Toward Autonomous Multi-UAV Wireless Network: A Survey of Reinforcement Learning-Based Approaches
Unmanned aerial vehicle (UAV)-based wireless networks have received increasing research interest in recent years and are gradually being utilized in various aspects of our society. The growing complexity of UAV applications such as disaster management, plant protection, and environment monitoring, h...
Uloženo v:
| Vydáno v: | IEEE Communications surveys and tutorials Ročník 25; číslo 4; s. 3038 - 3067 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2023
|
| Témata: | |
| ISSN: | 2373-745X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Unmanned aerial vehicle (UAV)-based wireless networks have received increasing research interest in recent years and are gradually being utilized in various aspects of our society. The growing complexity of UAV applications such as disaster management, plant protection, and environment monitoring, has resulted in escalating and stringent requirements for UAV networks that a single UAV cannot fulfill. To address this, multi-UAV wireless networks (MUWNs) have emerged, offering enhanced resource-carrying capacity and enabling collaborative mission completion by multiple UAVs. However, the effective operation of MUWNs necessitates a higher level of autonomy and intelligence, particularly in decision-making and multi-objective optimization under diverse environmental conditions. Reinforcement Learning (RL), an intelligent and goal-oriented decision-making approach, has emerged as a promising solution for addressing the intricate tasks associated with MUWNs. As one may notice, the literature still lacks a comprehensive survey of recent advancements in RL-based MUWNs. Thus, this paper aims to bridge this gap by providing a comprehensive review of RL-based approaches in the context of autonomous MUWNs. We present an informative overview of RL and demonstrate its application within the framework of MUWNs. Specifically, we summarize various applications of RL in MUWNs, including data access, sensing and collection, resource allocation for wireless connectivity, UAV-assisted mobile edge computing, localization, trajectory planning, and network security. Furthermore, we identify and discuss several open challenges based on the insights gained from our review. |
|---|---|
| AbstractList | Unmanned aerial vehicle (UAV)-based wireless networks have received increasing research interest in recent years and are gradually being utilized in various aspects of our society. The growing complexity of UAV applications such as disaster management, plant protection, and environment monitoring, has resulted in escalating and stringent requirements for UAV networks that a single UAV cannot fulfill. To address this, multi-UAV wireless networks (MUWNs) have emerged, offering enhanced resource-carrying capacity and enabling collaborative mission completion by multiple UAVs. However, the effective operation of MUWNs necessitates a higher level of autonomy and intelligence, particularly in decision-making and multi-objective optimization under diverse environmental conditions. Reinforcement Learning (RL), an intelligent and goal-oriented decision-making approach, has emerged as a promising solution for addressing the intricate tasks associated with MUWNs. As one may notice, the literature still lacks a comprehensive survey of recent advancements in RL-based MUWNs. Thus, this paper aims to bridge this gap by providing a comprehensive review of RL-based approaches in the context of autonomous MUWNs. We present an informative overview of RL and demonstrate its application within the framework of MUWNs. Specifically, we summarize various applications of RL in MUWNs, including data access, sensing and collection, resource allocation for wireless connectivity, UAV-assisted mobile edge computing, localization, trajectory planning, and network security. Furthermore, we identify and discuss several open challenges based on the insights gained from our review. |
| Author | Zhang, Xin Chang, Zheng Bai, Yu Zhao, Hui Yang, Kun Jantti, Riku |
| Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-3948-9224 surname: Bai fullname: Bai, Yu email: yu.bai@aalto.fi organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Hui surname: Zhao fullname: Zhao, Hui email: zhaohui2022@std.uestc.edu.cn organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Xin surname: Zhang fullname: Zhang, Xin email: 202121080639@std.uestc.edu.cn organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Zheng orcidid: 0000-0003-3766-820X surname: Chang fullname: Chang, Zheng email: zheng.chang@jyu.fi organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 5 givenname: Riku orcidid: 0000-0002-5398-2381 surname: Jantti fullname: Jantti, Riku email: riku.jantti@aalto.fi organization: Department of Information and Communications Engineering, Aalto University, Espoo, Finland – sequence: 6 givenname: Kun orcidid: 0000-0002-6782-6689 surname: Yang fullname: Yang, Kun email: kunyang@essex.ac.uk organization: School of Computer Sciences and Electrical Engineering, University of Essex, Colchester, U.K |
| BookMark | eNotz9FOwjAUgOHGaCKgL2C86AsMu56uG97NRdQEJJGh3pHSnWoV2qXdJLy9Gr36777kH5Jj5x0ScpGycZqyyVW1mC_rMWccxgAcQIgjMuCQQ5KL7PWUDGP8YExwMWEDomq_V6GhZd9553e-j3TebzubrMpn-mIDbjFG-ojd3ofPa1rSZR--8EC9oU9onfFB4w5dR2eogrPuLblREX-8tg1e6XeMZ-TEqG3E8_-OyGp6W1f3yWxx91CVs0SDYF0itcqg4UJMVAEKwWwk578TICAzTDeQG7PRqdFZIwshQRqUeZ7lusm0MApG5PLPtYi4boPdqXBYp4wXUHAJ3y1_VR0 |
| CitedBy_id | crossref_primary_10_1007_s44443_025_00048_9 crossref_primary_10_3390_drones8010007 crossref_primary_10_3390_s23229064 crossref_primary_10_3390_s24217094 crossref_primary_10_1016_j_jechem_2024_06_017 crossref_primary_10_1109_JIOT_2024_3438772 crossref_primary_10_1109_JIOT_2024_3442995 crossref_primary_10_1109_JMASS_2024_3510808 crossref_primary_10_1109_TNSM_2025_3527651 crossref_primary_10_1109_ACCESS_2025_3575583 crossref_primary_10_1109_ACCESS_2024_3518562 crossref_primary_10_3390_machines12100739 crossref_primary_10_1016_j_iot_2024_101342 crossref_primary_10_3390_machines13070566 crossref_primary_10_1016_j_adhoc_2024_103642 crossref_primary_10_1038_s41598_024_67285_2 crossref_primary_10_3390_s24061837 crossref_primary_10_1109_JIOT_2025_3585437 crossref_primary_10_3390_drones8050188 crossref_primary_10_1108_IJIUS_04_2024_0112 crossref_primary_10_1109_TGCN_2024_3492028 crossref_primary_10_1002_ett_4972 crossref_primary_10_1109_ACCESS_2024_3397890 crossref_primary_10_1109_JMASS_2025_3565996 crossref_primary_10_1109_TVT_2025_3527586 crossref_primary_10_3390_app142310832 crossref_primary_10_1016_j_pmcj_2025_102105 crossref_primary_10_1109_LCOMM_2024_3374797 crossref_primary_10_3390_drones9060445 crossref_primary_10_1109_JIOT_2025_3569716 crossref_primary_10_1016_j_egyr_2025_05_085 crossref_primary_10_1109_TITS_2024_3409415 crossref_primary_10_1109_LWC_2025_3530760 crossref_primary_10_3390_fi16070245 crossref_primary_10_1109_JIOT_2025_3572085 crossref_primary_10_1109_TIFS_2025_3550812 crossref_primary_10_1007_s10586_025_05393_y crossref_primary_10_1109_JIOT_2024_3422670 crossref_primary_10_3390_app15084337 crossref_primary_10_1016_j_jii_2024_100742 crossref_primary_10_1109_COMST_2024_3425597 crossref_primary_10_1016_j_comnet_2025_111701 crossref_primary_10_1109_JMASS_2025_3539951 crossref_primary_10_1109_JIOT_2025_3568710 crossref_primary_10_1109_JIOT_2025_3540220 crossref_primary_10_1016_j_measurement_2025_117677 crossref_primary_10_1109_TMC_2025_3571023 crossref_primary_10_1109_TNSE_2025_3545148 crossref_primary_10_3390_drones8080378 crossref_primary_10_1016_j_adhoc_2024_103506 crossref_primary_10_1109_TNET_2024_3350198 crossref_primary_10_1109_LWC_2024_3465871 crossref_primary_10_1109_TCOMM_2025_3534556 crossref_primary_10_1109_TMC_2024_3367124 crossref_primary_10_1145_3712599 crossref_primary_10_1109_JMASS_2025_3568592 crossref_primary_10_1109_JIOT_2024_3415076 crossref_primary_10_1109_JIOT_2025_3540061 crossref_primary_10_1016_j_vehcom_2025_100904 crossref_primary_10_1109_ACCESS_2025_3602985 crossref_primary_10_1109_OJCOMS_2025_3594373 crossref_primary_10_1109_TGCN_2024_3487995 crossref_primary_10_3390_math13050833 crossref_primary_10_3390_drones8050193 crossref_primary_10_3390_s25113488 crossref_primary_10_1109_COMST_2024_3471671 crossref_primary_10_1109_TCCN_2024_3358545 crossref_primary_10_1186_s13638_024_02401_4 crossref_primary_10_3390_app14188383 crossref_primary_10_1109_MCOM_002_2300531 crossref_primary_10_1109_OJVT_2025_3586774 crossref_primary_10_1109_JIOT_2025_3556300 crossref_primary_10_3390_s25010084 crossref_primary_10_1109_TITS_2024_3496121 crossref_primary_10_1016_j_eswa_2025_129260 crossref_primary_10_1109_ACCESS_2024_3525263 crossref_primary_10_1109_JIOT_2024_3447774 crossref_primary_10_1016_j_iot_2024_101375 crossref_primary_10_1109_ACCESS_2024_3420235 crossref_primary_10_1109_TVT_2025_3543664 crossref_primary_10_1016_j_iot_2025_101592 crossref_primary_10_1109_JIOT_2024_3454697 crossref_primary_10_1016_j_measurement_2025_117531 crossref_primary_10_1109_TMC_2025_3551386 crossref_primary_10_1109_JIOT_2024_3371486 crossref_primary_10_1109_TMC_2025_3559707 crossref_primary_10_1109_TCE_2024_3416432 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE |
| DOI | 10.1109/COMST.2023.3323344 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2373-745X |
| EndPage | 3067 |
| ExternalDocumentID | 10283826 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Sichuan NSF grantid: 2022NSFSC0544 – fundername: NSFC grantid: 62071105 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 2WC 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD ESBDL HZ~ IES IFIPE IFJZH IPLJI JAVBF LAI O9- OCL P2P RIA RIE RNS |
| ID | FETCH-LOGICAL-c340t-6ca53d2449a83ae3fb62220233435f0cd37ffbc1fc5d684636fe67757cd5c4fa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122630300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:24:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c340t-6ca53d2449a83ae3fb62220233435f0cd37ffbc1fc5d684636fe67757cd5c4fa3 |
| ORCID | 0000-0002-3948-9224 0000-0002-5398-2381 0000-0002-6782-6689 0000-0003-3766-820X |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10283826 |
| PageCount | 30 |
| ParticipantIDs | ieee_primary_10283826 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE Communications surveys and tutorials |
| PublicationTitleAbbrev | COMST |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0042490 |
| Score | 2.6826808 |
| Snippet | Unmanned aerial vehicle (UAV)-based wireless networks have received increasing research interest in recent years and are gradually being utilized in various... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3038 |
| SubjectTerms | Autonomous aerial vehicles Heuristic algorithms multi-UAV wireless network Optimization reinforcement learning Resource management Surveys Tutorials UAV-assisted communication network UAV-assisted mobile computing Unmanned aerial vehicle (UAV) Wireless networks |
| Title | Toward Autonomous Multi-UAV Wireless Network: A Survey of Reinforcement Learning-Based Approaches |
| URI | https://ieeexplore.ieee.org/document/10283826 |
| Volume | 25 |
| WOSCitedRecordID | wos001122630300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa28aAHnzW-w8Er7e4Cy-JtbWy8WI1tTW_NAoMxMa1pd5v47wV2m-jBgzfCgdcEPhjm-wahG2dInXCjSVxwIAwSIJk1KTEi0ixJpDBShWQTYjjMplP53JDVAxcGAELwGXR9Mfzlm4WuvKusF8DQ3YdbqCWEqMlam2OXuXdEtGHFRLLXf3ocjbs-OXiX0oRSxn7lTwnwMdj_Z8cHaK-5J-K8Nuwh2oL5Edr9oR54jIpxCHnFeVV6ZoJ7wuNApyWT_BX7qNYPd4rhYR3nfYtzPKqWa_jCC4tfIAim6uAbxI3G6hu5c5Dm2mtkxmHVQZPB_bj_QJqMCURTFpUk1QWnxiG2LDJaALUqdfgf-elTbiNtqLBW6dhqbtLMa4VZSIXgQhuumS3oCWrPF3M4RTgrhLIy1kpSxbiiMnNm45lyGxZobPQZ6vh1mn3WohizzRKd_1F_gXb8QGrvxSVql8sKrtC2Xpfvq-V1MOU3mFGgzw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAEDzyLeeGB1m8R2HLOFiqqINiCaom5V4gdCQi1qk0r8e2wnlWBgYLM8-HXy3fl833cA3BhBioBKgfyMKkRUoFCkZYgk8wQJAs4kz12xCZYk0XjMn2uwusPCKKVc8plq2ab7y5czUdpQWdsZQ-MPr4MNSkjgV3CtleIl5iXhrXAxHm93ngbDtGXLg7cwDjAm5FcFFWdAunv_nHof7NaeIowr0R6ANTU9BDs_-AOPQJa6pFcYl4XFJphHPHSAWjSKX6HNa_0wegwmVab3LYzhsJwv1RecafiiHGWqcNFBWLOsvqE7Y9TMeDXRuFo0wah7n3Z6qK6ZgAQmXoFCkVEsjc3mWYQzhXUeGg_As9vHVHtCYqZ1LnwtqAwjyxamVcgYZUJSQXSGj0FjOpuqEwCjjOWa-yLnOCc0xzwygqNRbq6swr4Up6Bpz2nyWdFiTFZHdPZH_zXY6qWD_qT_kDyeg227qCqWcQEaxbxUl2BTLIv3xfzKifUbJHekFg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Autonomous+Multi-UAV+Wireless+Network%3A+A+Survey+of+Reinforcement+Learning-Based+Approaches&rft.jtitle=IEEE+Communications+surveys+and+tutorials&rft.au=Bai%2C+Yu&rft.au=Zhao%2C+Hui&rft.au=Zhang%2C+Xin&rft.au=Chang%2C+Zheng&rft.date=2023&rft.pub=IEEE&rft.eissn=2373-745X&rft.volume=25&rft.issue=4&rft.spage=3038&rft.epage=3067&rft_id=info:doi/10.1109%2FCOMST.2023.3323344&rft.externalDocID=10283826 |