Resolvent sampling based Rayleigh–Ritz method for large-scale nonlinear eigenvalue problems
A new algorithm, denoted by RSRR, is presented for solving large-scale nonlinear eigenvalue problems (NEPs) with a focus on improving the robustness and reliability of the solution, which is a challenging task in computational science and engineering. The proposed algorithm utilizes the Rayleigh–Rit...
Saved in:
| Published in: | Computer methods in applied mechanics and engineering Vol. 310; pp. 33 - 57 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2016
|
| Subjects: | |
| ISSN: | 0045-7825, 1879-2138 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A new algorithm, denoted by RSRR, is presented for solving large-scale nonlinear eigenvalue problems (NEPs) with a focus on improving the robustness and reliability of the solution, which is a challenging task in computational science and engineering. The proposed algorithm utilizes the Rayleigh–Ritz procedure to compute all eigenvalues and the corresponding eigenvectors lying within a given contour in the complex plane. The main novelties are the following. First and foremost, the approximate eigenspace is constructed by using the values of the resolvent at a series of sampling points on the contour, which effectively circumvents the unreliability of previous schemes that using high-order contour moments of the resolvent. Secondly, an improved Sakurai–Sugiura algorithm is proposed to solve the projected NEPs with enhancements on reliability and accuracy. The user-defined probing matrix in the original algorithm is avoided and the number of eigenvalues is determined automatically by the provided strategies. Finally, by approximating the projected matrices with the Chebyshev interpolation technique, RSRR is further extended to solve NEPs in the boundary element method, which is typically difficult due to the densely populated matrices and high computational costs. The good performance of RSRR is demonstrated by a variety of benchmark examples and large-scale practical applications, with the degrees of freedom ranging from several hundred up to around one million. The algorithm is suitable for parallelization and easy to implement in conjunction with other programs and software. |
|---|---|
| AbstractList | A new algorithm, denoted by RSRR, is presented for solving large-scale nonlinear eigenvalue problems (NEPs) with a focus on improving the robustness and reliability of the solution, which is a challenging task in computational science and engineering. The proposed algorithm utilizes the Rayleigh–Ritz procedure to compute all eigenvalues and the corresponding eigenvectors lying within a given contour in the complex plane. The main novelties are the following. First and foremost, the approximate eigenspace is constructed by using the values of the resolvent at a series of sampling points on the contour, which effectively circumvents the unreliability of previous schemes that using high-order contour moments of the resolvent. Secondly, an improved Sakurai–Sugiura algorithm is proposed to solve the projected NEPs with enhancements on reliability and accuracy. The user-defined probing matrix in the original algorithm is avoided and the number of eigenvalues is determined automatically by the provided strategies. Finally, by approximating the projected matrices with the Chebyshev interpolation technique, RSRR is further extended to solve NEPs in the boundary element method, which is typically difficult due to the densely populated matrices and high computational costs. The good performance of RSRR is demonstrated by a variety of benchmark examples and large-scale practical applications, with the degrees of freedom ranging from several hundred up to around one million. The algorithm is suitable for parallelization and easy to implement in conjunction with other programs and software. |
| Author | Zhang, Chuanzeng Xiao, Jinyou Zheng, Changjun Meng, Shuangshuang |
| Author_xml | – sequence: 1 givenname: Jinyou surname: Xiao fullname: Xiao, Jinyou email: xiaojy@nwpu.edu.cn organization: School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 2 givenname: Shuangshuang surname: Meng fullname: Meng, Shuangshuang organization: School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China – sequence: 3 givenname: Chuanzeng surname: Zhang fullname: Zhang, Chuanzeng email: c.zhang@uni-siegen.de organization: Department of Civil Engineering, University of Siegen, D-57068 Siegen, Germany – sequence: 4 givenname: Changjun surname: Zheng fullname: Zheng, Changjun email: cjzheng@hfut.edu.cn organization: Institute of Sound and Vibration Research, Hefei University of Technology, Hefei, 230009, China |
| BookMark | eNp9kM1KAzEQx4NUsK0-gLe8wNYk-5EsnqT4BQWh6FFCNpltU7KbkqyFevIdfEOfxJR68tDhDzMM8xtm_hM06n0PCF1TMqOEVjebme7UjKVyRpKoOENjKnidMZqLERoTUpQZF6y8QJMYNySFoGyM3pcQvdtBP-Couq2z_Qo3KoLBS7V3YFfrn6_vpR0-cQfD2hvc-oCdCivIolYOcLojQaACTsPQ75T7ALwNvnHQxUt03ioX4eovT9Hbw_3r_ClbvDw-z-8Wmc4LMmRVy3LgbVVpw1ldFo2BmvOq1sawGkjDUyOvmspQpllbEK5NbsqCi4IowXmeTxE_7tXBxxigldoOarC-H4KyTlIiDy7JjUwuyYNLkiRRkUj6j9wG26mwP8ncHhlIL-0sBBm1hV6DsQH0II23J-hflBaEyQ |
| CitedBy_id | crossref_primary_10_1016_j_cma_2019_112755 crossref_primary_10_1002_nme_6205 crossref_primary_10_1007_s00791_018_00302_w crossref_primary_10_1051_jnwpu_20193710028 crossref_primary_10_1002_nme_6701 crossref_primary_10_1016_j_ymssp_2017_05_018 crossref_primary_10_1016_j_enganabound_2025_106162 crossref_primary_10_1016_j_jcp_2018_01_018 crossref_primary_10_1007_s00466_016_1353_4 crossref_primary_10_1016_j_enganabound_2018_05_005 crossref_primary_10_1016_j_enganabound_2024_105828 crossref_primary_10_1016_j_cma_2018_09_038 crossref_primary_10_1016_j_cma_2020_113532 crossref_primary_10_1016_j_compstruc_2021_106571 crossref_primary_10_1002_nme_5441 crossref_primary_10_1016_j_compstruc_2024_107456 crossref_primary_10_1016_j_ymssp_2023_110982 crossref_primary_10_3390_app9081642 crossref_primary_10_1002_nme_5351 crossref_primary_10_1002_nme_7453 |
| Cites_doi | 10.1137/120885644 10.1002/gamm.201490007 10.1016/j.laa.2005.03.034 10.1016/0045-7949(95)00012-6 10.1016/j.enganabound.2013.03.015 10.1016/j.future.2003.07.003 10.1016/0045-7825(89)90078-9 10.1016/j.enganabound.2012.09.007 10.1016/j.compstruc.2013.11.009 10.1016/j.laa.2009.03.024 10.1137/0722055 10.1016/S0045-7949(00)00151-6 10.1016/j.cma.2014.09.037 10.1016/S0045-7825(00)00187-0 10.1002/nme.1620360210 10.1016/j.compstruc.2006.08.088 10.1007/s00211-009-0259-x 10.1137/S0036144500381988 10.1016/j.enganabound.2015.04.014 10.1145/2427023.2427024 10.1016/j.laa.2011.03.030 10.1016/0965-9978(95)00125-5 10.1137/140976698 10.1137/100801986 10.1002/pamm.201210305 10.1137/050628362 10.1137/130935045 10.1016/j.enganabound.2014.07.006 10.1137/13093755x 10.1023/B:BITN.0000039424.56697.8b 10.1016/j.cma.2006.01.006 10.1007/s10543-012-0381-5 10.1137/120877556 10.1016/S0377-0427(03)00565-X 10.1016/j.jsv.2009.04.008 10.1103/PhysRevB.79.115112 10.1016/j.cma.2009.09.015 10.1002/nla.1913 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cma.2016.06.018 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2138 |
| EndPage | 57 |
| ExternalDocumentID | 10_1016_j_cma_2016_06_018 S0045782516305904 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c340t-6f23e7f66cd72954bde97769cdd29e0b7bde36b6d12c2f407cd3d547840a87733 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384859400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Sat Nov 29 07:28:15 EST 2025 Tue Nov 18 21:16:45 EST 2025 Fri Feb 23 02:24:25 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Finite element method Rayleigh–Ritz procedure Nonlinear eigenvalue problems Boundary element method |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-6f23e7f66cd72954bde97769cdd29e0b7bde36b6d12c2f407cd3d547840a87733 |
| OpenAccessLink | https://doi.org/10.1016/j.cma.2016.06.018 |
| PageCount | 25 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cma_2016_06_018 crossref_primary_10_1016_j_cma_2016_06_018 elsevier_sciencedirect_doi_10_1016_j_cma_2016_06_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-01 2016-10-00 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | van Opstal, van Brummelen, van Zwieten (br000025) 2015; 284 Ali, Rajakumar, Yunus (br000070) 1995; 56 Sakurai, Sugiura (br000165) 2003; 159 Kressner (br000110) 2009; 114 Steinbach, Unger (br000075) 2012; 50 Li, Hu, Wang (br000225) 2014; 133 Bilasse, Charpentier, Koutsawa (br000205) 2009; 198 Solovëv (br000050) 2006; 415 Voss (br000105) 2007; 85 Neumaier (br000125) 1985; 22 Effenberger, Kressner, Steinbach, Unger (br000090) 2012; 12 Kimeswenger, Steinbach, Unger (br000030) 2014; 52 Kressner, Roman (br000140) 2014; 21 Daya, Potier-Ferry (br000035) 2001; 79 Adhikari, Pascual (br000045) 2009; 325 Mehrmann, Voss (br000095) 2004; 27 Van~Beeumen, Meerbergen, Michiels (br000120) 2013; 35 Güttel, Van~Beeumen, Meerbergen, Michiels (br000145) 2014; 36 Cao, Wen, Xiao, Liu (br000160) 2015; 50 Conca, Planchard, Vanninathan (br000055) 1989; 77 Effenberger (br000015) 2013 Polizzi (br000170) 2009; 79 Sakurai, Tadano (br000195) 2007; 36 Kamiya, Andoh, Nogae (br000135) 1996; 26 Van~Beeumen, Meerbergen, Michiels (br000150) 2015; 36 Van~Beeumen (br000020) 2015 Effenberger, Kressner (br000080) 2012; 52 Mackey, Mackey, Mehl, Mehrmann (br000155) 2006; 28 Effenberger (br000085) 2013; 34 Voss (br000100) 2004; 44 Mehrmann, Schröder (br000010) 2011; 1 Botchev, Sleijpen, Sopaheluwakan (br000060) 2009; 431 Feriani, Perotti, Simoncini (br000220) 2000; 190 Beyn (br000115) 2012; 436 Tisseur, Meerbergen (br000005) 2001; 43 Kirkup, Amini (br000065) 1993; 36 Yokota, Sakurai (br000200) 2013; 5 Betcke, Higham, Mehrmann, Schröder, Tisseur (br000215) 2013; 39 Leblanc, Lavie (br000185) 2013; 37 Cortés, Elejabarrieta (br000040) 2006; 195 Gao, Matsumoto, Takahashi, Isakari (br000180) 2013; 37 Zheng, Chen, Gao, Du (br000190) 2015; 59 Asakura, Sakurai, Tadano, Ikegami, Kimura (br000210) 2009; 1 Sakurai, Asakura, Tadano, Ikegami (br000175) 2009; 1 Betcke, Voss (br000130) 2004; 20 Kimeswenger (10.1016/j.cma.2016.06.018_br000030) 2014; 52 Botchev (10.1016/j.cma.2016.06.018_br000060) 2009; 431 Solovëv (10.1016/j.cma.2016.06.018_br000050) 2006; 415 Van~Beeumen (10.1016/j.cma.2016.06.018_br000150) 2015; 36 Yokota (10.1016/j.cma.2016.06.018_br000200) 2013; 5 Feriani (10.1016/j.cma.2016.06.018_br000220) 2000; 190 Beyn (10.1016/j.cma.2016.06.018_br000115) 2012; 436 Asakura (10.1016/j.cma.2016.06.018_br000210) 2009; 1 Ali (10.1016/j.cma.2016.06.018_br000070) 1995; 56 Kirkup (10.1016/j.cma.2016.06.018_br000065) 1993; 36 Cao (10.1016/j.cma.2016.06.018_br000160) 2015; 50 Mehrmann (10.1016/j.cma.2016.06.018_br000095) 2004; 27 Polizzi (10.1016/j.cma.2016.06.018_br000170) 2009; 79 Sakurai (10.1016/j.cma.2016.06.018_br000195) 2007; 36 Daya (10.1016/j.cma.2016.06.018_br000035) 2001; 79 Effenberger (10.1016/j.cma.2016.06.018_br000015) 2013 Van~Beeumen (10.1016/j.cma.2016.06.018_br000020) 2015 Effenberger (10.1016/j.cma.2016.06.018_br000085) 2013; 34 Betcke (10.1016/j.cma.2016.06.018_br000130) 2004; 20 Van~Beeumen (10.1016/j.cma.2016.06.018_br000120) 2013; 35 Voss (10.1016/j.cma.2016.06.018_br000100) 2004; 44 Effenberger (10.1016/j.cma.2016.06.018_br000090) 2012; 12 Sakurai (10.1016/j.cma.2016.06.018_br000175) 2009; 1 Neumaier (10.1016/j.cma.2016.06.018_br000125) 1985; 22 Mehrmann (10.1016/j.cma.2016.06.018_br000010) 2011; 1 Zheng (10.1016/j.cma.2016.06.018_br000190) 2015; 59 Steinbach (10.1016/j.cma.2016.06.018_br000075) 2012; 50 Gao (10.1016/j.cma.2016.06.018_br000180) 2013; 37 Güttel (10.1016/j.cma.2016.06.018_br000145) 2014; 36 Betcke (10.1016/j.cma.2016.06.018_br000215) 2013; 39 Cortés (10.1016/j.cma.2016.06.018_br000040) 2006; 195 Voss (10.1016/j.cma.2016.06.018_br000105) 2007; 85 Tisseur (10.1016/j.cma.2016.06.018_br000005) 2001; 43 Kressner (10.1016/j.cma.2016.06.018_br000110) 2009; 114 Bilasse (10.1016/j.cma.2016.06.018_br000205) 2009; 198 van Opstal (10.1016/j.cma.2016.06.018_br000025) 2015; 284 Conca (10.1016/j.cma.2016.06.018_br000055) 1989; 77 Adhikari (10.1016/j.cma.2016.06.018_br000045) 2009; 325 Sakurai (10.1016/j.cma.2016.06.018_br000165) 2003; 159 Mackey (10.1016/j.cma.2016.06.018_br000155) 2006; 28 Effenberger (10.1016/j.cma.2016.06.018_br000080) 2012; 52 Li (10.1016/j.cma.2016.06.018_br000225) 2014; 133 Leblanc (10.1016/j.cma.2016.06.018_br000185) 2013; 37 Kressner (10.1016/j.cma.2016.06.018_br000140) 2014; 21 Kamiya (10.1016/j.cma.2016.06.018_br000135) 1996; 26 |
| References_xml | – volume: 77 start-page: 253 year: 1989 end-page: 291 ident: br000055 article-title: Existence and location of eigenvalues for fluid-solid structures publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 52 start-page: 933 year: 2012 end-page: 951 ident: br000080 article-title: Chebyshev interpolation for nonlinear eigenvalue problems publication-title: BIT – volume: 26 start-page: 219 year: 1996 end-page: 227 ident: br000135 article-title: A new complex-valued formulation and eigenvalue analysis of the Helmholtz equation by boundary element method publication-title: Adv. Eng. Softw. – volume: 50 start-page: 47 year: 2015 end-page: 58 ident: br000160 article-title: A fast directional BEM for large-scale acoustic problems based on the Burton–Miller formulation publication-title: Eng. Anal. Bound. Elem. – volume: 159 start-page: 119 year: 2003 end-page: 128 ident: br000165 article-title: A projection method for generalized eigenvalue problems using numerical integration publication-title: J. Comput. Appl. Math. – volume: 36 start-page: A2842 year: 2014 end-page: A2864 ident: br000145 article-title: NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalue problems publication-title: SIAM J. Sci. Comput. – volume: 79 year: 2009 ident: br000170 article-title: Density-matrix-based algorithm for solving eigenvalue problems publication-title: Phys. Rev. B – volume: 37 start-page: 914 year: 2013 end-page: 923 ident: br000180 article-title: Eigenvalue analysis for acoustic problem in 3D by boundary element method with the block Sakurai–Sugiura method publication-title: Eng. Anal. Bound. Elem. – volume: 190 start-page: 1719 year: 2000 end-page: 1739 ident: br000220 article-title: Iterative system solvers for the frequency analysis of linear mechanical systems publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 21 start-page: 569 year: 2014 end-page: 588 ident: br000140 article-title: Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis publication-title: Numer. Linear Algebra Appl. – volume: 114 start-page: 355 year: 2009 end-page: 372 ident: br000110 article-title: A block Newton method for nonlinear eigenvalue problems publication-title: Numer. Math. – volume: 436 start-page: 3839 year: 2012 end-page: 3863 ident: br000115 article-title: An integral method for solving nonlinear eigenvalue problems publication-title: Linear Algebra Appl. – volume: 1 start-page: 76 year: 2009 end-page: 79 ident: br000175 article-title: Error analysis for a matrix pencil of Hankel matrices with perturbed complex moments publication-title: J. SIAM Lett. – volume: 284 start-page: 637 year: 2015 end-page: 663 ident: br000025 article-title: A finite-element/boundary-element method for three-dimensional, large-displacement fluid–structure-interaction publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 36 start-page: 820 year: 2015 end-page: 838 ident: br000150 article-title: Compact rational Krylov methods for nonlinear eigenvalue problems publication-title: SIAM J. Matrix Anal. Appl. – volume: 133 start-page: 39 year: 2014 end-page: 50 ident: br000225 article-title: Harmonic response calculation of viscoelastic structures using classical normal modes: An iterative method publication-title: Comput. Struct. – volume: 198 start-page: 3999 year: 2009 end-page: 4004 ident: br000205 article-title: A generic approach for the solution of nonlinear residual equations. Part II: Homotopy and complex nonlinear eigenvalue method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 37 start-page: 162 year: 2013 end-page: 166 ident: br000185 article-title: Solving acoustic nonlinear eigenvalue problems with a contour integral method publication-title: Engineering Analysis with Boundary Elements – volume: 22 start-page: 914 year: 1985 end-page: 923 ident: br000125 article-title: Residual inverse iteration for the nonlinear eigenvalue problem publication-title: SIAM J. Numer. Anal. – volume: 52 start-page: 2400 year: 2014 end-page: 2414 ident: br000030 article-title: Coupled finite and boundary element methods for fluid-solid interaction eigenvalue problems publication-title: SIAM J. Numer. Anal. – volume: 12 start-page: 633 year: 2012 end-page: 634 ident: br000090 article-title: Interpolation-based solution of a nonlinear eigenvalue problem in fluid–structure interaction publication-title: PAMM – volume: 36 start-page: 745 year: 2007 end-page: 757 ident: br000195 article-title: CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems publication-title: Hokkaido Mathe. J. – volume: 28 start-page: 1029 year: 2006 end-page: 1051 ident: br000155 article-title: Structured polynomial eigenvalue problems: Good vibrations from good linearizations publication-title: SIAM J. Matrix Anal. Appl. – volume: 43 start-page: 235 year: 2001 end-page: 286 ident: br000005 article-title: The quadratic eigenvalue problem publication-title: SIAM Rev, – year: 2015 ident: br000020 article-title: Rational Krylov methods for nonlinear eigenvalue problems – volume: 34 start-page: 1231 year: 2013 end-page: 1256 ident: br000085 article-title: Robust successive computation of eigenpairs for nonlinear eigenvalue problems publication-title: SIAM J. Matrix Anal. Appl. – volume: 59 start-page: 43 year: 2015 end-page: 51 ident: br000190 article-title: Is the Burton–Miller formulation really free of fictitious eigenfrequencies? publication-title: Engineering Analysis with Boundary Elements – year: 2013 ident: br000015 article-title: Robust solution methods for nonlinear eigenvalue problems – volume: 5 start-page: 41 year: 2013 end-page: 44 ident: br000200 article-title: A projection method for nonlinear eigenvalue problems using contour integrals publication-title: J. SIAM Lett. – volume: 36 start-page: 321 year: 1993 end-page: 330 ident: br000065 article-title: Solution of the Helmholtz eigenvalue problem via the boundary element method publication-title: Internat. J. Numer. Methods Engrg. – volume: 50 start-page: 710 year: 2012 end-page: 728 ident: br000075 article-title: Convergence analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem publication-title: SIAM J. Numer. Anal. – volume: 195 start-page: 6448 year: 2006 end-page: 6462 ident: br000040 article-title: Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic damping treatments publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 85 start-page: 1284 year: 2007 end-page: 1292 ident: br000105 article-title: A Jacobi–Davidson method for nonlinear and nonsymmetric eigenproblems publication-title: Comput. Struct. – volume: 1 start-page: 52 year: 2009 end-page: 55 ident: br000210 article-title: A numerical method for nonlinear eigenvalue problems using contour integrals publication-title: J. SIAM Lett. – volume: 35 start-page: A327 year: 2013 end-page: A350 ident: br000120 article-title: A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems publication-title: SIAM J. Sci. Comput. – volume: 1 start-page: 1 year: 2011 end-page: 18 ident: br000010 article-title: Nonlinear eigenvalue and frequency response problems in industrial practice publication-title: J. Math. Ind. – volume: 20 start-page: 363 year: 2004 end-page: 372 ident: br000130 article-title: A Jacobi–Davidson-type projection method for nonlinear eigenvalue problems publication-title: Future Gener. Comput. Syst. – volume: 27 start-page: 121 year: 2004 end-page: 152 ident: br000095 article-title: Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods publication-title: GAMM-Mitt. – volume: 56 start-page: 837 year: 1995 end-page: 847 ident: br000070 article-title: Advances in acoustic eigenvalue analysis using boundary element method publication-title: Comput. Struct. – volume: 431 start-page: 427 year: 2009 end-page: 440 ident: br000060 article-title: An SVD-approach to Jacobi–Davidson solution of nonlinear Helmholtz eigenvalue problems publication-title: Linear Algebra Appl. – volume: 44 start-page: 387 year: 2004 end-page: 401 ident: br000100 article-title: An Arnoldi method for nonlinear eigenvalue problems publication-title: BIT – volume: 325 start-page: 1000 year: 2009 end-page: 1011 ident: br000045 article-title: Eigenvalues of linear viscoelastic systems publication-title: J. Sound Vib. – volume: 415 start-page: 210 year: 2006 end-page: 229 ident: br000050 article-title: Preconditioned iterative methods for a class of nonlinear eigenvalue problems publication-title: Linear Algebra Appl. – volume: 39 start-page: 7 year: 2013 ident: br000215 article-title: NLEVP: A collection of nonlinear eigenvalue problems publication-title: ACM Trans. Math. Software – volume: 79 start-page: 533 year: 2001 end-page: 541 ident: br000035 article-title: A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures publication-title: Comput. Struct. – volume: 34 start-page: 1231 issue: 3 year: 2013 ident: 10.1016/j.cma.2016.06.018_br000085 article-title: Robust successive computation of eigenpairs for nonlinear eigenvalue problems publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/120885644 – volume: 27 start-page: 121 issue: 2 year: 2004 ident: 10.1016/j.cma.2016.06.018_br000095 article-title: Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods publication-title: GAMM-Mitt. doi: 10.1002/gamm.201490007 – volume: 415 start-page: 210 issue: 1 year: 2006 ident: 10.1016/j.cma.2016.06.018_br000050 article-title: Preconditioned iterative methods for a class of nonlinear eigenvalue problems publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2005.03.034 – volume: 56 start-page: 837 issue: 5 year: 1995 ident: 10.1016/j.cma.2016.06.018_br000070 article-title: Advances in acoustic eigenvalue analysis using boundary element method publication-title: Comput. Struct. doi: 10.1016/0045-7949(95)00012-6 – volume: 37 start-page: 914 issue: 6 year: 2013 ident: 10.1016/j.cma.2016.06.018_br000180 article-title: Eigenvalue analysis for acoustic problem in 3D by boundary element method with the block Sakurai–Sugiura method publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2013.03.015 – volume: 20 start-page: 363 issue: 3 year: 2004 ident: 10.1016/j.cma.2016.06.018_br000130 article-title: A Jacobi–Davidson-type projection method for nonlinear eigenvalue problems publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2003.07.003 – volume: 77 start-page: 253 issue: 3 year: 1989 ident: 10.1016/j.cma.2016.06.018_br000055 article-title: Existence and location of eigenvalues for fluid-solid structures publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(89)90078-9 – year: 2015 ident: 10.1016/j.cma.2016.06.018_br000020 – volume: 37 start-page: 162 issue: 1 year: 2013 ident: 10.1016/j.cma.2016.06.018_br000185 article-title: Solving acoustic nonlinear eigenvalue problems with a contour integral method publication-title: Engineering Analysis with Boundary Elements doi: 10.1016/j.enganabound.2012.09.007 – volume: 133 start-page: 39 year: 2014 ident: 10.1016/j.cma.2016.06.018_br000225 article-title: Harmonic response calculation of viscoelastic structures using classical normal modes: An iterative method publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2013.11.009 – volume: 431 start-page: 427 issue: 3 year: 2009 ident: 10.1016/j.cma.2016.06.018_br000060 article-title: An SVD-approach to Jacobi–Davidson solution of nonlinear Helmholtz eigenvalue problems publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2009.03.024 – volume: 22 start-page: 914 issue: 5 year: 1985 ident: 10.1016/j.cma.2016.06.018_br000125 article-title: Residual inverse iteration for the nonlinear eigenvalue problem publication-title: SIAM J. Numer. Anal. doi: 10.1137/0722055 – volume: 79 start-page: 533 issue: 5 year: 2001 ident: 10.1016/j.cma.2016.06.018_br000035 article-title: A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures publication-title: Comput. Struct. doi: 10.1016/S0045-7949(00)00151-6 – volume: 1 start-page: 52 issue: 0 year: 2009 ident: 10.1016/j.cma.2016.06.018_br000210 article-title: A numerical method for nonlinear eigenvalue problems using contour integrals publication-title: J. SIAM Lett. – volume: 284 start-page: 637 year: 2015 ident: 10.1016/j.cma.2016.06.018_br000025 article-title: A finite-element/boundary-element method for three-dimensional, large-displacement fluid–structure-interaction publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2014.09.037 – volume: 190 start-page: 1719 issue: 13 year: 2000 ident: 10.1016/j.cma.2016.06.018_br000220 article-title: Iterative system solvers for the frequency analysis of linear mechanical systems publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(00)00187-0 – year: 2013 ident: 10.1016/j.cma.2016.06.018_br000015 – volume: 36 start-page: 321 issue: 2 year: 1993 ident: 10.1016/j.cma.2016.06.018_br000065 article-title: Solution of the Helmholtz eigenvalue problem via the boundary element method publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1620360210 – volume: 85 start-page: 1284 issue: 17 year: 2007 ident: 10.1016/j.cma.2016.06.018_br000105 article-title: A Jacobi–Davidson method for nonlinear and nonsymmetric eigenproblems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2006.08.088 – volume: 36 start-page: 745 issue: 4 year: 2007 ident: 10.1016/j.cma.2016.06.018_br000195 article-title: CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems publication-title: Hokkaido Mathe. J. – volume: 1 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.cma.2016.06.018_br000010 article-title: Nonlinear eigenvalue and frequency response problems in industrial practice publication-title: J. Math. Ind. – volume: 114 start-page: 355 issue: 2 year: 2009 ident: 10.1016/j.cma.2016.06.018_br000110 article-title: A block Newton method for nonlinear eigenvalue problems publication-title: Numer. Math. doi: 10.1007/s00211-009-0259-x – volume: 5 start-page: 41 issue: 0 year: 2013 ident: 10.1016/j.cma.2016.06.018_br000200 article-title: A projection method for nonlinear eigenvalue problems using contour integrals publication-title: J. SIAM Lett. – volume: 1 start-page: 76 issue: 0 year: 2009 ident: 10.1016/j.cma.2016.06.018_br000175 article-title: Error analysis for a matrix pencil of Hankel matrices with perturbed complex moments publication-title: J. SIAM Lett. – volume: 43 start-page: 235 issue: 2 year: 2001 ident: 10.1016/j.cma.2016.06.018_br000005 article-title: The quadratic eigenvalue problem publication-title: SIAM Rev, doi: 10.1137/S0036144500381988 – volume: 59 start-page: 43 year: 2015 ident: 10.1016/j.cma.2016.06.018_br000190 article-title: Is the Burton–Miller formulation really free of fictitious eigenfrequencies? publication-title: Engineering Analysis with Boundary Elements doi: 10.1016/j.enganabound.2015.04.014 – volume: 39 start-page: 7 issue: 2 year: 2013 ident: 10.1016/j.cma.2016.06.018_br000215 article-title: NLEVP: A collection of nonlinear eigenvalue problems publication-title: ACM Trans. Math. Software doi: 10.1145/2427023.2427024 – volume: 436 start-page: 3839 issue: 10 year: 2012 ident: 10.1016/j.cma.2016.06.018_br000115 article-title: An integral method for solving nonlinear eigenvalue problems publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2011.03.030 – volume: 26 start-page: 219 issue: 3 year: 1996 ident: 10.1016/j.cma.2016.06.018_br000135 article-title: A new complex-valued formulation and eigenvalue analysis of the Helmholtz equation by boundary element method publication-title: Adv. Eng. Softw. doi: 10.1016/0965-9978(95)00125-5 – volume: 36 start-page: 820 issue: 2 year: 2015 ident: 10.1016/j.cma.2016.06.018_br000150 article-title: Compact rational Krylov methods for nonlinear eigenvalue problems publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/140976698 – volume: 50 start-page: 710 issue: 2 year: 2012 ident: 10.1016/j.cma.2016.06.018_br000075 article-title: Convergence analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem publication-title: SIAM J. Numer. Anal. doi: 10.1137/100801986 – volume: 12 start-page: 633 issue: 1 year: 2012 ident: 10.1016/j.cma.2016.06.018_br000090 article-title: Interpolation-based solution of a nonlinear eigenvalue problem in fluid–structure interaction publication-title: PAMM doi: 10.1002/pamm.201210305 – volume: 28 start-page: 1029 issue: 4 year: 2006 ident: 10.1016/j.cma.2016.06.018_br000155 article-title: Structured polynomial eigenvalue problems: Good vibrations from good linearizations publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/050628362 – volume: 36 start-page: A2842 issue: 6 year: 2014 ident: 10.1016/j.cma.2016.06.018_br000145 article-title: NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalue problems publication-title: SIAM J. Sci. Comput. doi: 10.1137/130935045 – volume: 50 start-page: 47 year: 2015 ident: 10.1016/j.cma.2016.06.018_br000160 article-title: A fast directional BEM for large-scale acoustic problems based on the Burton–Miller formulation publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2014.07.006 – volume: 52 start-page: 2400 issue: 5 year: 2014 ident: 10.1016/j.cma.2016.06.018_br000030 article-title: Coupled finite and boundary element methods for fluid-solid interaction eigenvalue problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/13093755x – volume: 44 start-page: 387 issue: 2 year: 2004 ident: 10.1016/j.cma.2016.06.018_br000100 article-title: An Arnoldi method for nonlinear eigenvalue problems publication-title: BIT doi: 10.1023/B:BITN.0000039424.56697.8b – volume: 195 start-page: 6448 issue: 44 year: 2006 ident: 10.1016/j.cma.2016.06.018_br000040 article-title: Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic damping treatments publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2006.01.006 – volume: 52 start-page: 933 issue: 4 year: 2012 ident: 10.1016/j.cma.2016.06.018_br000080 article-title: Chebyshev interpolation for nonlinear eigenvalue problems publication-title: BIT doi: 10.1007/s10543-012-0381-5 – volume: 35 start-page: A327 issue: 1 year: 2013 ident: 10.1016/j.cma.2016.06.018_br000120 article-title: A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems publication-title: SIAM J. Sci. Comput. doi: 10.1137/120877556 – volume: 159 start-page: 119 issue: 1 year: 2003 ident: 10.1016/j.cma.2016.06.018_br000165 article-title: A projection method for generalized eigenvalue problems using numerical integration publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(03)00565-X – volume: 325 start-page: 1000 issue: 4 year: 2009 ident: 10.1016/j.cma.2016.06.018_br000045 article-title: Eigenvalues of linear viscoelastic systems publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.04.008 – volume: 79 issue: 11 year: 2009 ident: 10.1016/j.cma.2016.06.018_br000170 article-title: Density-matrix-based algorithm for solving eigenvalue problems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.115112 – volume: 198 start-page: 3999 issue: 49 year: 2009 ident: 10.1016/j.cma.2016.06.018_br000205 article-title: A generic approach for the solution of nonlinear residual equations. Part II: Homotopy and complex nonlinear eigenvalue method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2009.09.015 – volume: 21 start-page: 569 issue: 4 year: 2014 ident: 10.1016/j.cma.2016.06.018_br000140 article-title: Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.1913 |
| SSID | ssj0000812 |
| Score | 2.3406923 |
| Snippet | A new algorithm, denoted by RSRR, is presented for solving large-scale nonlinear eigenvalue problems (NEPs) with a focus on improving the robustness and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 33 |
| SubjectTerms | Boundary element method Finite element method Nonlinear eigenvalue problems Rayleigh–Ritz procedure |
| Title | Resolvent sampling based Rayleigh–Ritz method for large-scale nonlinear eigenvalue problems |
| URI | https://dx.doi.org/10.1016/j.cma.2016.06.018 |
| Volume | 310 |
| WOSCitedRecordID | wos000384859400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaWLQc48FNAlD_5wIkoKImT2D5WVRFwqFBVpL2gKLGdsqttqDa7VdtT34HX4Kl4EmZiOxtaiuiBi7VyYie7861nbH_-hpDXQoFTjmsRqqhSYcp1FspalvDHkzAZ0Jlhse6STfC9PTGZyE-j0Q9_FuZkzptGnJ7K4_9qaqgDY-PR2RuYu-8UKuAzGB1KMDuU_2R4XJCfI4sxaEukizeHAboqHezD5BwXQj2_ge1Pl-cuhXTHNpwjKzxswWomaKyERrkIDOp1oiY4Hqnqss-0w4jWp4VwHXX02tKFtkcGzxV7HWizlj70Zp5MS7vzM23Ovq164xu3hv11VTaHbVdeWeDewepzM7xi_BW4ZbZqhgsacd5T4_pBOs1CCFyy4SDNHPnVDrNWO8M5bCtwfcUV2FWJ2VvVyUvFeSfT6sb632S3L7nDnqTo-W-zAroosIsCOYCxuEU2Ep5JMSYb2x92Jx_Xnl_EVp3efQG_i97xCS-9x5_joEFsc_CA3HOTErptwfSQjEyzSe67CQp1w3-7Se4O1CsfkS890qhHGu2QRj3Sfl58R4xRCw0KGKMDjNEeY3SNMeox9ph8frd7sPM-dNk6QsXSaBnmdcIMr_NcaY6bx5U2MLfIpdI6kSaqOFSwvMp1nKikTiOuNNOoJpdGpeCcsSdkDM81TwnlIiu1VEJBl2mNITy0Y6quuBJpzaotEvnfrlBOyh4zqsyLa222Rd70TY6tjsvfbk69QQoXiNoAswBwXd_s2U2e8ZzcWYP_BRkvFyvzktxWJ8tpu3jlkPULC3Ct9g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resolvent+sampling+based+Rayleigh%E2%80%93Ritz+method+for+large-scale+nonlinear+eigenvalue+problems&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Xiao%2C+Jinyou&rft.au=Meng%2C+Shuangshuang&rft.au=Zhang%2C+Chuanzeng&rft.au=Zheng%2C+Changjun&rft.date=2016-10-01&rft.issn=0045-7825&rft.volume=310&rft.spage=33&rft.epage=57&rft_id=info:doi/10.1016%2Fj.cma.2016.06.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2016_06_018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |