele (bb0220) 1998; 72 Wang (10.1016/j.surfcoat.2019.124970_bb0060) 2008; 350 Erdogan (10.1016/j.surfcoat.2019.124970_bb0310) 2012; 258 Masuda (10.1016/j.surfcoat.2019.124970_bb0115) 1995; 268 Yu (10.1016/j.surfcoat.2019.124970_bb0135) 2007; 201 O’Sullivan (10.1016/j.surfcoat.2019.124970_bb0320) 1970; 317 Sun (10.1016/j.surfcoat.2019.124970_bb0095) 2010; 2 Vojkuvka (10.1016/j.surfcoat.2019.124970_bb0195) 2008; 44 Sander (10.1016/j.surfcoat.2019.124970_bb0030) 2004; 16 Cao (10.1016/j.surfcoat.2019.124970_bb0035) 2006; 7 Zhao (10.1016/j.surfcoat.2019.124970_bb0315) 2007; 42 Sulka (10.1016/j.surfcoat.2019.124970_bb0205) 2008; Ch. 1 Voon (10.1016/j.surfcoat.2019.124970_bb0260) 2012; 2012 Lee (10.1016/j.surfcoat.2019.124970_bb0110) 2010; 20 Habazaki (10.1016/j.surfcoat.2019.124970_bb0255) 1997; 75 Chung (10.1016/j.surfcoat.2019.124970_bb0275) 2017; 190 Voon (10.1016/j.surfcoat.2019.124970_bb0265) 2013 Crossland (10.1016/j.surfcoat.2019.124970_bb0345) 1999; 41 Zhang (10.1016/j.surfcoat.2019.124970_bb0180) 2011; 258 Araoyinbo (10.1016/j.surfcoat.2019.124970_bb0305) 2010; 5 Jessensky (10.1016/j.surfcoat.2019.124970_bb0220) 1998; 72 Stepniowski (10.1016/j.surfcoat.2019.124970_bb0175) 2011; 206 Sulka (10.1016/j.surfcoat.2019.124970_bb0325) 2007; 52 Ganley (10.1016/j.surfcoat.2019.124970_bb0240) 2004; 227 Almasi Kashi (10.1016/j.surfcoat.2019.124970_bb0280) 2012; 174 Schwirn (10.1016/j.surfcoat.2019.124970_bb0075) 2008; 2 Suh (10.1016/j.surfcoat.2019.124970_bb0210) 1999; 75 Masuda (10.1016/j.surfcoat.2019.124970_bb0080) 1997; 144 Parkhutik (10.1016/j.surfcoat.2019.124970_bb0225) 1992 Michalska-Domanska (10.1016/j.surfcoat.2019.124970_bb0150) 2013; 105 Montero-Moreno (10.1016/j.surfcoat.2019.124970_bb0125) 2007; 201 Lee (10.1016/j.surfcoat.2019.124970_bb0085) 2006; 5 Zhang (10.1016/j.surfcoat.2019.124970_bb0300) 2016; 6 Aerts (10.1016/j.surfcoat.2019.124970_bb0130) 2007; 201 Abd-Elnaiem (10.1016/j.surfcoat.2019.124970_bb0285) 2014; 570 Li (10.1016/j.surfcoat.2019.124970_bb0295) 2012; 20 Masuda (10.1016/j.surfcoat.2019.124970_bb0105) 2001; 13 Patermarakis (10.1016/j.surfcoat.2019.124970_bb0015) 1999; 187 Masuda (10.1016/j.surfcoat.2019.124970_bb0100) 1998; 37 Shimizu (10.1016/j.surfcoat.2019.124970_bb0350) 1995; 46 Sulka (10.1016/j.surfcoat.2019.124970_bb0200) 2006; 515 Xiao (10.1016/j.surfcoat.2019.124970_bb0330) 2002; 2 Lee (10.1016/j.surfcoat.2019.124970_bb0005) 2010; 62 Shimizu (10.1016/j.surfcoat.2019.124970_bb0165) 1997; 39 Shih (10.1016/j.surfcoat.2019.124970_bb0145) 2008; 202 Lahav (10.1016/j.surfcoat.2019.124970_bb0020) 2003; 42 Voon (10.1016/j.surfcoat.2019.124970_bb0270) 2014; 9 Fernandez-Romero (10.1016/j.surfcoat.2019.124970_bb0140) 2008; 111 Chik (10.1016/j.surfcoat.2019.124970_bb0045) 2004; 43 Stepniowski (10.1016/j.surfcoat.2019.124970_bb0090) 2011; 206 Lee (10.1016/j.surfcoat.2019.124970_bb0340) 2007; 18 Mei (10.1016/j.surfcoat.2019.124970_bb0335) 2005; 97 Wieβmeier (10.1016/j.surfcoat.2019.124970_bb0010) 1996; 6 Zaraska (10.1016/j.surfcoat.2019.124970_bb0120) 2010; 55 Liu (10.1016/j.surfcoat.2019.124970_bb0250) 2002; 44 Bruera (10.1016/j.surfcoat.2019.124970_bb0215) 2019; 9 Fratila-Apachitei (10.1016/j.surfcoat.2019.124970_bb0160) 2004; 49 Zhang (10.1016/j.surfcoat.2019.124970_bb0290) 2011; 258 Masuda (10.1016/j.surfcoat.2019.124970_bb0055) 2000; 12 Takahashi (10.1016/j.surfcoat.2019.124970_bb0185) 1978; 18 Sulka (10.1016/j.surfcoat.2019.124970_bb0170) 2009; 54 Fratila-Apachitei (10.1016/j.surfcoat.2019.124970_bb0230) 2002; 157 Fratila-Apachitei (10.1016/j.surfcoat.2019.124970_bb0155) 2004; 49 Shimizu (10.1016/j.surfcoat.2019.124970_bb0050) 2006; 9 Lee (10.1016/j.surfcoat.2019.124970_bb0040) 2005; 44 Ni (10.1016/j.surfcoat.2019.124970_bb0070) 2005; 44 Schneider (10.1016/j.surfcoat.2019.124970_bb0190) 2012; 9 Chung (10.1016/j.surfcoat.2019.124970_bb0235) 2011; 520 Chung (10.1016/j.surfcoat.2019.124970_bb0245) 2017; 125 Sanz (10.1016/j.surfcoat.2019.124970_bb0065) 2008; 78 Johansson (10.1016/j.surfcoat.2019.124970_bb0025) 2004; 96 |
| References_xml | – volume: 174 start-page: 69 year: 2012 end-page: 74 ident: bb0280 article-title: Capacitive humidity sensors based on large diameter porous alumina prepared by high current anodization publication-title: Sens. Actuators, A – volume: 6 start-page: 285 year: 1996 end-page: 289 ident: bb0010 article-title: Microfabricated components for heterogeneously catalysed reactions publication-title: J. Micromech. Microeng. – volume: 258 start-page: 586 year: 2011 end-page: 589 ident: bb0180 article-title: Ultrasond-assisted anodization of aluminium in oxalic acid publication-title: Appl. Surf. Sci. – volume: 202 start-page: 3298 year: 2008 end-page: 3305 ident: bb0145 article-title: Optical properties of anodic aluminum oxide films on Al1050 alloys publication-title: Surf. Coat. Technol. – volume: 206 start-page: 265 year: 2011 end-page: 272 ident: bb0090 article-title: Synthesis of AAO at relatively high temperatures. Study of the influence of anodizing conditions on the alumina structural features publication-title: Surf. Coat. Technol. – volume: 49 start-page: 1127 year: 2004 end-page: 1140 ident: bb0160 article-title: Influence of substrate microstructure on the growth of anodic oxide layers publication-title: Electrochim. Acta – volume: 125 start-page: 40 year: 2017 end-page: 47 ident: bb0245 article-title: Impurity and temperature enhanced growth behaviour of anodic aluminium oxide from AA5052 Al-Mg alloy using hybrid pulse anodization at room temperature publication-title: Corros. Sci. – start-page: 1258 year: 1992 end-page: 1263 ident: bb0225 article-title: Theoretical modelling of porous oxide growth on aluminium publication-title: J. Phys. D. Appl. Phys. – volume: 258 start-page: 586 year: 2011 end-page: 589 ident: bb0290 article-title: Ultrasound-assisted anodization of aluminum in oxalic acid publication-title: Appl. Surf. Sci. – volume: 43 start-page: 103 year: 2004 end-page: 138 ident: bb0045 article-title: Nanometric superlattices: non-lithographic fabrication, materials, and prospects publication-title: Mater. Sci. Eng. R – volume: 258 start-page: 4544 year: 2012 end-page: 4550 ident: bb0310 article-title: Effect of chemical etching on the morphology of anodic aluminum oxides in the two-step anodization process publication-title: Appl. Surf. Sci. – start-page: 40 year: 2013 end-page: 48 ident: bb0265 article-title: Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from Al-Mn alloys publication-title: J. Nanomater. – volume: 42 start-page: 5576 year: 2003 end-page: 5579 ident: bb0020 article-title: Nanoparticle nanotubes publication-title: Angew. Chem. Int. Ed. – volume: 18 year: 2007 ident: bb0340 article-title: Self-ordering behaviour of nanoporous anodic aluminium oxide (AAO) in malonic acid anodization publication-title: Nanotechnology – volume: 20 start-page: 21272 year: 2012 end-page: 21277 ident: bb0295 article-title: Aluminum oxide nanostructure-based substrates for fluorescence enhancement publication-title: Opt. Express – volume: 9 start-page: 115 year: 2019 ident: bb0215 article-title: Synthesis and morphological characterization of nanoporous aluminium oxide films by using a single anodization step publication-title: Coatings – volume: 72 start-page: 1173 year: 1998 end-page: 1175 ident: bb0220 article-title: Self-organized formation of hexagonal pore arrays in anodic alumina publication-title: Appl. Phys. Lett. – volume: 42 start-page: 3878 year: 2007 end-page: 3882 ident: bb0315 article-title: Effects of anodizing conditions on anodic alumina structure publication-title: J. Mater. Sci. – volume: 570 start-page: 49 year: 2014 end-page: 56 ident: bb0285 article-title: Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage publication-title: Thin Solid Films – volume: 97 year: 2005 ident: bb0335 article-title: Formation mechanism of alumina nanotubes and nanowires from highly ordered porous anodic alumina template publication-title: J. Appl. Phys. – volume: 105 start-page: 424 year: 2013 end-page: 432 ident: bb0150 article-title: Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum–a comparative study with the AAO produced on high purity aluminum publication-title: Electrochim. Acta – volume: 5 start-page: 741 year: 2006 end-page: 747 ident: bb0085 article-title: Fast fabrication of long-range ordered porous alumina membranes by hard anodization publication-title: Nat. Mater. – volume: 12 start-page: 1031 year: 2000 end-page: 1033 ident: bb0055 article-title: Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaporation mask publication-title: Adv. Mater. – volume: 111 start-page: 542 year: 2008 end-page: 547 ident: bb0140 article-title: Assessment of the thermal stability of anodic alumina membranes at high temperatures publication-title: Mater. Chem. Phys. – volume: 201 start-page: 7259 year: 2007 end-page: 7265 ident: bb0135 article-title: Pore-size dependence of AAO films on surface roughness of Al-1050 sheets controlled by electropolishing coupled with fractional factorial design publication-title: Surf. Coat. Technol. – volume: 18 start-page: 911 year: 1978 end-page: 925 ident: bb0185 article-title: The determination of the porosity of anodic oxide films on aluminium by the pore-filling method publication-title: Coros. Sci. – volume: 20 start-page: 21 year: 2010 end-page: 27 ident: bb0110 article-title: Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions publication-title: Adv. Funct. Mater. – volume: 96 start-page: 5189 year: 2004 end-page: 5194 ident: bb0025 article-title: Deposition of palladium nanoparticles on the pore walls of anodic alumina using sequential electroless deposition publication-title: J. Appl. Phys. – volume: 2 start-page: 1299 year: 2010 end-page: 1302 ident: bb0095 article-title: Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm publication-title: ACS Appl. Mater. Interfaces – volume: Ch. 1 year: 2008 ident: bb0205 article-title: Highly ordered anodic porous alumina formation by self-organised anodizing publication-title: Nanostructured Materials in Electrochemistry – volume: 9 start-page: 106 year: 2014 end-page: 112 ident: bb0270 article-title: A simple one-step anodising method for the synthesis of ordered porous anodic alumina publication-title: J. Exp. Nanosci. – volume: 78 start-page: 166 year: 2008 end-page: 175 ident: bb0065 article-title: Washcoating of Pt-ZSM5 onto aluminium foams publication-title: Appl. Catal., B – volume: 39 start-page: 281 year: 1997 end-page: 284 ident: bb0165 article-title: The influence of ‘θ’ precipitates on the anodizing behaviour of binary Al-Cu alloys publication-title: Corros. Sci. – volume: 2012 start-page: 1 year: 2012 end-page: 9 ident: bb0260 article-title: Effect of manganese content on the fabrication of porous anodic alumina publication-title: J. Nanomater. – volume: 9 start-page: J13 year: 2006 end-page: J16 ident: bb0050 article-title: Epitaxial growth of Cu nanodot arrays using an AAO template on a Si substrate publication-title: Electrochem. Solid State Lett. – volume: 6 start-page: 35455 year: 2016 end-page: 35465 ident: bb0300 article-title: Fabrication of durable anticorrosion superhydrophobic surfaces on aluminium substrates via a facile one-step electrodeposition approach publication-title: RSC Adv. – volume: 187 start-page: 311 year: 1999 end-page: 320 ident: bb0015 article-title: Catalysis over porous anodic alumina film catalysts with different pore surface concentrations publication-title: J. Catal. – volume: 49 start-page: 3169 year: 2004 end-page: 3177 ident: bb0155 article-title: A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys publication-title: Electrochim. Acta – volume: 75 start-page: 18 year: 1997 end-page: 23 ident: bb0255 article-title: Effects of alloying elements in anodizing of aluminium publication-title: Trans. Int. Met. Finish. – volume: 52 start-page: 1880 year: 2007 end-page: 1888 ident: bb0325 article-title: Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid publication-title: Electrochim. Acta – volume: 62 start-page: 57 year: 2010 end-page: 63 ident: bb0005 article-title: The anodization of aluminum for nanotechnology applications publication-title: JOM – volume: 54 start-page: 3683 year: 2009 end-page: 3691 ident: bb0170 article-title: Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures publication-title: Electrochim. Acta – volume: 268 start-page: 1466 year: 1995 end-page: 1468 ident: bb0115 article-title: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina publication-title: Science – volume: 2 start-page: 1293 year: 2002 end-page: 1297 ident: bb0330 article-title: Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes publication-title: Nano Lett. – volume: 55 start-page: 4377 year: 2010 end-page: 4386 ident: bb0120 article-title: Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum publication-title: Electrochim. Acta – volume: 201 start-page: 6352 year: 2007 end-page: 6357 ident: bb0125 article-title: Influence of the aluminum surface on the final results of a two-step anodizing publication-title: Surf. Coat. Technol. – volume: 144 start-page: L127 year: 1997 end-page: L130 ident: bb0080 article-title: Self-ordering of cell arrangement of anodic porous alumina formed in sulphuric acid solution publication-title: J. Electrochem. Soc. – volume: 7 start-page: 1500 year: 2006 end-page: 1504 ident: bb0035 article-title: Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays publication-title: ChemPhysChem – volume: 5 start-page: 53 year: 2010 end-page: 58 ident: bb0305 article-title: Voltage effect on electrochemical anodization of aluminum at ambient temperature publication-title: Int. J. Mech. Mat. Eng. – volume: 41 start-page: 2053 year: 1999 end-page: 2069 ident: bb0345 article-title: Formation of manganese-rich layers during anodizing of Al-Mn alloys publication-title: Corros. Sci. – volume: 317 start-page: 511 year: 1970 end-page: 543 ident: bb0320 article-title: The morphology and mechanism of formation of porous anodic films on aluminium publication-title: Proc. R. Soc., A – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bb0190 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 350 start-page: 150 year: 2008 end-page: 156 ident: bb0060 article-title: Design of novel Pt-structured catalyst on anodic aluminum support for VOC’s catalytic combustion publication-title: Appl. Catal., A – volume: 515 start-page: 338 year: 2006 end-page: 345 ident: bb0200 article-title: Anodising potential influence on well-ordered nanostructures formed by anodisation of aluminium in sulphuric acid publication-title: Thin Solid Films – volume: 2 start-page: 302 year: 2008 end-page: 310 ident: bb0075 article-title: Self-ordered anodic aluminum oxide formed by H publication-title: ACS Nano – volume: 37 start-page: L1340 year: 1998 end-page: L1342 ident: bb0100 article-title: Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution publication-title: Jpn. J. Appl. Phys. – volume: 44 start-page: 577 year: 2008 end-page: 582 ident: bb0195 article-title: Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization publication-title: Superlattice. Microst. – volume: 201 start-page: 7310 year: 2007 end-page: 7317 ident: bb0130 article-title: Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film publication-title: Surf. Coat. Technol. – volume: 227 start-page: 26 year: 2004 end-page: 32 ident: bb0240 article-title: Porous anodic alumina optimized as a catalyst support for microreactors publication-title: J. Catal. – volume: 44 start-page: 1133 year: 2002 end-page: 1142 ident: bb0250 article-title: Anodic film growth on an Al–21at.%Mg alloy publication-title: Corros. Sci. – volume: 75 start-page: 2047 year: 1999 end-page: 2049 ident: bb0210 article-title: Highly ordered two-dimensional carbon nanotube arrays publication-title: Appl. Phys. Lett. – volume: 46 start-page: 402 year: 1995 end-page: 409 ident: bb0350 article-title: Anodic oxide growth on valve metals-future prospects publication-title: J. Surf. Finish. Soc. – volume: 206 start-page: 1416 year: 2011 end-page: 1422 ident: bb0175 article-title: First step of anodization influences the final nanopore arrangement in anodized alumina publication-title: Surf. Coat. Technol. – volume: 157 start-page: 80 year: 2002 end-page: 94 ident: bb0230 article-title: Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H publication-title: Surf. Coat. Technol. – volume: 190 start-page: 157 year: 2017 end-page: 160 ident: bb0275 article-title: Photoluminescence enhancement of nanoporous alumina using one-step anodization of high- and low-purity aluminum at room temperature publication-title: Mater. Lett. – volume: 13 start-page: 189 year: 2001 end-page: 192 ident: bb0105 article-title: Square and triangular nanohole array architectures in anodic alumina publication-title: Adv. Mater. – volume: 16 start-page: 2052 year: 2004 end-page: 2057 ident: bb0030 article-title: Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates publication-title: Adv. Mater. – volume: 44 start-page: 4267 year: 2005 end-page: 4271 ident: bb0070 article-title: Effects of microreactor geometry on performance: differences between posted reactors and channel reactors publication-title: Ind. Eng. Chem. Res. – volume: 44 start-page: 6050 year: 2005 end-page: 6054 ident: bb0040 article-title: A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes publication-title: Angew. Chem. Int. Ed. – volume: 520 start-page: 1554 year: 2011 end-page: 1558 ident: bb0235 article-title: Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization publication-title: Thin Solid Films – volume: 49 start-page: 3169 year: 2004 ident: 10.1016/j.surfcoat.2019.124970_bb0155 article-title: A transmission electron microscopy study of hard anodic oxide layers on AlSi(Cu) alloys publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.02.030 – volume: 2 start-page: 1293 issue: 11 year: 2002 ident: 10.1016/j.surfcoat.2019.124970_bb0330 article-title: Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes publication-title: Nano Lett. doi: 10.1021/nl025758q – volume: 201 start-page: 7310 year: 2007 ident: 10.1016/j.surfcoat.2019.124970_bb0130 article-title: Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2007.01.044 – volume: Ch. 1 year: 2008 ident: 10.1016/j.surfcoat.2019.124970_bb0205 article-title: Highly ordered anodic porous alumina formation by self-organised anodizing – volume: 44 start-page: 6050 year: 2005 ident: 10.1016/j.surfcoat.2019.124970_bb0040 article-title: A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200501341 – volume: 520 start-page: 1554 year: 2011 ident: 10.1016/j.surfcoat.2019.124970_bb0235 article-title: Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.08.053 – volume: 55 start-page: 4377 year: 2010 ident: 10.1016/j.surfcoat.2019.124970_bb0120 article-title: Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.12.054 – volume: 75 start-page: 2047 year: 1999 ident: 10.1016/j.surfcoat.2019.124970_bb0210 article-title: Highly ordered two-dimensional carbon nanotube arrays publication-title: Appl. Phys. Lett. doi: 10.1063/1.124911 – volume: 258 start-page: 4544 year: 2012 ident: 10.1016/j.surfcoat.2019.124970_bb0310 article-title: Effect of chemical etching on the morphology of anodic aluminum oxides in the two-step anodization process publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.01.025 – volume: 2 start-page: 1299 issue: 5 year: 2010 ident: 10.1016/j.surfcoat.2019.124970_bb0095 article-title: Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am1001713 – volume: 20 start-page: 21272 year: 2012 ident: 10.1016/j.surfcoat.2019.124970_bb0295 article-title: Aluminum oxide nanostructure-based substrates for fluorescence enhancement publication-title: Opt. Express doi: 10.1364/OE.20.021272 – volume: 12 start-page: 1031 year: 2000 ident: 10.1016/j.surfcoat.2019.124970_bb0055 article-title: Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaporation mask publication-title: Adv. Mater. doi: 10.1002/1521-4095(200007)12:14<1031::AID-ADMA1031>3.0.CO;2-R – volume: 144 start-page: L127 year: 1997 ident: 10.1016/j.surfcoat.2019.124970_bb0080 article-title: Self-ordering of cell arrangement of anodic porous alumina formed in sulphuric acid solution publication-title: J. Electrochem. Soc. doi: 10.1149/1.1837634 – volume: 62 start-page: 57 issue: 6 year: 2010 ident: 10.1016/j.surfcoat.2019.124970_bb0005 article-title: The anodization of aluminum for nanotechnology applications publication-title: JOM doi: 10.1007/s11837-010-0088-5 – volume: 570 start-page: 49 year: 2014 ident: 10.1016/j.surfcoat.2019.124970_bb0285 article-title: Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.08.046 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.surfcoat.2019.124970_bb0260 article-title: Effect of manganese content on the fabrication of porous anodic alumina publication-title: J. Nanomater. doi: 10.1155/2012/752926 – volume: 190 start-page: 157 year: 2017 ident: 10.1016/j.surfcoat.2019.124970_bb0275 article-title: Photoluminescence enhancement of nanoporous alumina using one-step anodization of high- and low-purity aluminum at room temperature publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.01.015 – volume: 201 start-page: 7259 year: 2007 ident: 10.1016/j.surfcoat.2019.124970_bb0135 article-title: Pore-size dependence of AAO films on surface roughness of Al-1050 sheets controlled by electropolishing coupled with fractional factorial design publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2007.01.033 – volume: 75 start-page: 18 year: 1997 ident: 10.1016/j.surfcoat.2019.124970_bb0255 article-title: Effects of alloying elements in anodizing of aluminium publication-title: Trans. Int. Met. Finish. doi: 10.1080/00202967.1997.11871137 – volume: 6 start-page: 285 year: 1996 ident: 10.1016/j.surfcoat.2019.124970_bb0010 article-title: Microfabricated components for heterogeneously catalysed reactions publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/6/2/012 – volume: 515 start-page: 338 year: 2006 ident: 10.1016/j.surfcoat.2019.124970_bb0200 article-title: Anodising potential influence on well-ordered nanostructures formed by anodisation of aluminium in sulphuric acid publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.12.094 – volume: 18 year: 2007 ident: 10.1016/j.surfcoat.2019.124970_bb0340 article-title: Self-ordering behaviour of nanoporous anodic aluminium oxide (AAO) in malonic acid anodization publication-title: Nanotechnology doi: 10.1088/0957-4484/18/47/475713 – volume: 9 start-page: 115 year: 2019 ident: 10.1016/j.surfcoat.2019.124970_bb0215 article-title: Synthesis and morphological characterization of nanoporous aluminium oxide films by using a single anodization step publication-title: Coatings doi: 10.3390/coatings9020115 – volume: 206 start-page: 265 year: 2011 ident: 10.1016/j.surfcoat.2019.124970_bb0090 article-title: Synthesis of AAO at relatively high temperatures. Study of the influence of anodizing conditions on the alumina structural features publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2011.07.020 – volume: 44 start-page: 4267 year: 2005 ident: 10.1016/j.surfcoat.2019.124970_bb0070 article-title: Effects of microreactor geometry on performance: differences between posted reactors and channel reactors publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie048956w – start-page: 1258 issue: D25 year: 1992 ident: 10.1016/j.surfcoat.2019.124970_bb0225 article-title: Theoretical modelling of porous oxide growth on aluminium publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/0022-3727/25/8/017 – volume: 20 start-page: 21 year: 2010 ident: 10.1016/j.surfcoat.2019.124970_bb0110 article-title: Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200901213 – volume: 125 start-page: 40 year: 2017 ident: 10.1016/j.surfcoat.2019.124970_bb0245 article-title: Impurity and temperature enhanced growth behaviour of anodic aluminium oxide from AA5052 Al-Mg alloy using hybrid pulse anodization at room temperature publication-title: Corros. Sci. doi: 10.1016/j.corsci.2017.05.027 – volume: 72 start-page: 1173 issue: 10 year: 1998 ident: 10.1016/j.surfcoat.2019.124970_bb0220 article-title: Self-organized formation of hexagonal pore arrays in anodic alumina publication-title: Appl. Phys. Lett. doi: 10.1063/1.121004 – volume: 54 start-page: 3683 year: 2009 ident: 10.1016/j.surfcoat.2019.124970_bb0170 article-title: Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.01.046 – volume: 43 start-page: 103 year: 2004 ident: 10.1016/j.surfcoat.2019.124970_bb0045 article-title: Nanometric superlattices: non-lithographic fabrication, materials, and prospects publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2003.12.001 – volume: 9 start-page: 106 year: 2014 ident: 10.1016/j.surfcoat.2019.124970_bb0270 article-title: A simple one-step anodising method for the synthesis of ordered porous anodic alumina publication-title: J. Exp. Nanosci. doi: 10.1080/17458080.2011.630151 – volume: 5 start-page: 53 year: 2010 ident: 10.1016/j.surfcoat.2019.124970_bb0305 article-title: Voltage effect on electrochemical anodization of aluminum at ambient temperature publication-title: Int. J. Mech. Mat. Eng. – volume: 7 start-page: 1500 year: 2006 ident: 10.1016/j.surfcoat.2019.124970_bb0035 article-title: Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays publication-title: ChemPhysChem doi: 10.1002/cphc.200500690 – volume: 2 start-page: 302 year: 2008 ident: 10.1016/j.surfcoat.2019.124970_bb0075 article-title: Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization publication-title: ACS Nano doi: 10.1021/nn7001322 – volume: 187 start-page: 311 issue: 2 year: 1999 ident: 10.1016/j.surfcoat.2019.124970_bb0015 article-title: Catalysis over porous anodic alumina film catalysts with different pore surface concentrations publication-title: J. Catal. doi: 10.1006/jcat.1999.2627 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.surfcoat.2019.124970_bb0190 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 44 start-page: 1133 year: 2002 ident: 10.1016/j.surfcoat.2019.124970_bb0250 article-title: Anodic film growth on an Al–21at.%Mg alloy publication-title: Corros. Sci. doi: 10.1016/S0010-938X(01)00115-9 – volume: 227 start-page: 26 year: 2004 ident: 10.1016/j.surfcoat.2019.124970_bb0240 article-title: Porous anodic alumina optimized as a catalyst support for microreactors publication-title: J. Catal. doi: 10.1016/j.jcat.2004.06.016 – volume: 268 start-page: 1466 issue: 5216 year: 1995 ident: 10.1016/j.surfcoat.2019.124970_bb0115 article-title: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina publication-title: Science doi: 10.1126/science.268.5216.1466 – volume: 111 start-page: 542 year: 2008 ident: 10.1016/j.surfcoat.2019.124970_bb0140 article-title: Assessment of the thermal stability of anodic alumina membranes at high temperatures publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.05.003 – volume: 42 start-page: 3878 year: 2007 ident: 10.1016/j.surfcoat.2019.124970_bb0315 article-title: Effects of anodizing conditions on anodic alumina structure publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-0410-3 – volume: 206 start-page: 1416 year: 2011 ident: 10.1016/j.surfcoat.2019.124970_bb0175 article-title: First step of anodization influences the final nanopore arrangement in anodized alumina publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2011.09.004 – volume: 174 start-page: 69 year: 2012 ident: 10.1016/j.surfcoat.2019.124970_bb0280 article-title: Capacitive humidity sensors based on large diameter porous alumina prepared by high current anodization publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2011.11.033 – volume: 42 start-page: 5576 year: 2003 ident: 10.1016/j.surfcoat.2019.124970_bb0020 article-title: Nanoparticle nanotubes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200352216 – volume: 18 start-page: 911 year: 1978 ident: 10.1016/j.surfcoat.2019.124970_bb0185 article-title: The determination of the porosity of anodic oxide films on aluminium by the pore-filling method publication-title: Coros. Sci. doi: 10.1016/0010-938X(78)90012-4 – volume: 258 start-page: 586 year: 2011 ident: 10.1016/j.surfcoat.2019.124970_bb0180 article-title: Ultrasond-assisted anodization of aluminium in oxalic acid publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.08.041 – volume: 258 start-page: 586 year: 2011 ident: 10.1016/j.surfcoat.2019.124970_bb0290 article-title: Ultrasound-assisted anodization of aluminum in oxalic acid publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.08.041 – volume: 39 start-page: 281 issue: 2 year: 1997 ident: 10.1016/j.surfcoat.2019.124970_bb0165 article-title: The influence of ‘θ’ precipitates on the anodizing behaviour of binary Al-Cu alloys publication-title: Corros. Sci. doi: 10.1016/S0010-938X(97)83347-1 – volume: 46 start-page: 402 year: 1995 ident: 10.1016/j.surfcoat.2019.124970_bb0350 article-title: Anodic oxide growth on valve metals-future prospects publication-title: J. Surf. Finish. Soc. doi: 10.4139/sfj.46.402 – volume: 37 start-page: L1340 year: 1998 ident: 10.1016/j.surfcoat.2019.124970_bb0100 article-title: Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.37.L1340 – volume: 78 start-page: 166 year: 2008 ident: 10.1016/j.surfcoat.2019.124970_bb0065 article-title: Washcoating of Pt-ZSM5 onto aluminium foams publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2007.09.024 – volume: 5 start-page: 741 year: 2006 ident: 10.1016/j.surfcoat.2019.124970_bb0085 article-title: Fast fabrication of long-range ordered porous alumina membranes by hard anodization publication-title: Nat. Mater. doi: 10.1038/nmat1717 – volume: 41 start-page: 2053 year: 1999 ident: 10.1016/j.surfcoat.2019.124970_bb0345 article-title: Formation of manganese-rich layers during anodizing of Al-Mn alloys publication-title: Corros. Sci. doi: 10.1016/S0010-938X(99)00025-6 – volume: 6 start-page: 35455 year: 2016 ident: 10.1016/j.surfcoat.2019.124970_bb0300 article-title: Fabrication of durable anticorrosion superhydrophobic surfaces on aluminium substrates via a facile one-step electrodeposition approach publication-title: RSC Adv. doi: 10.1039/C6RA05484F – volume: 16 start-page: 2052 year: 2004 ident: 10.1016/j.surfcoat.2019.124970_bb0030 article-title: Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates publication-title: Adv. Mater. doi: 10.1002/adma.200400446 – volume: 202 start-page: 3298 year: 2008 ident: 10.1016/j.surfcoat.2019.124970_bb0145 article-title: Optical properties of anodic aluminum oxide films on Al1050 alloys publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2007.12.002 – volume: 96 start-page: 5189 year: 2004 ident: 10.1016/j.surfcoat.2019.124970_bb0025 article-title: Deposition of palladium nanoparticles on the pore walls of anodic alumina using sequential electroless deposition publication-title: J. Appl. Phys. doi: 10.1063/1.1788843 – volume: 105 start-page: 424 year: 2013 ident: 10.1016/j.surfcoat.2019.124970_bb0150 article-title: Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum–a comparative study with the AAO produced on high purity aluminum publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.04.160 – volume: 49 start-page: 1127 year: 2004 ident: 10.1016/j.surfcoat.2019.124970_bb0160 article-title: Influence of substrate microstructure on the growth of anodic oxide layers publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2003.10.024 – volume: 317 start-page: 511 year: 1970 ident: 10.1016/j.surfcoat.2019.124970_bb0320 article-title: The morphology and mechanism of formation of porous anodic films on aluminium publication-title: Proc. R. Soc., A – volume: 97 year: 2005 ident: 10.1016/j.surfcoat.2019.124970_bb0335 article-title: Formation mechanism of alumina nanotubes and nanowires from highly ordered porous anodic alumina template publication-title: J. Appl. Phys. doi: 10.1063/1.1846137 – volume: 350 start-page: 150 year: 2008 ident: 10.1016/j.surfcoat.2019.124970_bb0060 article-title: Design of novel Pt-structured catalyst on anodic aluminum support for VOC’s catalytic combustion publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2008.07.033 – volume: 13 start-page: 189 year: 2001 ident: 10.1016/j.surfcoat.2019.124970_bb0105 article-title: Square and triangular nanohole array architectures in anodic alumina publication-title: Adv. Mater. doi: 10.1002/1521-4095(200102)13:3<189::AID-ADMA189>3.0.CO;2-Z – volume: 52 start-page: 1880 year: 2007 ident: 10.1016/j.surfcoat.2019.124970_bb0325 article-title: Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.07.053 – volume: 201 start-page: 6352 issue: 14 year: 2007 ident: 10.1016/j.surfcoat.2019.124970_bb0125 article-title: Influence of the aluminum surface on the final results of a two-step anodizing publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2006.12.003 – volume: 9 start-page: J13 year: 2006 ident: 10.1016/j.surfcoat.2019.124970_bb0050 article-title: Epitaxial growth of Cu nanodot arrays using an AAO template on a Si substrate publication-title: Electrochem. Solid State Lett. doi: 10.1149/1.2176891 – volume: 44 start-page: 577 year: 2008 ident: 10.1016/j.surfcoat.2019.124970_bb0195 article-title: Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2007.10.005 – start-page: 40 issue: 2013 year: 2013 ident: 10.1016/j.surfcoat.2019.124970_bb0265 article-title: Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from Al-Mn alloys publication-title: J. Nanomater. – volume: 157 start-page: 80 year: 2002 ident: 10.1016/j.surfcoat.2019.124970_bb0230 article-title: Voltage transients and morphology of AlSi(Cu) anodic oxide layers formed in H2SO4 at low temperature publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(02)00144-5 |
| SSID | ssj0001794 |
| Score | 2.4375222 |
| Snippet | A rapid two-step anodization process was developed to prepare semi-ordered nanoporous anodized aluminium oxide (AAO) layers using an inexpensive aluminium (Al)... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 124970 |
| SubjectTerms | Al6082 Aluminum base alloys Aluminum oxide Anodized aluminium oxide Anodizing Density Diameters Low purity aluminium Morphology Oxalic acid Porosity Temperature effects Thickness |
| Title | Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082) |
| URI | https://dx.doi.org/10.1016/j.surfcoat.2019.124970 https://www.proquest.com/docview/2333594817 |
| Volume | 378 |
| WOSCitedRecordID | wos000503100800042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3347 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001794 issn: 0257-8972 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FFAk4ICggCgXtgUqgyMXJ2lnvMZSEryhUIq1yc-39UJOmdnCcEPUf8K-Z3bWNgULhgBRZlq1J4p3n2fF45z2EnsU0op6iviM9eDbxfOU5zGewRz3hcriflCllHw_paBRMJuyw0fha9sKs5zRJgs2GLf6rq-EYOFu3zv6Du6svhQOwD06HLbgdtn_l-MNMWj5vmwlGSSqmF5BWRhCGpsl0dd5KN1MhdRej5ipuaXKqgll52VqZ0sE8_dJaGFm7mhWkor15F-bysngwK3tJMhVxaTDE0yg3OqD5LxX7D-nF6ersNF3bQm7VACFWehmIrWN_qprNXmlllgwAujZB8U29ONFmukvPNjLbilnVNXNci2sQJZyAWcWefWnjbkCZQ4gl3ywDM7HiPkVobV8a8G3tYQYzTab0NerFemxfK2pbPZIfGbZHH8PB0XAYjvuT8R4ZLD47Wn5Mv6bfI68tFK6hrQ71WdBEW713_cn7alrXkcsU7Ip_X2s3v_znf5fp_DTnm0RmfAfdLp5AcM8i5y5qyGQb3Tgohf-20a0aR-U9dFLDE04VLvGEK2Rggycc5VjjCdfxhA2eMOAJWzzVrJ5bNL24j44G_fHBW6eQ5XA48dzc0QT-iiot5hgZGllfuAQ-QexFUacrOZGi046l4ITETHHZ5nGnLV2plAvZOCEPUDNJE_kQYRbHKqaeK3gkPeoGERVaCYYHsYi7vujsIL8cwpAXnPVaOmUelosTZ2E59KEe-tAO_Q56WdktLGvLlRas9FBY5J42pwwBaVfa7pYuDYtAsAzhOomhQqKP_nz6Mbr5_c7ZRc08W8kn6Dpf59Nl9rRA4TfnNrAj |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+anodized+aluminium+oxide+at+high+temperatures+using+low+purity+aluminium+%28Al6082%29&rft.jtitle=Surface+%26+coatings+technology&rft.au=Kozhukhova%2C+AE&rft.au=du+Preez%2C+SP&rft.au=Bessarabov%2C+DG&rft.date=2019-11-25&rft.pub=Elsevier+BV&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=378&rft.spage=1&rft_id=info:doi/10.1016%2Fj.surfcoat.2019.124970&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |