A dynamic multi-objective evolutionary algorithm based on intensity of environmental change
•This paper introduced U-test mechanism to test decision variable and market them into macro-changing decision and micro-changing decision.•An effective update mechanism based on historical information was proposed to improve the convergence of population.•Two different parts including macro-changin...
Uloženo v:
| Vydáno v: | Information sciences Ročník 523; s. 49 - 62 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.06.2020
|
| Témata: | |
| ISSN: | 0020-0255, 1872-6291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •This paper introduced U-test mechanism to test decision variable and market them into macro-changing decision and micro-changing decision.•An effective update mechanism based on historical information was proposed to improve the convergence of population.•Two different parts including macro-changing decision and micro-changing decision were implemented to produce better solutions.•The statistical results show that the proposed algorithm is very competitive in terms of convergence and diversity as well as the response speed to changes, when compared with four other state-of-the-art methods.
This paper proposes a novel evolutionary algorithm based on the intensity of environmental change (IEC) to effectively track the moving Pareto-optimal front (POF) or Pareto-optimal set (POS) in dynamic optimization. The IEC divides each individual into two parts according to the evolutionary information feedback from the POS in the current and former evolutionary environment when an environmental change is detected. Two parts, the micro-changing decision and macro-changing decision, are implemented upon different situations of decision components in order to build an efficient information exchange among dynamic environments. In addition, in our algorithm, if a new evolutionary environment is similar to its historical evolutionary environment, the history information will be used for reference to guide the search towards promising decision regions. In order to verify the availability of our idea, the IEC has been extensively compared with four state-of-the-art algorithms over a range of test suites with different features and difficulties. Experimental results show that the proposed IEC is promising. |
|---|---|
| AbstractList | •This paper introduced U-test mechanism to test decision variable and market them into macro-changing decision and micro-changing decision.•An effective update mechanism based on historical information was proposed to improve the convergence of population.•Two different parts including macro-changing decision and micro-changing decision were implemented to produce better solutions.•The statistical results show that the proposed algorithm is very competitive in terms of convergence and diversity as well as the response speed to changes, when compared with four other state-of-the-art methods.
This paper proposes a novel evolutionary algorithm based on the intensity of environmental change (IEC) to effectively track the moving Pareto-optimal front (POF) or Pareto-optimal set (POS) in dynamic optimization. The IEC divides each individual into two parts according to the evolutionary information feedback from the POS in the current and former evolutionary environment when an environmental change is detected. Two parts, the micro-changing decision and macro-changing decision, are implemented upon different situations of decision components in order to build an efficient information exchange among dynamic environments. In addition, in our algorithm, if a new evolutionary environment is similar to its historical evolutionary environment, the history information will be used for reference to guide the search towards promising decision regions. In order to verify the availability of our idea, the IEC has been extensively compared with four state-of-the-art algorithms over a range of test suites with different features and difficulties. Experimental results show that the proposed IEC is promising. |
| Author | Yang, Shengxiang Zou, Juan Hu, Yaru Zheng, Jinhua Ou, Junwei Wang, Rui |
| Author_xml | – sequence: 1 givenname: Yaru surname: Hu fullname: Hu, Yaru organization: The Department of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China – sequence: 2 givenname: Jinhua surname: Zheng fullname: Zheng, Jinhua email: jhzheng@xtu.edu.cn organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China – sequence: 3 givenname: Juan surname: Zou fullname: Zou, Juan email: zoujuan@xtu.edu.cn organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China – sequence: 4 givenname: Shengxiang orcidid: 0000-0001-7222-4917 surname: Yang fullname: Yang, Shengxiang email: syang@dmu.ac.uk organization: School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, U.K – sequence: 5 givenname: Junwei surname: Ou fullname: Ou, Junwei email: junweiou@163.com organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China – sequence: 6 givenname: Rui surname: Wang fullname: Wang, Rui email: ruiwangnudt@gmail.com organization: College of systems Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China |
| BookMark | eNp9kL1qwzAUhUVJoUnaB-imF7B7JdlWTKcQ-geBLu3UQciSnCjYUpEUQ96-Cu3UIdMdLt_hnG-BZs47g9A9gZIAaR4OpXWxpEChBFoCJ1doTlacFg1tyQzNIX8KoHV9gxYxHgCg4k0zR19rrE9Ojlbh8TgkW_juYFSyk8Fm8sMxWe9kOGE57HywaT_iTkajsXfYumRctOmEfY-Nm2zwbjQuyQGrvXQ7c4uuezlEc_d3l-jz-elj81ps31_eNuttoVgFKTckjDLoedvyTmvCmkbxVlc971caCPBOVZXUyqi6bqXWWjLZsJrVXPO2Y5otEfnNVcHHGEwvvoMdc2tBQJztiIPIdsTZjgAqsp3M8H-Mskme16Yg7XCRfPwlTZ40WRNEVNY4ZbQN2ZzQ3l6gfwBZ8oOi |
| CitedBy_id | crossref_primary_10_1186_s40537_020_00398_3 crossref_primary_10_3390_app15158710 crossref_primary_10_1016_j_engappai_2023_105830 crossref_primary_10_1016_j_swevo_2025_102011 crossref_primary_10_1016_j_ins_2021_08_027 crossref_primary_10_1016_j_ins_2023_03_100 crossref_primary_10_1016_j_future_2024_07_028 crossref_primary_10_1016_j_asoc_2022_109605 crossref_primary_10_1016_j_asoc_2025_113113 crossref_primary_10_1016_j_swevo_2021_100987 crossref_primary_10_1016_j_ins_2024_121690 crossref_primary_10_1109_TEVC_2023_3234113 crossref_primary_10_1016_j_asoc_2023_110359 crossref_primary_10_1016_j_ins_2021_06_054 crossref_primary_10_1016_j_ins_2022_05_114 crossref_primary_10_3390_math10122117 crossref_primary_10_1016_j_asoc_2022_109892 crossref_primary_10_1016_j_swevo_2020_100786 crossref_primary_10_1016_j_swevo_2023_101356 crossref_primary_10_1109_TEVC_2022_3193287 crossref_primary_10_1016_j_eswa_2024_123344 crossref_primary_10_1016_j_eswa_2024_125765 crossref_primary_10_1109_TEVC_2023_3253850 crossref_primary_10_1016_j_engappai_2021_104210 crossref_primary_10_1109_TEVC_2023_3290485 crossref_primary_10_1016_j_ins_2022_09_022 crossref_primary_10_1016_j_afres_2025_100853 crossref_primary_10_1109_TCYB_2021_3128584 crossref_primary_10_1016_j_jfca_2025_107499 crossref_primary_10_1016_j_asoc_2024_111756 crossref_primary_10_1016_j_ins_2023_119495 crossref_primary_10_1016_j_ins_2025_122018 crossref_primary_10_1016_j_swevo_2024_101468 crossref_primary_10_1007_s40747_022_00745_2 crossref_primary_10_1017_S0269888924000079 crossref_primary_10_1007_s12083_021_01267_3 crossref_primary_10_3390_agronomy13122939 crossref_primary_10_3390_math8081223 |
| Cites_doi | 10.1016/j.cor.2016.04.024 10.1109/TCYB.2013.2245892 10.1109/TEVC.2016.2574621 10.1109/TEVC.2007.892759 10.1109/TITS.2017.2665042 10.1016/j.asoc.2017.11.041 10.1109/LCOMM.2015.2458861 10.1109/TCYB.2015.2510698 10.1007/s00500-014-1433-3 10.1016/j.ins.2018.12.078 10.1109/TEVC.2014.2373386 10.1109/TITS.2015.2499254 10.1109/TCYB.2015.2490738 10.1109/TCYB.2015.2430526 10.1016/j.swevo.2018.03.010 10.1109/TEVC.2017.2771451 10.1109/TEVC.2004.831456 10.1109/TCYB.2014.2333738 10.1109/4235.996017 10.1080/00220973.1987.10806451 10.3390/app8091673 10.1016/j.asoc.2017.05.008 10.1109/TCBB.2017.2685320 10.1016/j.asoc.2016.01.033 10.1109/TCYB.2016.2556742 10.1016/j.ins.2019.01.066 10.1016/j.asoc.2015.08.059 10.20982/tqmp.04.1.p013 10.1109/TCYB.2014.2337117 10.3934/jimo.2016068 10.1016/j.asoc.2019.105673 10.1109/TEVC.2008.925798 10.1109/TCYB.2016.2638902 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2020.02.071 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 62 |
| ExternalDocumentID | 10_1016_j_ins_2020_02_071 S0020025520301614 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c340t-6213230f7997bdd1366c79d4f7f8d0107bc44adcec559addda3a635357d79b3d3 |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527016100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 07:30:03 EST 2025 Tue Nov 18 22:10:31 EST 2025 Fri Feb 23 02:49:43 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Evolutionary algorithms Micro-changing decision and macro-changing decision Intensity of environmental change Evolutionary information feedback |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-6213230f7997bdd1366c79d4f7f8d0107bc44adcec559addda3a635357d79b3d3 |
| ORCID | 0000-0001-7222-4917 |
| OpenAccessLink | https://dora.dmu.ac.uk/handle/2086/19403 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2020_02_071 crossref_citationtrail_10_1016_j_ins_2020_02_071 elsevier_sciencedirect_doi_10_1016_j_ins_2020_02_071 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Li, Zhang (bib0007) 2008; 13 Muruganantham, Tan, Vadakkepat (bib0008) 2015; 46 Branke (bib0024) 1999; vol. 3 Ruan, Yu, Zheng, Zou, Yang (bib0023) 2017; 58 Jiang, Kaiser, Yang, Kollias, Krasnogor (bib0018) 2019 Ou, Zheng, Ruan, Hu, Zou, Li, Yang, Tan (bib0030) 2019 Peng, Zheng, Zou, Liu (bib0038) 2015; 19 Li, Tong, Li (bib0004) 2014; 45 Branke, Kaußler, Smidt, Schmeck (bib0025) 2000 Liu, Zhu, Li, Li, Zheng, Li (bib0032) 2020; 509 Rong, Gong, Pedrycz, Wang (bib0027) 2019 Wilcoxon (bib0037) 1992 Eaton, Yang, Gongora (bib0010) 2017; 18 Zou, Li, Yang, Zheng, Peng, Pei (bib0020) 2019; 44 Zou, Zhang, Yang, Liu, Zheng (bib0039) 2018; 64 Xu, Tan, Zheng, Li (bib0031) 2018; 8 Han, Gong, Jin, Pan (bib0003) 2016; 42 Deb, Karthik (bib0022) 2007 Goh, Tan (bib0035) 2008; 13 Jiang, Yang (bib0017) 2016; 47 Yan, Cai, Ning, ShangGuan (bib0014) 2015; 17 Mashwani, Salhi (bib0016) 2016; 39 Wu, Ma, Wang (bib0015) 2015; 19 Nachar (bib0033) 2008; 4 Liu, Gong, Sun, Jin (bib0002) 2017; 47 Mavrovouniotis, Müller, Yang (bib0012) 2016; 47 Wang, Liu, Jin (bib0011) 2017; 79 Liang, Zheng, Zhu, Yang (bib0021) 2019; 485 Guo, Cheng, Luo, Gong, Xue (bib0009) 2017; 15 Zhou, Jin, Zhang (bib0026) 2013; 44 Zimmerman (bib0034) 1987; 55 Zhang, Li (bib0036) 2007; 11 Wang, Li, Yen, Song (bib0040) 2014; 45 Xiong, Zhou, Tian, Liao, Shi (bib0005) 2017; 13 Jiang, Huang, Qiu, Huang, Yen (bib0006) 2017; 22 Li, Deb, Zhang, Kwong (bib0001) 2014; 19 Liu (bib0013) 2015; 46 Farina, Deb, Amato (bib0028) 2004; 8 Deb, Pratap, Agarwal, Meyarivan (bib0029) 2002; 6 Jiang, Yang (bib0019) 2016; 21 Wu (10.1016/j.ins.2020.02.071_bib0015) 2015; 19 Wilcoxon (10.1016/j.ins.2020.02.071_bib0037) 1992 Eaton (10.1016/j.ins.2020.02.071_bib0010) 2017; 18 Peng (10.1016/j.ins.2020.02.071_bib0038) 2015; 19 Mashwani (10.1016/j.ins.2020.02.071_bib0016) 2016; 39 Zou (10.1016/j.ins.2020.02.071_bib0039) 2018; 64 Ou (10.1016/j.ins.2020.02.071_bib0030) 2019 Nachar (10.1016/j.ins.2020.02.071_bib0033) 2008; 4 Zimmerman (10.1016/j.ins.2020.02.071_bib0034) 1987; 55 Jiang (10.1016/j.ins.2020.02.071_bib0019) 2016; 21 Branke (10.1016/j.ins.2020.02.071_bib0024) 1999; vol. 3 Farina (10.1016/j.ins.2020.02.071_bib0028) 2004; 8 Li (10.1016/j.ins.2020.02.071_bib0001) 2014; 19 Han (10.1016/j.ins.2020.02.071_bib0003) 2016; 42 Mavrovouniotis (10.1016/j.ins.2020.02.071_bib0012) 2016; 47 Li (10.1016/j.ins.2020.02.071_bib0007) 2008; 13 Xiong (10.1016/j.ins.2020.02.071_bib0005) 2017; 13 Wang (10.1016/j.ins.2020.02.071_bib0011) 2017; 79 Li (10.1016/j.ins.2020.02.071_bib0004) 2014; 45 Liu (10.1016/j.ins.2020.02.071_bib0002) 2017; 47 Yan (10.1016/j.ins.2020.02.071_bib0014) 2015; 17 Jiang (10.1016/j.ins.2020.02.071_bib0018) 2019 Ruan (10.1016/j.ins.2020.02.071_bib0023) 2017; 58 Zhang (10.1016/j.ins.2020.02.071_bib0036) 2007; 11 Jiang (10.1016/j.ins.2020.02.071_bib0006) 2017; 22 Wang (10.1016/j.ins.2020.02.071_bib0040) 2014; 45 Xu (10.1016/j.ins.2020.02.071_bib0031) 2018; 8 Muruganantham (10.1016/j.ins.2020.02.071_bib0008) 2015; 46 Jiang (10.1016/j.ins.2020.02.071_bib0017) 2016; 47 Liu (10.1016/j.ins.2020.02.071_bib0013) 2015; 46 Rong (10.1016/j.ins.2020.02.071_bib0027) 2019 Guo (10.1016/j.ins.2020.02.071_bib0009) 2017; 15 Deb (10.1016/j.ins.2020.02.071_bib0029) 2002; 6 Zou (10.1016/j.ins.2020.02.071_bib0020) 2019; 44 Goh (10.1016/j.ins.2020.02.071_bib0035) 2008; 13 Branke (10.1016/j.ins.2020.02.071_bib0025) 2000 Liu (10.1016/j.ins.2020.02.071_bib0032) 2020; 509 Deb (10.1016/j.ins.2020.02.071_bib0022) 2007 Liang (10.1016/j.ins.2020.02.071_bib0021) 2019; 485 Zhou (10.1016/j.ins.2020.02.071_bib0026) 2013; 44 |
| References_xml | – year: 2019 ident: bib0027 article-title: A multi-model prediction method for dynamic multi-objective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – volume: 64 start-page: 186 year: 2018 end-page: 198 ident: bib0039 article-title: Adaptive neighborhood selection for many-objective optimization problems publication-title: Appl. Soft Comput. – volume: 79 start-page: 279 year: 2017 end-page: 290 ident: bib0011 article-title: A multi-objective evolutionary algorithm guided by directed search for dynamic scheduling publication-title: Comput. Oper. Res. – volume: 21 start-page: 65 year: 2016 end-page: 82 ident: bib0019 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 46 start-page: 1217 year: 2015 end-page: 1228 ident: bib0013 article-title: Robotic online path planning on point cloud publication-title: IEEE Trans. Cybern. – start-page: 299 year: 2000 end-page: 307 ident: bib0025 article-title: A multi-population approach to dynamic optimization problems publication-title: Evolutionary Design and Manufacture – volume: 45 start-page: 138 year: 2014 end-page: 149 ident: bib0004 article-title: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems publication-title: IEEE Trans. Cybern. – volume: 46 start-page: 2862 year: 2015 end-page: 2873 ident: bib0008 article-title: Evolutionary dynamic multiobjective optimization via Kalman filter prediction publication-title: IEEE Trans. Cybern. – volume: 15 start-page: 1891 year: 2017 end-page: 1903 ident: bib0009 article-title: Robust dynamic multi-objective vehicle routing optimization method publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – volume: 44 start-page: 247 year: 2019 end-page: 259 ident: bib0020 article-title: A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model publication-title: Swarm Evol. Comput. – start-page: 196 year: 1992 end-page: 202 ident: bib0037 article-title: Individual comparisons by ranking methods publication-title: Breakthroughs in Statistics – volume: 45 start-page: 830 year: 2014 end-page: 843 ident: bib0040 article-title: Mommop: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems publication-title: IEEE Trans. Cybern. – volume: vol. 3 start-page: 1875 year: 1999 end-page: 1882 ident: bib0024 article-title: Memory enhanced evolutionary algorithms for changing optimization problems publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) – volume: 44 start-page: 40 year: 2013 end-page: 53 ident: bib0026 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 22 start-page: 501 year: 2017 end-page: 514 ident: bib0006 article-title: Transfer learning-based dynamic multiobjective optimization algorithms publication-title: IEEE Trans. Evol. Comput. – start-page: 803 year: 2007 end-page: 817 ident: bib0022 article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling publication-title: International Conference on Evolutionary Multi-Criterion Optimization – volume: 13 start-page: 103 year: 2008 end-page: 127 ident: bib0035 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 39 start-page: 292 year: 2016 end-page: 309 ident: bib0016 article-title: Multiobjective evolutionary algorithm based on multimethod with dynamic resources allocation publication-title: Appl. Soft Comput. – start-page: 1 year: 2019 end-page: 13 ident: bib0018 article-title: A scalable test suite for dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 8 start-page: 1673 year: 2018 ident: bib0031 article-title: Memory-enhanced dynamic multi-objective evolutionary algorithm based on lp decomposition publication-title: Appl. Sci. – volume: 19 start-page: 2633 year: 2015 end-page: 2653 ident: bib0038 article-title: Novel prediction and memory strategies for dynamic multiobjective optimization publication-title: Soft Comput. – volume: 19 start-page: 694 year: 2014 end-page: 716 ident: bib0001 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 509 start-page: 376 year: 2020 end-page: 399 ident: bib0032 article-title: An angle dominance criterion for evolutionary many-objective optimization publication-title: Inf. Sci. – volume: 17 start-page: 1258 year: 2015 end-page: 1270 ident: bib0014 article-title: Moving horizon optimization of dynamic trajectory planning for high-speed train operation publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 18 start-page: 2980 year: 2017 end-page: 2992 ident: bib0010 article-title: Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 47 start-page: 198 year: 2016 end-page: 211 ident: bib0017 article-title: Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons publication-title: IEEE Trans. Cybern. – volume: 47 start-page: 2689 year: 2017 end-page: 2702 ident: bib0002 article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy publication-title: IEEE Trans. Cybern. – start-page: 105673 year: 2019 ident: bib0030 article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization publication-title: Appl. Soft Comput. – volume: 42 start-page: 229 year: 2016 end-page: 245 ident: bib0003 article-title: Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time publication-title: Appl. Soft Comput. – volume: 4 start-page: 13 year: 2008 end-page: 20 ident: bib0033 article-title: The mann-whitney u: a test for assessing whether two independent samples come from the same distribution publication-title: Tutor. Quant. Methods Psychol. – volume: 47 start-page: 1743 year: 2016 end-page: 1756 ident: bib0012 article-title: Ant colony optimization with local search for dynamic traveling salesman problems publication-title: IEEE Trans. Cybern. – volume: 8 start-page: 425 year: 2004 end-page: 442 ident: bib0028 article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. – volume: 55 start-page: 171 year: 1987 end-page: 174 ident: bib0034 article-title: Comparative power of student publication-title: J. Exp. Educ. – volume: 13 start-page: 1189 year: 2017 end-page: 1211 ident: bib0005 article-title: A multi-objective approach for weapon selection and planning problems in dynamic environments publication-title: J. Ind. Manage. Opt. – volume: 58 start-page: 631 year: 2017 end-page: 647 ident: bib0023 article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization publication-title: Appl. Soft Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0029 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 1822 year: 2015 end-page: 1825 ident: bib0015 article-title: Joint user grouping and resource allocation for multi-user dual layer beamforming in lte-a publication-title: IEEE Commun. Lett. – volume: 13 start-page: 284 year: 2008 end-page: 302 ident: bib0007 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 485 start-page: 200 year: 2019 end-page: 218 ident: bib0021 article-title: Hybrid of memory and prediction strategies for dynamic multiobjective optimization publication-title: Inf. Sci. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib0036 article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – start-page: 196 year: 1992 ident: 10.1016/j.ins.2020.02.071_bib0037 article-title: Individual comparisons by ranking methods – volume: 79 start-page: 279 year: 2017 ident: 10.1016/j.ins.2020.02.071_bib0011 article-title: A multi-objective evolutionary algorithm guided by directed search for dynamic scheduling publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.04.024 – volume: 44 start-page: 40 issue: 1 year: 2013 ident: 10.1016/j.ins.2020.02.071_bib0026 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2245892 – volume: 21 start-page: 65 issue: 1 year: 2016 ident: 10.1016/j.ins.2020.02.071_bib0019 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2574621 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.ins.2020.02.071_bib0036 article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 18 start-page: 2980 issue: 11 year: 2017 ident: 10.1016/j.ins.2020.02.071_bib0010 article-title: Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2665042 – volume: 64 start-page: 186 year: 2018 ident: 10.1016/j.ins.2020.02.071_bib0039 article-title: Adaptive neighborhood selection for many-objective optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.041 – volume: 19 start-page: 1822 issue: 10 year: 2015 ident: 10.1016/j.ins.2020.02.071_bib0015 article-title: Joint user grouping and resource allocation for multi-user dual layer beamforming in lte-a publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2015.2458861 – volume: 47 start-page: 198 issue: 1 year: 2016 ident: 10.1016/j.ins.2020.02.071_bib0017 article-title: Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2510698 – volume: 13 start-page: 103 issue: 1 year: 2008 ident: 10.1016/j.ins.2020.02.071_bib0035 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 2633 issue: 9 year: 2015 ident: 10.1016/j.ins.2020.02.071_bib0038 article-title: Novel prediction and memory strategies for dynamic multiobjective optimization publication-title: Soft Comput. doi: 10.1007/s00500-014-1433-3 – start-page: 299 year: 2000 ident: 10.1016/j.ins.2020.02.071_bib0025 article-title: A multi-population approach to dynamic optimization problems – volume: 509 start-page: 376 year: 2020 ident: 10.1016/j.ins.2020.02.071_bib0032 article-title: An angle dominance criterion for evolutionary many-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.12.078 – volume: 19 start-page: 694 issue: 5 year: 2014 ident: 10.1016/j.ins.2020.02.071_bib0001 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2373386 – volume: 17 start-page: 1258 issue: 5 year: 2015 ident: 10.1016/j.ins.2020.02.071_bib0014 article-title: Moving horizon optimization of dynamic trajectory planning for high-speed train operation publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2499254 – year: 2019 ident: 10.1016/j.ins.2020.02.071_bib0027 article-title: A multi-model prediction method for dynamic multi-objective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – volume: 46 start-page: 2862 issue: 12 year: 2015 ident: 10.1016/j.ins.2020.02.071_bib0008 article-title: Evolutionary dynamic multiobjective optimization via Kalman filter prediction publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2490738 – volume: 46 start-page: 1217 issue: 5 year: 2015 ident: 10.1016/j.ins.2020.02.071_bib0013 article-title: Robotic online path planning on point cloud publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2430526 – volume: 44 start-page: 247 year: 2019 ident: 10.1016/j.ins.2020.02.071_bib0020 article-title: A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.03.010 – start-page: 1 year: 2019 ident: 10.1016/j.ins.2020.02.071_bib0018 article-title: A scalable test suite for dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 22 start-page: 501 issue: 4 year: 2017 ident: 10.1016/j.ins.2020.02.071_bib0006 article-title: Transfer learning-based dynamic multiobjective optimization algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2771451 – volume: 8 start-page: 425 issue: 5 year: 2004 ident: 10.1016/j.ins.2020.02.071_bib0028 article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.831456 – volume: 45 start-page: 138 issue: 1 year: 2014 ident: 10.1016/j.ins.2020.02.071_bib0004 article-title: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2333738 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.ins.2020.02.071_bib0029 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 55 start-page: 171 issue: 3 year: 1987 ident: 10.1016/j.ins.2020.02.071_bib0034 article-title: Comparative power of student t test and mann-whitney u test for unequal sample sizes and variances publication-title: J. Exp. Educ. doi: 10.1080/00220973.1987.10806451 – start-page: 803 year: 2007 ident: 10.1016/j.ins.2020.02.071_bib0022 article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling – volume: 8 start-page: 1673 issue: 9 year: 2018 ident: 10.1016/j.ins.2020.02.071_bib0031 article-title: Memory-enhanced dynamic multi-objective evolutionary algorithm based on lp decomposition publication-title: Appl. Sci. doi: 10.3390/app8091673 – volume: 58 start-page: 631 year: 2017 ident: 10.1016/j.ins.2020.02.071_bib0023 article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.008 – volume: 15 start-page: 1891 issue: 6 year: 2017 ident: 10.1016/j.ins.2020.02.071_bib0009 article-title: Robust dynamic multi-objective vehicle routing optimization method publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2017.2685320 – volume: vol. 3 start-page: 1875 year: 1999 ident: 10.1016/j.ins.2020.02.071_bib0024 article-title: Memory enhanced evolutionary algorithms for changing optimization problems – volume: 42 start-page: 229 year: 2016 ident: 10.1016/j.ins.2020.02.071_bib0003 article-title: Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.01.033 – volume: 47 start-page: 1743 issue: 7 year: 2016 ident: 10.1016/j.ins.2020.02.071_bib0012 article-title: Ant colony optimization with local search for dynamic traveling salesman problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2556742 – volume: 485 start-page: 200 year: 2019 ident: 10.1016/j.ins.2020.02.071_bib0021 article-title: Hybrid of memory and prediction strategies for dynamic multiobjective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.01.066 – volume: 39 start-page: 292 year: 2016 ident: 10.1016/j.ins.2020.02.071_bib0016 article-title: Multiobjective evolutionary algorithm based on multimethod with dynamic resources allocation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.08.059 – volume: 4 start-page: 13 issue: 1 year: 2008 ident: 10.1016/j.ins.2020.02.071_bib0033 article-title: The mann-whitney u: a test for assessing whether two independent samples come from the same distribution publication-title: Tutor. Quant. Methods Psychol. doi: 10.20982/tqmp.04.1.p013 – volume: 45 start-page: 830 issue: 4 year: 2014 ident: 10.1016/j.ins.2020.02.071_bib0040 article-title: Mommop: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2337117 – volume: 13 start-page: 1189 issue: 3 year: 2017 ident: 10.1016/j.ins.2020.02.071_bib0005 article-title: A multi-objective approach for weapon selection and planning problems in dynamic environments publication-title: J. Ind. Manage. Opt. doi: 10.3934/jimo.2016068 – start-page: 105673 year: 2019 ident: 10.1016/j.ins.2020.02.071_bib0030 article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105673 – volume: 13 start-page: 284 issue: 2 year: 2008 ident: 10.1016/j.ins.2020.02.071_bib0007 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.925798 – volume: 47 start-page: 2689 issue: 9 year: 2017 ident: 10.1016/j.ins.2020.02.071_bib0002 article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2638902 |
| SSID | ssj0004766 |
| Score | 2.5054333 |
| Snippet | •This paper introduced U-test mechanism to test decision variable and market them into macro-changing decision and micro-changing decision.•An effective update... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 49 |
| SubjectTerms | Evolutionary algorithms Evolutionary information feedback Intensity of environmental change Micro-changing decision and macro-changing decision |
| Title | A dynamic multi-objective evolutionary algorithm based on intensity of environmental change |
| URI | https://dx.doi.org/10.1016/j.ins.2020.02.071 |
| Volume | 523 |
| WOSCitedRecordID | wos000527016100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYq6AEOVXkJWkA-VBxYRUpiJ46PK0QFVYV6oGiBQ5TYDuxqSdA-0P78jh95sBRUDr1EkbV2spkv83BmvkHoGwkyKgrKPZUkytMdjb0sFMxjUZyBtSpiYmqrrn6yi4tkMOC_3J7u1LQTYGWZLBb88b-KGsZA2Lp09h3ibhaFATgHocMRxA7HfxJ8vydtl3mbLOhV-cgqtZ56chfWmXLZ-K6aDGf3Dz1tyGTPpDyadHabo9GpgNMUInURQuPJujomAx9nRqctRoxmzybzdl9audTfYXk_b0zBTTW3pSEtRq_rDWw9YwHgvetuTIR-m0DVFArAWGhZeGtlG4Wkoy4tW6kzvFYrv1DpdndhBHGIZlcPfUOxatu2PKfPXjJrTbJhncc2SmGJVC-R-mHqa-KB1ZBFHHThav_8dPCjradl9ht3_Qfqr-EmL3DpPv7uz3R8lMvP6JMLLnDfgmIDfVDlJlrvUE5uogNXqIKPcEeC2Kn4LXTbxw4-eAk-uAsf3MAHG_hgWKOBD64K_Aw-2MJnG_3-fnp5cua5BhyeINSfeXEYEAhRC8Y5y6UMSBwLxiUtWJFICORZLijNpFAC4lIwlDIjGTiwJGKS8ZxIsoNWyqpUuwgLSRiEpiriNKZcJBAtQaQQ5EUeRyrgag_59WNMhWOn101Sxumr4ttDx82UR0vN8taPaS2b1L0U1mdMAWevT_vynmt8RWvte7CPVmaTuTpAH8XTbDidHDqQ_QHEf5yl |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+multi-objective+evolutionary+algorithm+based+on+intensity+of+environmental+change&rft.jtitle=Information+sciences&rft.au=Hu%2C+Yaru&rft.au=Zheng%2C+Jinhua&rft.au=Zou%2C+Juan&rft.au=Yang%2C+Shengxiang&rft.date=2020-06-01&rft.issn=0020-0255&rft.volume=523&rft.spage=49&rft.epage=62&rft_id=info:doi/10.1016%2Fj.ins.2020.02.071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2020_02_071 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |