A dynamic multi-objective evolutionary algorithm based on intensity of environmental change

•This paper introduced U-test mechanism to test decision variable and market them into macro-changing decision and micro-changing decision.•An effective update mechanism based on historical information was proposed to improve the convergence of population.•Two different parts including macro-changin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 523; s. 49 - 62
Hlavní autoři: Hu, Yaru, Zheng, Jinhua, Zou, Juan, Yang, Shengxiang, Ou, Junwei, Wang, Rui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.06.2020
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •This paper introduced U-test mechanism to test decision variable and market them into macro-changing decision and micro-changing decision.•An effective update mechanism based on historical information was proposed to improve the convergence of population.•Two different parts including macro-changing decision and micro-changing decision were implemented to produce better solutions.•The statistical results show that the proposed algorithm is very competitive in terms of convergence and diversity as well as the response speed to changes, when compared with four other state-of-the-art methods. This paper proposes a novel evolutionary algorithm based on the intensity of environmental change (IEC) to effectively track the moving Pareto-optimal front (POF) or Pareto-optimal set (POS) in dynamic optimization. The IEC divides each individual into two parts according to the evolutionary information feedback from the POS in the current and former evolutionary environment when an environmental change is detected. Two parts, the micro-changing decision and macro-changing decision, are implemented upon different situations of decision components in order to build an efficient information exchange among dynamic environments. In addition, in our algorithm, if a new evolutionary environment is similar to its historical evolutionary environment, the history information will be used for reference to guide the search towards promising decision regions. In order to verify the availability of our idea, the IEC has been extensively compared with four state-of-the-art algorithms over a range of test suites with different features and difficulties. Experimental results show that the proposed IEC is promising.
AbstractList •This paper introduced U-test mechanism to test decision variable and market them into macro-changing decision and micro-changing decision.•An effective update mechanism based on historical information was proposed to improve the convergence of population.•Two different parts including macro-changing decision and micro-changing decision were implemented to produce better solutions.•The statistical results show that the proposed algorithm is very competitive in terms of convergence and diversity as well as the response speed to changes, when compared with four other state-of-the-art methods. This paper proposes a novel evolutionary algorithm based on the intensity of environmental change (IEC) to effectively track the moving Pareto-optimal front (POF) or Pareto-optimal set (POS) in dynamic optimization. The IEC divides each individual into two parts according to the evolutionary information feedback from the POS in the current and former evolutionary environment when an environmental change is detected. Two parts, the micro-changing decision and macro-changing decision, are implemented upon different situations of decision components in order to build an efficient information exchange among dynamic environments. In addition, in our algorithm, if a new evolutionary environment is similar to its historical evolutionary environment, the history information will be used for reference to guide the search towards promising decision regions. In order to verify the availability of our idea, the IEC has been extensively compared with four state-of-the-art algorithms over a range of test suites with different features and difficulties. Experimental results show that the proposed IEC is promising.
Author Yang, Shengxiang
Zou, Juan
Hu, Yaru
Zheng, Jinhua
Ou, Junwei
Wang, Rui
Author_xml – sequence: 1
  givenname: Yaru
  surname: Hu
  fullname: Hu, Yaru
  organization: The Department of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
– sequence: 2
  givenname: Jinhua
  surname: Zheng
  fullname: Zheng, Jinhua
  email: jhzheng@xtu.edu.cn
  organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China
– sequence: 3
  givenname: Juan
  surname: Zou
  fullname: Zou, Juan
  email: zoujuan@xtu.edu.cn
  organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China
– sequence: 4
  givenname: Shengxiang
  orcidid: 0000-0001-7222-4917
  surname: Yang
  fullname: Yang, Shengxiang
  email: syang@dmu.ac.uk
  organization: School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, U.K
– sequence: 5
  givenname: Junwei
  surname: Ou
  fullname: Ou, Junwei
  email: junweiou@163.com
  organization: Key Laboratory of Intelligent Computing and Information Processing (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105, China
– sequence: 6
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  email: ruiwangnudt@gmail.com
  organization: College of systems Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China
BookMark eNp9kL1qwzAUhUVJoUnaB-imF7B7JdlWTKcQ-geBLu3UQciSnCjYUpEUQ96-Cu3UIdMdLt_hnG-BZs47g9A9gZIAaR4OpXWxpEChBFoCJ1doTlacFg1tyQzNIX8KoHV9gxYxHgCg4k0zR19rrE9Ojlbh8TgkW_juYFSyk8Fm8sMxWe9kOGE57HywaT_iTkajsXfYumRctOmEfY-Nm2zwbjQuyQGrvXQ7c4uuezlEc_d3l-jz-elj81ps31_eNuttoVgFKTckjDLoedvyTmvCmkbxVlc971caCPBOVZXUyqi6bqXWWjLZsJrVXPO2Y5otEfnNVcHHGEwvvoMdc2tBQJztiIPIdsTZjgAqsp3M8H-Mskme16Yg7XCRfPwlTZ40WRNEVNY4ZbQN2ZzQ3l6gfwBZ8oOi
CitedBy_id crossref_primary_10_1186_s40537_020_00398_3
crossref_primary_10_3390_app15158710
crossref_primary_10_1016_j_engappai_2023_105830
crossref_primary_10_1016_j_swevo_2025_102011
crossref_primary_10_1016_j_ins_2021_08_027
crossref_primary_10_1016_j_ins_2023_03_100
crossref_primary_10_1016_j_future_2024_07_028
crossref_primary_10_1016_j_asoc_2022_109605
crossref_primary_10_1016_j_asoc_2025_113113
crossref_primary_10_1016_j_swevo_2021_100987
crossref_primary_10_1016_j_ins_2024_121690
crossref_primary_10_1109_TEVC_2023_3234113
crossref_primary_10_1016_j_asoc_2023_110359
crossref_primary_10_1016_j_ins_2021_06_054
crossref_primary_10_1016_j_ins_2022_05_114
crossref_primary_10_3390_math10122117
crossref_primary_10_1016_j_asoc_2022_109892
crossref_primary_10_1016_j_swevo_2020_100786
crossref_primary_10_1016_j_swevo_2023_101356
crossref_primary_10_1109_TEVC_2022_3193287
crossref_primary_10_1016_j_eswa_2024_123344
crossref_primary_10_1016_j_eswa_2024_125765
crossref_primary_10_1109_TEVC_2023_3253850
crossref_primary_10_1016_j_engappai_2021_104210
crossref_primary_10_1109_TEVC_2023_3290485
crossref_primary_10_1016_j_ins_2022_09_022
crossref_primary_10_1016_j_afres_2025_100853
crossref_primary_10_1109_TCYB_2021_3128584
crossref_primary_10_1016_j_jfca_2025_107499
crossref_primary_10_1016_j_asoc_2024_111756
crossref_primary_10_1016_j_ins_2023_119495
crossref_primary_10_1016_j_ins_2025_122018
crossref_primary_10_1016_j_swevo_2024_101468
crossref_primary_10_1007_s40747_022_00745_2
crossref_primary_10_1017_S0269888924000079
crossref_primary_10_1007_s12083_021_01267_3
crossref_primary_10_3390_agronomy13122939
crossref_primary_10_3390_math8081223
Cites_doi 10.1016/j.cor.2016.04.024
10.1109/TCYB.2013.2245892
10.1109/TEVC.2016.2574621
10.1109/TEVC.2007.892759
10.1109/TITS.2017.2665042
10.1016/j.asoc.2017.11.041
10.1109/LCOMM.2015.2458861
10.1109/TCYB.2015.2510698
10.1007/s00500-014-1433-3
10.1016/j.ins.2018.12.078
10.1109/TEVC.2014.2373386
10.1109/TITS.2015.2499254
10.1109/TCYB.2015.2490738
10.1109/TCYB.2015.2430526
10.1016/j.swevo.2018.03.010
10.1109/TEVC.2017.2771451
10.1109/TEVC.2004.831456
10.1109/TCYB.2014.2333738
10.1109/4235.996017
10.1080/00220973.1987.10806451
10.3390/app8091673
10.1016/j.asoc.2017.05.008
10.1109/TCBB.2017.2685320
10.1016/j.asoc.2016.01.033
10.1109/TCYB.2016.2556742
10.1016/j.ins.2019.01.066
10.1016/j.asoc.2015.08.059
10.20982/tqmp.04.1.p013
10.1109/TCYB.2014.2337117
10.3934/jimo.2016068
10.1016/j.asoc.2019.105673
10.1109/TEVC.2008.925798
10.1109/TCYB.2016.2638902
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2020.02.071
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 62
ExternalDocumentID 10_1016_j_ins_2020_02_071
S0020025520301614
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c340t-6213230f7997bdd1366c79d4f7f8d0107bc44adcec559addda3a635357d79b3d3
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527016100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:30:03 EST 2025
Tue Nov 18 22:10:31 EST 2025
Fri Feb 23 02:49:43 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Evolutionary algorithms
Micro-changing decision and macro-changing decision
Intensity of environmental change
Evolutionary information feedback
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-6213230f7997bdd1366c79d4f7f8d0107bc44adcec559addda3a635357d79b3d3
ORCID 0000-0001-7222-4917
OpenAccessLink https://dora.dmu.ac.uk/handle/2086/19403
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_ins_2020_02_071
crossref_citationtrail_10_1016_j_ins_2020_02_071
elsevier_sciencedirect_doi_10_1016_j_ins_2020_02_071
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Li, Zhang (bib0007) 2008; 13
Muruganantham, Tan, Vadakkepat (bib0008) 2015; 46
Branke (bib0024) 1999; vol. 3
Ruan, Yu, Zheng, Zou, Yang (bib0023) 2017; 58
Jiang, Kaiser, Yang, Kollias, Krasnogor (bib0018) 2019
Ou, Zheng, Ruan, Hu, Zou, Li, Yang, Tan (bib0030) 2019
Peng, Zheng, Zou, Liu (bib0038) 2015; 19
Li, Tong, Li (bib0004) 2014; 45
Branke, Kaußler, Smidt, Schmeck (bib0025) 2000
Liu, Zhu, Li, Li, Zheng, Li (bib0032) 2020; 509
Rong, Gong, Pedrycz, Wang (bib0027) 2019
Wilcoxon (bib0037) 1992
Eaton, Yang, Gongora (bib0010) 2017; 18
Zou, Li, Yang, Zheng, Peng, Pei (bib0020) 2019; 44
Zou, Zhang, Yang, Liu, Zheng (bib0039) 2018; 64
Xu, Tan, Zheng, Li (bib0031) 2018; 8
Han, Gong, Jin, Pan (bib0003) 2016; 42
Deb, Karthik (bib0022) 2007
Goh, Tan (bib0035) 2008; 13
Jiang, Yang (bib0017) 2016; 47
Yan, Cai, Ning, ShangGuan (bib0014) 2015; 17
Mashwani, Salhi (bib0016) 2016; 39
Wu, Ma, Wang (bib0015) 2015; 19
Nachar (bib0033) 2008; 4
Liu, Gong, Sun, Jin (bib0002) 2017; 47
Mavrovouniotis, Müller, Yang (bib0012) 2016; 47
Wang, Liu, Jin (bib0011) 2017; 79
Liang, Zheng, Zhu, Yang (bib0021) 2019; 485
Guo, Cheng, Luo, Gong, Xue (bib0009) 2017; 15
Zhou, Jin, Zhang (bib0026) 2013; 44
Zimmerman (bib0034) 1987; 55
Zhang, Li (bib0036) 2007; 11
Wang, Li, Yen, Song (bib0040) 2014; 45
Xiong, Zhou, Tian, Liao, Shi (bib0005) 2017; 13
Jiang, Huang, Qiu, Huang, Yen (bib0006) 2017; 22
Li, Deb, Zhang, Kwong (bib0001) 2014; 19
Liu (bib0013) 2015; 46
Farina, Deb, Amato (bib0028) 2004; 8
Deb, Pratap, Agarwal, Meyarivan (bib0029) 2002; 6
Jiang, Yang (bib0019) 2016; 21
Wu (10.1016/j.ins.2020.02.071_bib0015) 2015; 19
Wilcoxon (10.1016/j.ins.2020.02.071_bib0037) 1992
Eaton (10.1016/j.ins.2020.02.071_bib0010) 2017; 18
Peng (10.1016/j.ins.2020.02.071_bib0038) 2015; 19
Mashwani (10.1016/j.ins.2020.02.071_bib0016) 2016; 39
Zou (10.1016/j.ins.2020.02.071_bib0039) 2018; 64
Ou (10.1016/j.ins.2020.02.071_bib0030) 2019
Nachar (10.1016/j.ins.2020.02.071_bib0033) 2008; 4
Zimmerman (10.1016/j.ins.2020.02.071_bib0034) 1987; 55
Jiang (10.1016/j.ins.2020.02.071_bib0019) 2016; 21
Branke (10.1016/j.ins.2020.02.071_bib0024) 1999; vol. 3
Farina (10.1016/j.ins.2020.02.071_bib0028) 2004; 8
Li (10.1016/j.ins.2020.02.071_bib0001) 2014; 19
Han (10.1016/j.ins.2020.02.071_bib0003) 2016; 42
Mavrovouniotis (10.1016/j.ins.2020.02.071_bib0012) 2016; 47
Li (10.1016/j.ins.2020.02.071_bib0007) 2008; 13
Xiong (10.1016/j.ins.2020.02.071_bib0005) 2017; 13
Wang (10.1016/j.ins.2020.02.071_bib0011) 2017; 79
Li (10.1016/j.ins.2020.02.071_bib0004) 2014; 45
Liu (10.1016/j.ins.2020.02.071_bib0002) 2017; 47
Yan (10.1016/j.ins.2020.02.071_bib0014) 2015; 17
Jiang (10.1016/j.ins.2020.02.071_bib0018) 2019
Ruan (10.1016/j.ins.2020.02.071_bib0023) 2017; 58
Zhang (10.1016/j.ins.2020.02.071_bib0036) 2007; 11
Jiang (10.1016/j.ins.2020.02.071_bib0006) 2017; 22
Wang (10.1016/j.ins.2020.02.071_bib0040) 2014; 45
Xu (10.1016/j.ins.2020.02.071_bib0031) 2018; 8
Muruganantham (10.1016/j.ins.2020.02.071_bib0008) 2015; 46
Jiang (10.1016/j.ins.2020.02.071_bib0017) 2016; 47
Liu (10.1016/j.ins.2020.02.071_bib0013) 2015; 46
Rong (10.1016/j.ins.2020.02.071_bib0027) 2019
Guo (10.1016/j.ins.2020.02.071_bib0009) 2017; 15
Deb (10.1016/j.ins.2020.02.071_bib0029) 2002; 6
Zou (10.1016/j.ins.2020.02.071_bib0020) 2019; 44
Goh (10.1016/j.ins.2020.02.071_bib0035) 2008; 13
Branke (10.1016/j.ins.2020.02.071_bib0025) 2000
Liu (10.1016/j.ins.2020.02.071_bib0032) 2020; 509
Deb (10.1016/j.ins.2020.02.071_bib0022) 2007
Liang (10.1016/j.ins.2020.02.071_bib0021) 2019; 485
Zhou (10.1016/j.ins.2020.02.071_bib0026) 2013; 44
References_xml – year: 2019
  ident: bib0027
  article-title: A multi-model prediction method for dynamic multi-objective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 64
  start-page: 186
  year: 2018
  end-page: 198
  ident: bib0039
  article-title: Adaptive neighborhood selection for many-objective optimization problems
  publication-title: Appl. Soft Comput.
– volume: 79
  start-page: 279
  year: 2017
  end-page: 290
  ident: bib0011
  article-title: A multi-objective evolutionary algorithm guided by directed search for dynamic scheduling
  publication-title: Comput. Oper. Res.
– volume: 21
  start-page: 65
  year: 2016
  end-page: 82
  ident: bib0019
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 46
  start-page: 1217
  year: 2015
  end-page: 1228
  ident: bib0013
  article-title: Robotic online path planning on point cloud
  publication-title: IEEE Trans. Cybern.
– start-page: 299
  year: 2000
  end-page: 307
  ident: bib0025
  article-title: A multi-population approach to dynamic optimization problems
  publication-title: Evolutionary Design and Manufacture
– volume: 45
  start-page: 138
  year: 2014
  end-page: 149
  ident: bib0004
  article-title: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems
  publication-title: IEEE Trans. Cybern.
– volume: 46
  start-page: 2862
  year: 2015
  end-page: 2873
  ident: bib0008
  article-title: Evolutionary dynamic multiobjective optimization via Kalman filter prediction
  publication-title: IEEE Trans. Cybern.
– volume: 15
  start-page: 1891
  year: 2017
  end-page: 1903
  ident: bib0009
  article-title: Robust dynamic multi-objective vehicle routing optimization method
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 44
  start-page: 247
  year: 2019
  end-page: 259
  ident: bib0020
  article-title: A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model
  publication-title: Swarm Evol. Comput.
– start-page: 196
  year: 1992
  end-page: 202
  ident: bib0037
  article-title: Individual comparisons by ranking methods
  publication-title: Breakthroughs in Statistics
– volume: 45
  start-page: 830
  year: 2014
  end-page: 843
  ident: bib0040
  article-title: Mommop: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems
  publication-title: IEEE Trans. Cybern.
– volume: vol. 3
  start-page: 1875
  year: 1999
  end-page: 1882
  ident: bib0024
  article-title: Memory enhanced evolutionary algorithms for changing optimization problems
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)
– volume: 44
  start-page: 40
  year: 2013
  end-page: 53
  ident: bib0026
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 22
  start-page: 501
  year: 2017
  end-page: 514
  ident: bib0006
  article-title: Transfer learning-based dynamic multiobjective optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 803
  year: 2007
  end-page: 817
  ident: bib0022
  article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 13
  start-page: 103
  year: 2008
  end-page: 127
  ident: bib0035
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 39
  start-page: 292
  year: 2016
  end-page: 309
  ident: bib0016
  article-title: Multiobjective evolutionary algorithm based on multimethod with dynamic resources allocation
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2019
  end-page: 13
  ident: bib0018
  article-title: A scalable test suite for dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 8
  start-page: 1673
  year: 2018
  ident: bib0031
  article-title: Memory-enhanced dynamic multi-objective evolutionary algorithm based on lp decomposition
  publication-title: Appl. Sci.
– volume: 19
  start-page: 2633
  year: 2015
  end-page: 2653
  ident: bib0038
  article-title: Novel prediction and memory strategies for dynamic multiobjective optimization
  publication-title: Soft Comput.
– volume: 19
  start-page: 694
  year: 2014
  end-page: 716
  ident: bib0001
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 509
  start-page: 376
  year: 2020
  end-page: 399
  ident: bib0032
  article-title: An angle dominance criterion for evolutionary many-objective optimization
  publication-title: Inf. Sci.
– volume: 17
  start-page: 1258
  year: 2015
  end-page: 1270
  ident: bib0014
  article-title: Moving horizon optimization of dynamic trajectory planning for high-speed train operation
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 18
  start-page: 2980
  year: 2017
  end-page: 2992
  ident: bib0010
  article-title: Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 47
  start-page: 198
  year: 2016
  end-page: 211
  ident: bib0017
  article-title: Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons
  publication-title: IEEE Trans. Cybern.
– volume: 47
  start-page: 2689
  year: 2017
  end-page: 2702
  ident: bib0002
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
– start-page: 105673
  year: 2019
  ident: bib0030
  article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 42
  start-page: 229
  year: 2016
  end-page: 245
  ident: bib0003
  article-title: Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time
  publication-title: Appl. Soft Comput.
– volume: 4
  start-page: 13
  year: 2008
  end-page: 20
  ident: bib0033
  article-title: The mann-whitney u: a test for assessing whether two independent samples come from the same distribution
  publication-title: Tutor. Quant. Methods Psychol.
– volume: 47
  start-page: 1743
  year: 2016
  end-page: 1756
  ident: bib0012
  article-title: Ant colony optimization with local search for dynamic traveling salesman problems
  publication-title: IEEE Trans. Cybern.
– volume: 8
  start-page: 425
  year: 2004
  end-page: 442
  ident: bib0028
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
– volume: 55
  start-page: 171
  year: 1987
  end-page: 174
  ident: bib0034
  article-title: Comparative power of student
  publication-title: J. Exp. Educ.
– volume: 13
  start-page: 1189
  year: 2017
  end-page: 1211
  ident: bib0005
  article-title: A multi-objective approach for weapon selection and planning problems in dynamic environments
  publication-title: J. Ind. Manage. Opt.
– volume: 58
  start-page: 631
  year: 2017
  end-page: 647
  ident: bib0023
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0029
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 1822
  year: 2015
  end-page: 1825
  ident: bib0015
  article-title: Joint user grouping and resource allocation for multi-user dual layer beamforming in lte-a
  publication-title: IEEE Commun. Lett.
– volume: 13
  start-page: 284
  year: 2008
  end-page: 302
  ident: bib0007
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 485
  start-page: 200
  year: 2019
  end-page: 218
  ident: bib0021
  article-title: Hybrid of memory and prediction strategies for dynamic multiobjective optimization
  publication-title: Inf. Sci.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0036
  article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 196
  year: 1992
  ident: 10.1016/j.ins.2020.02.071_bib0037
  article-title: Individual comparisons by ranking methods
– volume: 79
  start-page: 279
  year: 2017
  ident: 10.1016/j.ins.2020.02.071_bib0011
  article-title: A multi-objective evolutionary algorithm guided by directed search for dynamic scheduling
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.04.024
– volume: 44
  start-page: 40
  issue: 1
  year: 2013
  ident: 10.1016/j.ins.2020.02.071_bib0026
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2245892
– volume: 21
  start-page: 65
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2020.02.071_bib0019
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2574621
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.ins.2020.02.071_bib0036
  article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 18
  start-page: 2980
  issue: 11
  year: 2017
  ident: 10.1016/j.ins.2020.02.071_bib0010
  article-title: Ant colony optimization for simulated dynamic multi-objective railway junction rescheduling
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2665042
– volume: 64
  start-page: 186
  year: 2018
  ident: 10.1016/j.ins.2020.02.071_bib0039
  article-title: Adaptive neighborhood selection for many-objective optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.041
– volume: 19
  start-page: 1822
  issue: 10
  year: 2015
  ident: 10.1016/j.ins.2020.02.071_bib0015
  article-title: Joint user grouping and resource allocation for multi-user dual layer beamforming in lte-a
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2015.2458861
– volume: 47
  start-page: 198
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2020.02.071_bib0017
  article-title: Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2510698
– volume: 13
  start-page: 103
  issue: 1
  year: 2008
  ident: 10.1016/j.ins.2020.02.071_bib0035
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 2633
  issue: 9
  year: 2015
  ident: 10.1016/j.ins.2020.02.071_bib0038
  article-title: Novel prediction and memory strategies for dynamic multiobjective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1433-3
– start-page: 299
  year: 2000
  ident: 10.1016/j.ins.2020.02.071_bib0025
  article-title: A multi-population approach to dynamic optimization problems
– volume: 509
  start-page: 376
  year: 2020
  ident: 10.1016/j.ins.2020.02.071_bib0032
  article-title: An angle dominance criterion for evolutionary many-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.12.078
– volume: 19
  start-page: 694
  issue: 5
  year: 2014
  ident: 10.1016/j.ins.2020.02.071_bib0001
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2373386
– volume: 17
  start-page: 1258
  issue: 5
  year: 2015
  ident: 10.1016/j.ins.2020.02.071_bib0014
  article-title: Moving horizon optimization of dynamic trajectory planning for high-speed train operation
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2499254
– year: 2019
  ident: 10.1016/j.ins.2020.02.071_bib0027
  article-title: A multi-model prediction method for dynamic multi-objective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 46
  start-page: 2862
  issue: 12
  year: 2015
  ident: 10.1016/j.ins.2020.02.071_bib0008
  article-title: Evolutionary dynamic multiobjective optimization via Kalman filter prediction
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2490738
– volume: 46
  start-page: 1217
  issue: 5
  year: 2015
  ident: 10.1016/j.ins.2020.02.071_bib0013
  article-title: Robotic online path planning on point cloud
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2430526
– volume: 44
  start-page: 247
  year: 2019
  ident: 10.1016/j.ins.2020.02.071_bib0020
  article-title: A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.03.010
– start-page: 1
  year: 2019
  ident: 10.1016/j.ins.2020.02.071_bib0018
  article-title: A scalable test suite for dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 22
  start-page: 501
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2020.02.071_bib0006
  article-title: Transfer learning-based dynamic multiobjective optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2771451
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: 10.1016/j.ins.2020.02.071_bib0028
  article-title: Dynamic multiobjective optimization problems: test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.831456
– volume: 45
  start-page: 138
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2020.02.071_bib0004
  article-title: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2333738
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2020.02.071_bib0029
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 55
  start-page: 171
  issue: 3
  year: 1987
  ident: 10.1016/j.ins.2020.02.071_bib0034
  article-title: Comparative power of student t test and mann-whitney u test for unequal sample sizes and variances
  publication-title: J. Exp. Educ.
  doi: 10.1080/00220973.1987.10806451
– start-page: 803
  year: 2007
  ident: 10.1016/j.ins.2020.02.071_bib0022
  article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling
– volume: 8
  start-page: 1673
  issue: 9
  year: 2018
  ident: 10.1016/j.ins.2020.02.071_bib0031
  article-title: Memory-enhanced dynamic multi-objective evolutionary algorithm based on lp decomposition
  publication-title: Appl. Sci.
  doi: 10.3390/app8091673
– volume: 58
  start-page: 631
  year: 2017
  ident: 10.1016/j.ins.2020.02.071_bib0023
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.008
– volume: 15
  start-page: 1891
  issue: 6
  year: 2017
  ident: 10.1016/j.ins.2020.02.071_bib0009
  article-title: Robust dynamic multi-objective vehicle routing optimization method
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2017.2685320
– volume: vol. 3
  start-page: 1875
  year: 1999
  ident: 10.1016/j.ins.2020.02.071_bib0024
  article-title: Memory enhanced evolutionary algorithms for changing optimization problems
– volume: 42
  start-page: 229
  year: 2016
  ident: 10.1016/j.ins.2020.02.071_bib0003
  article-title: Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.01.033
– volume: 47
  start-page: 1743
  issue: 7
  year: 2016
  ident: 10.1016/j.ins.2020.02.071_bib0012
  article-title: Ant colony optimization with local search for dynamic traveling salesman problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2556742
– volume: 485
  start-page: 200
  year: 2019
  ident: 10.1016/j.ins.2020.02.071_bib0021
  article-title: Hybrid of memory and prediction strategies for dynamic multiobjective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.01.066
– volume: 39
  start-page: 292
  year: 2016
  ident: 10.1016/j.ins.2020.02.071_bib0016
  article-title: Multiobjective evolutionary algorithm based on multimethod with dynamic resources allocation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.059
– volume: 4
  start-page: 13
  issue: 1
  year: 2008
  ident: 10.1016/j.ins.2020.02.071_bib0033
  article-title: The mann-whitney u: a test for assessing whether two independent samples come from the same distribution
  publication-title: Tutor. Quant. Methods Psychol.
  doi: 10.20982/tqmp.04.1.p013
– volume: 45
  start-page: 830
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2020.02.071_bib0040
  article-title: Mommop: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2337117
– volume: 13
  start-page: 1189
  issue: 3
  year: 2017
  ident: 10.1016/j.ins.2020.02.071_bib0005
  article-title: A multi-objective approach for weapon selection and planning problems in dynamic environments
  publication-title: J. Ind. Manage. Opt.
  doi: 10.3934/jimo.2016068
– start-page: 105673
  year: 2019
  ident: 10.1016/j.ins.2020.02.071_bib0030
  article-title: A pareto-based evolutionary algorithm using decomposition and truncation for dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105673
– volume: 13
  start-page: 284
  issue: 2
  year: 2008
  ident: 10.1016/j.ins.2020.02.071_bib0007
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– volume: 47
  start-page: 2689
  issue: 9
  year: 2017
  ident: 10.1016/j.ins.2020.02.071_bib0002
  article-title: A many-objective evolutionary algorithm using a one-by-one selection strategy
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2638902
SSID ssj0004766
Score 2.5054333
Snippet •This paper introduced U-test mechanism to test decision variable and market them into macro-changing decision and micro-changing decision.•An effective update...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms Evolutionary algorithms
Evolutionary information feedback
Intensity of environmental change
Micro-changing decision and macro-changing decision
Title A dynamic multi-objective evolutionary algorithm based on intensity of environmental change
URI https://dx.doi.org/10.1016/j.ins.2020.02.071
Volume 523
WOSCitedRecordID wos000527016100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYq6AEOVXkJWkA-VBxYRUpiJ46PK0QFVYV6oGiBQ5TYDuxqSdA-0P78jh95sBRUDr1EkbV2spkv83BmvkHoGwkyKgrKPZUkytMdjb0sFMxjUZyBtSpiYmqrrn6yi4tkMOC_3J7u1LQTYGWZLBb88b-KGsZA2Lp09h3ibhaFATgHocMRxA7HfxJ8vydtl3mbLOhV-cgqtZ56chfWmXLZ-K6aDGf3Dz1tyGTPpDyadHabo9GpgNMUInURQuPJujomAx9nRqctRoxmzybzdl9audTfYXk_b0zBTTW3pSEtRq_rDWw9YwHgvetuTIR-m0DVFArAWGhZeGtlG4Wkoy4tW6kzvFYrv1DpdndhBHGIZlcPfUOxatu2PKfPXjJrTbJhncc2SmGJVC-R-mHqa-KB1ZBFHHThav_8dPCjradl9ht3_Qfqr-EmL3DpPv7uz3R8lMvP6JMLLnDfgmIDfVDlJlrvUE5uogNXqIKPcEeC2Kn4LXTbxw4-eAk-uAsf3MAHG_hgWKOBD64K_Aw-2MJnG_3-fnp5cua5BhyeINSfeXEYEAhRC8Y5y6UMSBwLxiUtWJFICORZLijNpFAC4lIwlDIjGTiwJGKS8ZxIsoNWyqpUuwgLSRiEpiriNKZcJBAtQaQQ5EUeRyrgag_59WNMhWOn101Sxumr4ttDx82UR0vN8taPaS2b1L0U1mdMAWevT_vynmt8RWvte7CPVmaTuTpAH8XTbDidHDqQ_QHEf5yl
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+multi-objective+evolutionary+algorithm+based+on+intensity+of+environmental+change&rft.jtitle=Information+sciences&rft.au=Hu%2C+Yaru&rft.au=Zheng%2C+Jinhua&rft.au=Zou%2C+Juan&rft.au=Yang%2C+Shengxiang&rft.date=2020-06-01&rft.issn=0020-0255&rft.volume=523&rft.spage=49&rft.epage=62&rft_id=info:doi/10.1016%2Fj.ins.2020.02.071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2020_02_071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon