Toward Autonomous Multi-UAV Wireless Network: A Survey of Reinforcement Learning-Based Approaches

Unmanned aerial vehicle (UAV)-based wireless networks have received increasing research interest in recent years and are gradually being utilized in various aspects of our society. The growing complexity of UAV applications such as disaster management, plant protection, and environment monitoring, h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Communications surveys and tutorials Ročník 25; číslo 4; s. 3038 - 3067
Hlavní autoři: Bai, Yu, Zhao, Hui, Zhang, Xin, Chang, Zheng, Jantti, Riku, Yang, Kun
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2023
Témata:
ISSN:2373-745X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Unmanned aerial vehicle (UAV)-based wireless networks have received increasing research interest in recent years and are gradually being utilized in various aspects of our society. The growing complexity of UAV applications such as disaster management, plant protection, and environment monitoring, has resulted in escalating and stringent requirements for UAV networks that a single UAV cannot fulfill. To address this, multi-UAV wireless networks (MUWNs) have emerged, offering enhanced resource-carrying capacity and enabling collaborative mission completion by multiple UAVs. However, the effective operation of MUWNs necessitates a higher level of autonomy and intelligence, particularly in decision-making and multi-objective optimization under diverse environmental conditions. Reinforcement Learning (RL), an intelligent and goal-oriented decision-making approach, has emerged as a promising solution for addressing the intricate tasks associated with MUWNs. As one may notice, the literature still lacks a comprehensive survey of recent advancements in RL-based MUWNs. Thus, this paper aims to bridge this gap by providing a comprehensive review of RL-based approaches in the context of autonomous MUWNs. We present an informative overview of RL and demonstrate its application within the framework of MUWNs. Specifically, we summarize various applications of RL in MUWNs, including data access, sensing and collection, resource allocation for wireless connectivity, UAV-assisted mobile edge computing, localization, trajectory planning, and network security. Furthermore, we identify and discuss several open challenges based on the insights gained from our review.
AbstractList Unmanned aerial vehicle (UAV)-based wireless networks have received increasing research interest in recent years and are gradually being utilized in various aspects of our society. The growing complexity of UAV applications such as disaster management, plant protection, and environment monitoring, has resulted in escalating and stringent requirements for UAV networks that a single UAV cannot fulfill. To address this, multi-UAV wireless networks (MUWNs) have emerged, offering enhanced resource-carrying capacity and enabling collaborative mission completion by multiple UAVs. However, the effective operation of MUWNs necessitates a higher level of autonomy and intelligence, particularly in decision-making and multi-objective optimization under diverse environmental conditions. Reinforcement Learning (RL), an intelligent and goal-oriented decision-making approach, has emerged as a promising solution for addressing the intricate tasks associated with MUWNs. As one may notice, the literature still lacks a comprehensive survey of recent advancements in RL-based MUWNs. Thus, this paper aims to bridge this gap by providing a comprehensive review of RL-based approaches in the context of autonomous MUWNs. We present an informative overview of RL and demonstrate its application within the framework of MUWNs. Specifically, we summarize various applications of RL in MUWNs, including data access, sensing and collection, resource allocation for wireless connectivity, UAV-assisted mobile edge computing, localization, trajectory planning, and network security. Furthermore, we identify and discuss several open challenges based on the insights gained from our review.
Author Zhang, Xin
Chang, Zheng
Bai, Yu
Zhao, Hui
Yang, Kun
Jantti, Riku
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-3948-9224
  surname: Bai
  fullname: Bai, Yu
  email: yu.bai@aalto.fi
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Hui
  surname: Zhao
  fullname: Zhao, Hui
  email: zhaohui2022@std.uestc.edu.cn
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  email: 202121080639@std.uestc.edu.cn
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Zheng
  orcidid: 0000-0003-3766-820X
  surname: Chang
  fullname: Chang, Zheng
  email: zheng.chang@jyu.fi
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Riku
  orcidid: 0000-0002-5398-2381
  surname: Jantti
  fullname: Jantti, Riku
  email: riku.jantti@aalto.fi
  organization: Department of Information and Communications Engineering, Aalto University, Espoo, Finland
– sequence: 6
  givenname: Kun
  orcidid: 0000-0002-6782-6689
  surname: Yang
  fullname: Yang, Kun
  email: kunyang@essex.ac.uk
  organization: School of Computer Sciences and Electrical Engineering, University of Essex, Colchester, U.K
BookMark eNotz9FOwjAUgOHGaCKgL2C86AsMu56uG97NRdQEJJGh3pHSnWoV2qXdJLy9Gr36777kH5Jj5x0ScpGycZqyyVW1mC_rMWccxgAcQIgjMuCQQ5KL7PWUDGP8YExwMWEDomq_V6GhZd9553e-j3TebzubrMpn-mIDbjFG-ojd3ofPa1rSZR--8EC9oU9onfFB4w5dR2eogrPuLblREX-8tg1e6XeMZ-TEqG3E8_-OyGp6W1f3yWxx91CVs0SDYF0itcqg4UJMVAEKwWwk578TICAzTDeQG7PRqdFZIwshQRqUeZ7lusm0MApG5PLPtYi4boPdqXBYp4wXUHAJ3y1_VR0
CitedBy_id crossref_primary_10_1007_s44443_025_00048_9
crossref_primary_10_3390_drones8010007
crossref_primary_10_3390_s23229064
crossref_primary_10_3390_s24217094
crossref_primary_10_1016_j_jechem_2024_06_017
crossref_primary_10_1109_JIOT_2024_3438772
crossref_primary_10_1109_JIOT_2024_3442995
crossref_primary_10_1109_JMASS_2024_3510808
crossref_primary_10_1109_TNSM_2025_3527651
crossref_primary_10_1109_ACCESS_2025_3575583
crossref_primary_10_1109_ACCESS_2024_3518562
crossref_primary_10_3390_machines12100739
crossref_primary_10_1016_j_iot_2024_101342
crossref_primary_10_3390_machines13070566
crossref_primary_10_1016_j_adhoc_2024_103642
crossref_primary_10_1038_s41598_024_67285_2
crossref_primary_10_3390_s24061837
crossref_primary_10_1109_JIOT_2025_3585437
crossref_primary_10_3390_drones8050188
crossref_primary_10_1108_IJIUS_04_2024_0112
crossref_primary_10_1109_TGCN_2024_3492028
crossref_primary_10_1002_ett_4972
crossref_primary_10_1109_ACCESS_2024_3397890
crossref_primary_10_1109_JMASS_2025_3565996
crossref_primary_10_1109_TVT_2025_3527586
crossref_primary_10_3390_app142310832
crossref_primary_10_1016_j_pmcj_2025_102105
crossref_primary_10_1109_LCOMM_2024_3374797
crossref_primary_10_3390_drones9060445
crossref_primary_10_1109_JIOT_2025_3569716
crossref_primary_10_1016_j_egyr_2025_05_085
crossref_primary_10_1109_TITS_2024_3409415
crossref_primary_10_1109_LWC_2025_3530760
crossref_primary_10_3390_fi16070245
crossref_primary_10_1109_JIOT_2025_3572085
crossref_primary_10_1109_TIFS_2025_3550812
crossref_primary_10_1007_s10586_025_05393_y
crossref_primary_10_1109_JIOT_2024_3422670
crossref_primary_10_3390_app15084337
crossref_primary_10_1016_j_jii_2024_100742
crossref_primary_10_1109_COMST_2024_3425597
crossref_primary_10_1016_j_comnet_2025_111701
crossref_primary_10_1109_JMASS_2025_3539951
crossref_primary_10_1109_JIOT_2025_3568710
crossref_primary_10_1109_JIOT_2025_3540220
crossref_primary_10_1016_j_measurement_2025_117677
crossref_primary_10_1109_TMC_2025_3571023
crossref_primary_10_1109_TNSE_2025_3545148
crossref_primary_10_3390_drones8080378
crossref_primary_10_1016_j_adhoc_2024_103506
crossref_primary_10_1109_TNET_2024_3350198
crossref_primary_10_1109_LWC_2024_3465871
crossref_primary_10_1109_TCOMM_2025_3534556
crossref_primary_10_1109_TMC_2024_3367124
crossref_primary_10_1145_3712599
crossref_primary_10_1109_JMASS_2025_3568592
crossref_primary_10_1109_JIOT_2024_3415076
crossref_primary_10_1109_JIOT_2025_3540061
crossref_primary_10_1016_j_vehcom_2025_100904
crossref_primary_10_1109_ACCESS_2025_3602985
crossref_primary_10_1109_OJCOMS_2025_3594373
crossref_primary_10_1109_TGCN_2024_3487995
crossref_primary_10_3390_math13050833
crossref_primary_10_3390_drones8050193
crossref_primary_10_3390_s25113488
crossref_primary_10_1109_COMST_2024_3471671
crossref_primary_10_1109_TCCN_2024_3358545
crossref_primary_10_1186_s13638_024_02401_4
crossref_primary_10_3390_app14188383
crossref_primary_10_1109_MCOM_002_2300531
crossref_primary_10_1109_OJVT_2025_3586774
crossref_primary_10_1109_JIOT_2025_3556300
crossref_primary_10_3390_s25010084
crossref_primary_10_1109_TITS_2024_3496121
crossref_primary_10_1016_j_eswa_2025_129260
crossref_primary_10_1109_ACCESS_2024_3525263
crossref_primary_10_1109_JIOT_2024_3447774
crossref_primary_10_1016_j_iot_2024_101375
crossref_primary_10_1109_ACCESS_2024_3420235
crossref_primary_10_1109_TVT_2025_3543664
crossref_primary_10_1016_j_iot_2025_101592
crossref_primary_10_1109_JIOT_2024_3454697
crossref_primary_10_1016_j_measurement_2025_117531
crossref_primary_10_1109_TMC_2025_3551386
crossref_primary_10_1109_JIOT_2024_3371486
crossref_primary_10_1109_TMC_2025_3559707
crossref_primary_10_1109_TCE_2024_3416432
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
DOI 10.1109/COMST.2023.3323344
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2373-745X
EndPage 3067
ExternalDocumentID 10283826
Genre orig-research
GrantInformation_xml – fundername: Sichuan NSF
  grantid: 2022NSFSC0544
– fundername: NSFC
  grantid: 62071105
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
2WC
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
ESBDL
HZ~
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
O9-
OCL
P2P
RIA
RIE
RNS
ID FETCH-LOGICAL-c340t-6ca53d2449a83ae3fb62220233435f0cd37ffbc1fc5d684636fe67757cd5c4fa3
IEDL.DBID RIE
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122630300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:24:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-6ca53d2449a83ae3fb62220233435f0cd37ffbc1fc5d684636fe67757cd5c4fa3
ORCID 0000-0002-3948-9224
0000-0002-5398-2381
0000-0002-6782-6689
0000-0003-3766-820X
OpenAccessLink https://ieeexplore.ieee.org/document/10283826
PageCount 30
ParticipantIDs ieee_primary_10283826
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationTitle IEEE Communications surveys and tutorials
PublicationTitleAbbrev COMST
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0042490
Score 2.6826808
Snippet Unmanned aerial vehicle (UAV)-based wireless networks have received increasing research interest in recent years and are gradually being utilized in various...
SourceID ieee
SourceType Publisher
StartPage 3038
SubjectTerms Autonomous aerial vehicles
Heuristic algorithms
multi-UAV wireless network
Optimization
reinforcement learning
Resource management
Surveys
Tutorials
UAV-assisted communication network
UAV-assisted mobile computing
Unmanned aerial vehicle (UAV)
Wireless networks
Title Toward Autonomous Multi-UAV Wireless Network: A Survey of Reinforcement Learning-Based Approaches
URI https://ieeexplore.ieee.org/document/10283826
Volume 25
WOSCitedRecordID wos001122630300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECa28aAHnzW-w8Er7e4Cy-JtbWy8WI1tTW_NAoMxMa1pd5v47wV2m-jBgzfCgdcEPhjm-wahG2dInXCjSVxwIAwSIJk1KTEi0ixJpDBShWQTYjjMplP53JDVAxcGAELwGXR9Mfzlm4WuvKusF8DQ3YdbqCWEqMlam2OXuXdEtGHFRLLXf3ocjbs-OXiX0oRSxn7lTwnwMdj_Z8cHaK-5J-K8Nuwh2oL5Edr9oR54jIpxCHnFeVV6ZoJ7wuNApyWT_BX7qNYPd4rhYR3nfYtzPKqWa_jCC4tfIAim6uAbxI3G6hu5c5Dm2mtkxmHVQZPB_bj_QJqMCURTFpUk1QWnxiG2LDJaALUqdfgf-elTbiNtqLBW6dhqbtLMa4VZSIXgQhuumS3oCWrPF3M4RTgrhLIy1kpSxbiiMnNm45lyGxZobPQZ6vh1mn3WohizzRKd_1F_gXb8QGrvxSVql8sKrtC2Xpfvq-V1MOU3mFGgzw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAEDzyLeeGB1m8R2HLOFiqqINiCaom5V4gdCQi1qk0r8e2wnlWBgYLM8-HXy3fl833cA3BhBioBKgfyMKkRUoFCkZYgk8wQJAs4kz12xCZYk0XjMn2uwusPCKKVc8plq2ab7y5czUdpQWdsZQ-MPr4MNSkjgV3CtleIl5iXhrXAxHm93ngbDtGXLg7cwDjAm5FcFFWdAunv_nHof7NaeIowr0R6ANTU9BDs_-AOPQJa6pFcYl4XFJphHPHSAWjSKX6HNa_0wegwmVab3LYzhsJwv1RecafiiHGWqcNFBWLOsvqE7Y9TMeDXRuFo0wah7n3Z6qK6ZgAQmXoFCkVEsjc3mWYQzhXUeGg_As9vHVHtCYqZ1LnwtqAwjyxamVcgYZUJSQXSGj0FjOpuqEwCjjOWa-yLnOCc0xzwygqNRbq6swr4Up6Bpz2nyWdFiTFZHdPZH_zXY6qWD_qT_kDyeg227qCqWcQEaxbxUl2BTLIv3xfzKifUbJHekFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Autonomous+Multi-UAV+Wireless+Network%3A+A+Survey+of+Reinforcement+Learning-Based+Approaches&rft.jtitle=IEEE+Communications+surveys+and+tutorials&rft.au=Bai%2C+Yu&rft.au=Zhao%2C+Hui&rft.au=Zhang%2C+Xin&rft.au=Chang%2C+Zheng&rft.date=2023&rft.pub=IEEE&rft.eissn=2373-745X&rft.volume=25&rft.issue=4&rft.spage=3038&rft.epage=3067&rft_id=info:doi/10.1109%2FCOMST.2023.3323344&rft.externalDocID=10283826