Granular counting of uncertain data

We propose a definition of granular count realized in the presence of uncertain data modeled through possibility distributions. We show that the resulting counts are fuzzy intervals in the domain of natural numbers. Based on this result, we devise two algorithms for granular counting: an exact count...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy sets and systems Jg. 387; S. 108 - 126
Hauptverfasser: Mencar, C., Pedrycz, W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 15.05.2020
Schlagworte:
ISSN:0165-0114
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a definition of granular count realized in the presence of uncertain data modeled through possibility distributions. We show that the resulting counts are fuzzy intervals in the domain of natural numbers. Based on this result, we devise two algorithms for granular counting: an exact counting algorithm with quadratic-time complexity and an approximate counting algorithm with linear-time complexity. We compare the two algorithms on synthetic data and show their application to a Bioinformatics scenario concerning the assessment of gene expressions in cells.
ISSN:0165-0114
DOI:10.1016/j.fss.2019.04.018