Automatic autopilot tuning framework using genetic algorithms and system identification

This paper presents a comprehensive framework for offline optimization of tuning parameters in unmanned aerial vehicle (UAV) flight controllers. The framework uses system identification to create a simplified flight dynamics model, followed by control law matching to ensure the simulated controller&...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Aerospace science and technology Ročník 157; s. 109779
Hlavní autoři: Bazzocchi, Sean, Warwick, Stephen, Suleman, Afzal
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Masson SAS 01.02.2025
ISSN:1270-9638
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a comprehensive framework for offline optimization of tuning parameters in unmanned aerial vehicle (UAV) flight controllers. The framework uses system identification to create a simplified flight dynamics model, followed by control law matching to ensure the simulated controller's output closely replicates real-world autopilot commands. The optimization phase employs genetic algorithms to tune parameters based on a defined cost function that incorporates performance requirements. Each stage, from flight dynamics model development to optimization, is validated to ensure enhanced controller performance. Finally, real-world flight tests confirm the effectiveness of the optimized controller, demonstrating the validity of the proposed framework for autopilot tuning optimization. •Genetic Algorithms optimize UAV autopilot tuning for enhanced flight performance.•System identification simplifies UAV flight dynamics model creation for tuning.•Real-world flight tests validate the proposed autopilot tuning framework.•The framework adapts to various UAV controllers and vehicle configurations.•Optimized controller parameters improve stability and performance in UAVs.
ISSN:1270-9638
DOI:10.1016/j.ast.2024.109779