A space–time-energy flow-based integer programming model to design and operate a regional shared automated electric vehicle (SAEV) system and corresponding charging network
•We propose a space–time-energy flow-based integer program to design SAEV systems.•Optimization of fleet (size and composition) and chargers (types and location)•Model applicability and insights demonstrated using a real-world case study.•Detailed assessment of the impact of vehicle range on the opt...
Uloženo v:
| Vydáno v: | Transportation research. Part C, Emerging technologies Ročník 147; s. 103997 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.02.2023
|
| Témata: | |
| ISSN: | 0968-090X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •We propose a space–time-energy flow-based integer program to design SAEV systems.•Optimization of fleet (size and composition) and chargers (types and location)•Model applicability and insights demonstrated using a real-world case study.•Detailed assessment of the impact of vehicle range on the optimal system design.•Benefits of optimizing fleet and charging decisions simultaneously.
Shared automated vehicles are expected to be part of the supply of transportation systems in the future. Parallel to this evolution, there is the rapid penetration of battery electric vehicles (BEVs). The limitations in battery capacity and charging speed of BEVs can influence the planning and operation of shared automated electric vehicle (SAEV) systems. The design of such systems needs to include these limitations so that their viability is properly estimated. In this paper, we develop a space–time-energy flow-based integer programming (IP) model in support of the strategic design of a regional SAEV system. The proposed approach optimizes the fleet (size and composition) and charging facilities (number and location), while explicitly accounting for vehicle operations in aggregated terms (including movements with users, relocations, and charging times). The model is used to assess the impact of vehicle range and different types of chargers in the optimal design of an interurban SAEV transport system in the center of Portugal. Results show a reduction in profit as the vehicle range increases. In regards to energy, it is observed that the adoption of long-range vehicles reduces the energy spent in relocations, and increases the amount of energy charged at a lower price. Additionally, it is found that a system with long-range vehicles does not take advantage of having fast chargers. Concerning the chargers’ optimal location, systems using short-range vehicles have more chargers close to the main commuter trips attracting cities, while systems with long-range vehicles have the chargers nearby the homes of users. |
|---|---|
| AbstractList | •We propose a space–time-energy flow-based integer program to design SAEV systems.•Optimization of fleet (size and composition) and chargers (types and location)•Model applicability and insights demonstrated using a real-world case study.•Detailed assessment of the impact of vehicle range on the optimal system design.•Benefits of optimizing fleet and charging decisions simultaneously.
Shared automated vehicles are expected to be part of the supply of transportation systems in the future. Parallel to this evolution, there is the rapid penetration of battery electric vehicles (BEVs). The limitations in battery capacity and charging speed of BEVs can influence the planning and operation of shared automated electric vehicle (SAEV) systems. The design of such systems needs to include these limitations so that their viability is properly estimated. In this paper, we develop a space–time-energy flow-based integer programming (IP) model in support of the strategic design of a regional SAEV system. The proposed approach optimizes the fleet (size and composition) and charging facilities (number and location), while explicitly accounting for vehicle operations in aggregated terms (including movements with users, relocations, and charging times). The model is used to assess the impact of vehicle range and different types of chargers in the optimal design of an interurban SAEV transport system in the center of Portugal. Results show a reduction in profit as the vehicle range increases. In regards to energy, it is observed that the adoption of long-range vehicles reduces the energy spent in relocations, and increases the amount of energy charged at a lower price. Additionally, it is found that a system with long-range vehicles does not take advantage of having fast chargers. Concerning the chargers’ optimal location, systems using short-range vehicles have more chargers close to the main commuter trips attracting cities, while systems with long-range vehicles have the chargers nearby the homes of users. |
| ArticleNumber | 103997 |
| Author | Birolini, Sebastian Gonçalves Duarte Santos, Gonçalo Homem de Almeida Correia, Gonçalo |
| Author_xml | – sequence: 1 givenname: Gonçalo surname: Gonçalves Duarte Santos fullname: Gonçalves Duarte Santos, Gonçalo email: gdsantos@uc.pt organization: University of Coimbra, CITTA, Department of Civil Engineering, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal – sequence: 2 givenname: Sebastian surname: Birolini fullname: Birolini, Sebastian organization: Department of Management, Information and Production Engineering, University of Bergamo, Dalmine, BG 24044, Italy – sequence: 3 givenname: Gonçalo surname: Homem de Almeida Correia fullname: Homem de Almeida Correia, Gonçalo organization: Department of Transport & Planning, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands |
| BookMark | eNp9kLFu2zAQhjm4QJ20D5CNYzLIPUqyJCKTEaRpgQAZ0hbdCJo8K3QkUjgyCbz1Hfoefag8Sek4U4ZMd4fD9x_uO2IzHzwydiJgIUA0X7aLRGZRQlnmuZKynbE5yKYrQMLvj-woxi0ACLls5-zfisdJG3z-8ze5EQv0SP2Ob4bwVKx1RMudT9gj8YlCT3ocne_5GCwOPAVuMbrec-0tDxOSTsg1J-xd8Hrg8U5TTtAPKYx5ZTkOaBI5wx_xzpkB-ent6vLXGY-7mHB8iTGBCOMUvN0fMjmh3zce01Og-0_sw0YPET-_1mP28-vlj4tvxfXN1feL1XVhqhpSsbSNtCDX2HWAVtS2zja0rSuABpdriaJtqgbqjTSd6UAY25Sl0VIvsWlLKatj1h5yDYUYCTfKuKRTfiuRdoMSoPaq1VZl1WqvWh1UZ1K8ISdyo6bdu8z5gcH80qNDUtE49AatoyxM2eDeof8DKn2f7A |
| CitedBy_id | crossref_primary_10_3390_en17020409 crossref_primary_10_1080_19427867_2024_2407184 crossref_primary_10_1080_15568318_2025_2508843 crossref_primary_10_3390_systems12020061 crossref_primary_10_1016_j_rser_2024_115050 |
| Cites_doi | 10.1016/j.energy.2018.06.024 10.3141/2542-09 10.1016/j.tre.2016.05.006 10.1016/j.retrec.2020.100925 10.1109/ITSC.2018.8569459 10.1016/j.trc.2021.103092 10.1016/j.trc.2015.01.004 10.1109/TSG.2016.2635025 10.1016/j.trc.2020.102933 10.1016/j.trb.2021.02.003 10.1016/j.jclepro.2019.05.142 10.1016/j.rtbm.2022.100875 10.1016/j.trb.2018.12.004 10.1007/s11027-019-09907-z 10.1016/j.tra.2016.08.020 10.1016/j.ejor.2020.05.001 10.1016/j.cie.2016.05.040 10.1016/0377-2217(90)90001-R 10.1109/ICRA.2016.7487272 10.1016/j.trc.2018.04.022 10.1016/j.trc.2017.11.016 10.1016/j.ijtst.2017.05.004 10.1016/j.ejor.2005.01.056 10.1016/j.trb.2021.05.001 10.1016/j.trc.2019.01.011 10.1002/atr.1283 10.1016/j.renene.2020.09.055 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.trc.2022.103997 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| ExternalDocumentID | 10_1016_j_trc_2022_103997 S0968090X22004107 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AGQPQ AIIUN ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c340t-5d69d09be880ed14d4202ad43006e5b9e1763604f9c8c801cd622ca9a5e672993 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000973067100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0968-090X |
| IngestDate | Tue Nov 18 21:44:04 EST 2025 Sat Nov 29 07:10:10 EST 2025 Tue Dec 03 03:44:33 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Integer programming Shared automated electric vehicles Electric charging Mathematical optimization Flow-based model |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-5d69d09be880ed14d4202ad43006e5b9e1763604f9c8c801cd622ca9a5e672993 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.trc.2022.103997 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_trc_2022_103997 crossref_primary_10_1016_j_trc_2022_103997 elsevier_sciencedirect_doi_10_1016_j_trc_2022_103997 |
| PublicationCentury | 2000 |
| PublicationDate | February 2023 2023-02-00 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Transportation research. Part C, Emerging technologies |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Dong, Chuhang, Lau (b0040) 2016; 98 Iglesias, Rossi, Wang, Hallac, Leskovec, Pavone (b0105) 2018; 6019–6025 TIS.pt, 2009. Inquérito à mobilidade na área de influência do sistema de mobilidade do Mondego, Coimbra. TheAA.com, 2019. Car depreciation | AA [WWW Document]. URL https://www.theaa.com/car-buying/depreciation (accessed 12.21.19). Imhof, Frölicher, von Arx (b0110) 2020; 83 Chen, Kockelman, Hanna (b0035) 2016; 94 Eglese (b0055) 1990; 46 Tsao, M., Iglesias, R., Pavone, M., 2018. Stochastic Model Predictive Control for Autonomous Mobility on Demand. IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC 2018-Novem, 3941–3948. https://doi.org/10.1109/ITSC.2018.8569459. Drews, Luxen (b0045) 2013; 2013 Bierlaire (b0015) 2015; 55 Winter, K., Cats, O., Correia, G.H. de A., van Arem, B., 2016. Designing an Automated Demand-Responsive Transport System: Fleet Size and Performance Analysis for a Campus–Train Station Service. Transp. Res. Rec. J. Transp. Res. Board 2542, 75–83. https://doi.org/10.3141/2542-09. Zhang, R., Rossi, F., Pavone, M., 2016. Model predictive control of autonomous mobility-on-demand systems. Proc. - IEEE Int. Conf. Robot. Autom. 2016-June, 1382–1389. https://doi.org/10.1109/ICRA.2016.7487272. Bernhart, W., Kaise, H., Ohashi, Y., Schönberg, T., Schilles, L., 2018. Autonomous driving as a solution for non-urban mobility Management summary. Rol. Berger Focus. Carolina, N., 2020. Autonomous Vehicles in the US : 50-State Roundup US Road to Autonomy 2020 Recap. Waymo, 2022. Waymo one [WWW Document]. URL https://waymo.com/waymo-one/ (accessed 4.19.22). Nieuwenhuijsen, J., Correia, G.H. de A., Milakis, D., van Arem, B., van Daalen, E., 2018. Towards a quantitative method to analyze the long-term innovation diffusion of automated vehicles technology using system dynamics. Transp. Res. Part C Emerg. Technol. 86, 300–327. https://doi.org/10.1016/j.trc.2017.11.016. Ewing, J., 2021. How Germany hopes to get the edge in driverless technology [WWW Document]. New York Times. URL https://www.nytimes.com/2021/07/14/business/germany-autonomous-driving-new-law.html (accessed 4.19.22). Google, 2019. Google Maps [WWW Document]. URL https://www.google.pt/maps/ (accessed 12.18.19). Stevens, M., Correia, G.H. de A., Scheltes, A., van Arem, B., 2022. An agent-based model for assessing the financial viability of autonomous mobility on-demand systems used as first and last-mile of public transport trips: A case-study in Rotterdam, the Netherlands. Res. Transp. Bus. Manag. 100875. https://doi.org/10.1016/j.rtbm.2022.100875. Iacobucci, McLellan, Tezuka (b0100) 2018; 158 edp, 2021. Tarifários [WWW Document]. URL https://www.edp.pt/particulares/energia/tarifarios/ (accessed 1.20.21). Chen, Zhang, Pourbabak, Kavousi-Fard, Su (b0030) 2018; 9 Pacheco Paneque, Bierlaire, Gendron, Sharif Azadeh (b0140) 2021; 146 Hao, Zhou, Wang, Ouyang (b0085) 2020; 25 Zhang, Liu, He (b0210) 2019; 120 Iacobucci, McLellan, Tezuka (b0095) 2019; 100 Wen, Zhao, Zhang (b0200) 2020; 162 INE (b0115) 2011 Sherali, Bish, Zhu (b0155) 2006; 172 ViaMichelin, 2021. ViaMichelin [WWW Document]. URL https://www.viamichelin.pt/ (accessed 4.2.21). Huang, K., An, K., Correia, G.H. de A., 2020. Planning station capacity and fleet size of one-way electric carsharing systems with continuous state of charge functions. Eur. J. Oper. Res. 287, 1075–1091. https://doi.org/10.1016/j.ejor.2020.05.001. Jamshidi, Correia, van Essen, Nökel (b0120) 2021; 125 Birolini, Antunes, Cattaneo, Malighetti, Paleari (b0020) 2021; 149 Fastned, 2021. Vehicles & charging tips [WWW Document]. URL https://fastnedcharging.com/en/ (accessed 2.1.20). Taiebat, Xu (b0170) 2019; 230 Martinez, Correia, Viegas (b0130) 2015; 49 Santos, G.G.D., Correia, G.H. de A., 2021. A flow-based integer programming approach to design an interurban shared automated vehicle system and assess its financial viability. Transp. Res. Part C Emerg. Technol. 128, 103092. https://doi.org/10.1016/j.trc.2021.103092. Scheltes, de Almeida Correia (b0150) 2017; 6 Amr (b0005) 2021 Smith, Castellano (b0160) 2015 ev-database, 2021. Electric Vehicle Database [WWW Document]. URL https://ev-database.org/ (accessed 2.1.20). Liang, X., Correia, G.H. de A., van Arem, B., 2016. Optimizing the service area and trip selection of an electric automated taxi system used for the last mile of train trips. Transp. Res. Part E Logist. Transp. Rev. 93, 115–129. https://doi.org/10.1016/j.tre.2016.05.006. Farhan, Chen (b0070) 2018; 93 Chen (10.1016/j.trc.2022.103997_b0035) 2016; 94 10.1016/j.trc.2022.103997_b0165 10.1016/j.trc.2022.103997_b0065 10.1016/j.trc.2022.103997_b0145 10.1016/j.trc.2022.103997_b0185 Dong (10.1016/j.trc.2022.103997_b0040) 2016; 98 10.1016/j.trc.2022.103997_b0080 10.1016/j.trc.2022.103997_b0060 10.1016/j.trc.2022.103997_b0180 Hao (10.1016/j.trc.2022.103997_b0085) 2020; 25 Wen (10.1016/j.trc.2022.103997_b0200) 2020; 162 Imhof (10.1016/j.trc.2022.103997_b0110) 2020; 83 Birolini (10.1016/j.trc.2022.103997_b0020) 2021; 149 Pacheco Paneque (10.1016/j.trc.2022.103997_b0140) 2021; 146 INE (10.1016/j.trc.2022.103997_b0115) Jamshidi (10.1016/j.trc.2022.103997_b0120) 2021; 125 Eglese (10.1016/j.trc.2022.103997_b0055) 1990; 46 10.1016/j.trc.2022.103997_b0205 Martinez (10.1016/j.trc.2022.103997_b0130) 2015; 49 10.1016/j.trc.2022.103997_b0125 Taiebat (10.1016/j.trc.2022.103997_b0170) 2019; 230 10.1016/j.trc.2022.103997_b0025 10.1016/j.trc.2022.103997_b0010 10.1016/j.trc.2022.103997_b0175 Drews (10.1016/j.trc.2022.103997_b0045) 2013; 2013 10.1016/j.trc.2022.103997_b0050 10.1016/j.trc.2022.103997_b0075 Chen (10.1016/j.trc.2022.103997_b0030) 2018; 9 10.1016/j.trc.2022.103997_b0195 10.1016/j.trc.2022.103997_b0190 Amr (10.1016/j.trc.2022.103997_b0005) Bierlaire (10.1016/j.trc.2022.103997_b0015) 2015; 55 10.1016/j.trc.2022.103997_b0090 Farhan (10.1016/j.trc.2022.103997_b0070) 2018; 93 Iacobucci (10.1016/j.trc.2022.103997_b0095) 2019; 100 Zhang (10.1016/j.trc.2022.103997_b0210) 2019; 120 Sherali (10.1016/j.trc.2022.103997_b0155) 2006; 172 Scheltes (10.1016/j.trc.2022.103997_b0150) 2017; 6 Iglesias (10.1016/j.trc.2022.103997_b0105) 2018; 6019–6025 10.1016/j.trc.2022.103997_b0135 Smith (10.1016/j.trc.2022.103997_b0160) 2015 10.1016/j.trc.2022.103997_b0215 Iacobucci (10.1016/j.trc.2022.103997_b0100) 2018; 158 |
| References_xml | – volume: 2013 start-page: 71 year: 2013 end-page: 79 ident: b0045 article-title: Multi-hop ride sharing. Proc. 6th Annu. Symp publication-title: Comb. Search, SoCS – volume: 49 start-page: 475 year: 2015 end-page: 495 ident: b0130 article-title: An agent-based simulation model to assess the impacts of introducing a shared-taxi system: an application to Lisbon (Portugal) publication-title: J. Adv. Transp. – reference: ev-database, 2021. Electric Vehicle Database [WWW Document]. URL https://ev-database.org/ (accessed 2.1.20). – volume: 162 start-page: 1629 year: 2020 end-page: 1648 ident: b0200 article-title: An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency publication-title: Renew. Energy – volume: 230 start-page: 794 year: 2019 end-page: 797 ident: b0170 article-title: Synergies of four emerging technologies for accelerated adoption of electric vehicles: Shared mobility, wireless charging, vehicle-to-grid, and vehicle automation publication-title: J. Clean. Prod. – volume: 83 start-page: 1 year: 2020 end-page: 7 ident: b0110 article-title: Shared Autonomous Vehicles in rural public transportation systems publication-title: Res. Transp. Econ. – volume: 172 start-page: 1 year: 2006 end-page: 30 ident: b0155 article-title: Airline fleet assignment concepts, models, and algorithms publication-title: Eur. J. Oper. Res. – volume: 125 year: 2021 ident: b0120 article-title: Dynamic planning for simultaneous recharging and relocation of shared electric taxies: A sequential MILP approach publication-title: Transp. Res. Part C Emerg. Technol. – reference: Zhang, R., Rossi, F., Pavone, M., 2016. Model predictive control of autonomous mobility-on-demand systems. Proc. - IEEE Int. Conf. Robot. Autom. 2016-June, 1382–1389. https://doi.org/10.1109/ICRA.2016.7487272. – volume: 46 start-page: 271 year: 1990 end-page: 281 ident: b0055 article-title: Simulated annealing: A tool for operational research publication-title: Eur. J. Oper. Res. – start-page: 1 year: 2015 end-page: 43 ident: b0160 article-title: Costs Associated With Non-Residential Electric Vehicle Supply Equipment. U.S. Dep publication-title: Energy – reference: Huang, K., An, K., Correia, G.H. de A., 2020. Planning station capacity and fleet size of one-way electric carsharing systems with continuous state of charge functions. Eur. J. Oper. Res. 287, 1075–1091. https://doi.org/10.1016/j.ejor.2020.05.001. – reference: Bernhart, W., Kaise, H., Ohashi, Y., Schönberg, T., Schilles, L., 2018. Autonomous driving as a solution for non-urban mobility Management summary. Rol. Berger Focus. – reference: Carolina, N., 2020. Autonomous Vehicles in the US : 50-State Roundup US Road to Autonomy 2020 Recap. – reference: Santos, G.G.D., Correia, G.H. de A., 2021. A flow-based integer programming approach to design an interurban shared automated vehicle system and assess its financial viability. Transp. Res. Part C Emerg. Technol. 128, 103092. https://doi.org/10.1016/j.trc.2021.103092. – volume: 9 start-page: 3563 year: 2018 end-page: 3572 ident: b0030 article-title: Optimal Routing and Charging of an Electric Vehicle Fleet for High-Efficiency Dynamic Transit Systems publication-title: IEEE Trans. Smart Grid – volume: 93 start-page: 310 year: 2018 end-page: 321 ident: b0070 article-title: Impact of Ridesharing on Operational Efficiency of Shared Autonomous Electric Vehicle Fleet publication-title: Transp. Res. Part C Emerg. Technol. – volume: 6019–6025 year: 2018 ident: b0105 article-title: Data-driven model predictive control of autonomous mobility-on-demand systems publication-title: Proc. - IEEE Int. Conf. Robot. Autom. – reference: Stevens, M., Correia, G.H. de A., Scheltes, A., van Arem, B., 2022. An agent-based model for assessing the financial viability of autonomous mobility on-demand systems used as first and last-mile of public transport trips: A case-study in Rotterdam, the Netherlands. Res. Transp. Bus. Manag. 100875. https://doi.org/10.1016/j.rtbm.2022.100875. – reference: Tsao, M., Iglesias, R., Pavone, M., 2018. Stochastic Model Predictive Control for Autonomous Mobility on Demand. IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC 2018-Novem, 3941–3948. https://doi.org/10.1109/ITSC.2018.8569459. – volume: 120 start-page: 125 year: 2019 end-page: 146 ident: b0210 article-title: Vehicle assignment and relays for one-way electric car-sharing systems publication-title: Transp. Res. Part B Methodol. – reference: Fastned, 2021. Vehicles & charging tips [WWW Document]. URL https://fastnedcharging.com/en/ (accessed 2.1.20). – reference: ViaMichelin, 2021. ViaMichelin [WWW Document]. URL https://www.viamichelin.pt/ (accessed 4.2.21). – reference: Google, 2019. Google Maps [WWW Document]. URL https://www.google.pt/maps/ (accessed 12.18.19). – reference: TIS.pt, 2009. Inquérito à mobilidade na área de influência do sistema de mobilidade do Mondego, Coimbra. – reference: edp, 2021. Tarifários [WWW Document]. URL https://www.edp.pt/particulares/energia/tarifarios/ (accessed 1.20.21). – volume: 158 start-page: 148 year: 2018 end-page: 163 ident: b0100 article-title: Modeling shared autonomous electric vehicles: Potential for transport and power grid integration publication-title: Energy – reference: Nieuwenhuijsen, J., Correia, G.H. de A., Milakis, D., van Arem, B., van Daalen, E., 2018. Towards a quantitative method to analyze the long-term innovation diffusion of automated vehicles technology using system dynamics. Transp. Res. Part C Emerg. Technol. 86, 300–327. https://doi.org/10.1016/j.trc.2017.11.016. – volume: 6 start-page: 28 year: 2017 end-page: 41 ident: b0150 article-title: Exploring the use of automated vehicles as last mile connection of train trips through an agent-based simulation model: An application to Delft publication-title: Netherlands. Int. J. Transp. Sci. Technol. – reference: Winter, K., Cats, O., Correia, G.H. de A., van Arem, B., 2016. Designing an Automated Demand-Responsive Transport System: Fleet Size and Performance Analysis for a Campus–Train Station Service. Transp. Res. Rec. J. Transp. Res. Board 2542, 75–83. https://doi.org/10.3141/2542-09. – volume: 25 start-page: 329 year: 2020 end-page: 353 ident: b0085 article-title: Plug-in electric vehicles in China and the USA: a technology and market comparison publication-title: Mitig. Adapt. Strateg. Glob. Chang. – volume: 55 start-page: 4 year: 2015 end-page: 13 ident: b0015 article-title: Simulation and optimization: A short review publication-title: Transp. Res. Part C Emerg. Technol. – volume: 94 start-page: 243 year: 2016 end-page: 254 ident: b0035 article-title: Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions publication-title: Transp. Res. Part A Policy Pract. – volume: 98 start-page: 195 year: 2016 end-page: 210 ident: b0040 article-title: An integrated flight scheduling and fleet assignment method based on a discrete choice model publication-title: Comput. Ind. Eng. – reference: Liang, X., Correia, G.H. de A., van Arem, B., 2016. Optimizing the service area and trip selection of an electric automated taxi system used for the last mile of train trips. Transp. Res. Part E Logist. Transp. Rev. 93, 115–129. https://doi.org/10.1016/j.tre.2016.05.006. – volume: 100 start-page: 34 year: 2019 end-page: 52 ident: b0095 article-title: Optimization of shared autonomous electric vehicles operations with charge scheduling and vehicle-to-grid publication-title: Transp. Res. Part C Emerg. Technol. – volume: 149 start-page: 162 year: 2021 end-page: 180 ident: b0020 article-title: Integrated flight scheduling and fleet assignment with improved supply-demand interactions publication-title: Transp. Res. Part B Methodol. – reference: TheAA.com, 2019. Car depreciation | AA [WWW Document]. URL https://www.theaa.com/car-buying/depreciation (accessed 12.21.19). – year: 2021 ident: b0005 article-title: Robo taxi market [WWW Document] – volume: 146 start-page: 26 year: 2021 end-page: 49 ident: b0140 article-title: Integrating advanced discrete choice models in mixed integer linear optimization publication-title: Transp. Res. Part B Methodol. – year: 2011 ident: b0115 article-title: População residente e densidade populacional por local de residência; Anual - INE, Estimativas anuais da população residente [WWW Document] – reference: Ewing, J., 2021. How Germany hopes to get the edge in driverless technology [WWW Document]. New York Times. URL https://www.nytimes.com/2021/07/14/business/germany-autonomous-driving-new-law.html (accessed 4.19.22). – reference: Waymo, 2022. Waymo one [WWW Document]. URL https://waymo.com/waymo-one/ (accessed 4.19.22). – volume: 158 start-page: 148 year: 2018 ident: 10.1016/j.trc.2022.103997_b0100 article-title: Modeling shared autonomous electric vehicles: Potential for transport and power grid integration publication-title: Energy doi: 10.1016/j.energy.2018.06.024 – ident: 10.1016/j.trc.2022.103997_b0205 doi: 10.3141/2542-09 – ident: 10.1016/j.trc.2022.103997_b0175 – ident: 10.1016/j.trc.2022.103997_b0125 doi: 10.1016/j.tre.2016.05.006 – volume: 83 start-page: 1 year: 2020 ident: 10.1016/j.trc.2022.103997_b0110 article-title: Shared Autonomous Vehicles in rural public transportation systems publication-title: Res. Transp. Econ. doi: 10.1016/j.retrec.2020.100925 – ident: 10.1016/j.trc.2022.103997_b0010 – ident: 10.1016/j.trc.2022.103997_b0060 – start-page: 1 year: 2015 ident: 10.1016/j.trc.2022.103997_b0160 article-title: Costs Associated With Non-Residential Electric Vehicle Supply Equipment. U.S. Dep publication-title: Energy – ident: 10.1016/j.trc.2022.103997_b0115 – ident: 10.1016/j.trc.2022.103997_b0185 doi: 10.1109/ITSC.2018.8569459 – ident: 10.1016/j.trc.2022.103997_b0145 doi: 10.1016/j.trc.2021.103092 – volume: 55 start-page: 4 year: 2015 ident: 10.1016/j.trc.2022.103997_b0015 article-title: Simulation and optimization: A short review publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2015.01.004 – volume: 2013 start-page: 71 year: 2013 ident: 10.1016/j.trc.2022.103997_b0045 article-title: Multi-hop ride sharing. Proc. 6th Annu. Symp publication-title: Comb. Search, SoCS – volume: 9 start-page: 3563 year: 2018 ident: 10.1016/j.trc.2022.103997_b0030 article-title: Optimal Routing and Charging of an Electric Vehicle Fleet for High-Efficiency Dynamic Transit Systems publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2635025 – volume: 125 year: 2021 ident: 10.1016/j.trc.2022.103997_b0120 article-title: Dynamic planning for simultaneous recharging and relocation of shared electric taxies: A sequential MILP approach publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2020.102933 – volume: 146 start-page: 26 year: 2021 ident: 10.1016/j.trc.2022.103997_b0140 article-title: Integrating advanced discrete choice models in mixed integer linear optimization publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2021.02.003 – ident: 10.1016/j.trc.2022.103997_b0190 – volume: 230 start-page: 794 year: 2019 ident: 10.1016/j.trc.2022.103997_b0170 article-title: Synergies of four emerging technologies for accelerated adoption of electric vehicles: Shared mobility, wireless charging, vehicle-to-grid, and vehicle automation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.142 – ident: 10.1016/j.trc.2022.103997_b0065 – ident: 10.1016/j.trc.2022.103997_b0165 doi: 10.1016/j.rtbm.2022.100875 – ident: 10.1016/j.trc.2022.103997_b0195 – volume: 120 start-page: 125 year: 2019 ident: 10.1016/j.trc.2022.103997_b0210 article-title: Vehicle assignment and relays for one-way electric car-sharing systems publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2018.12.004 – volume: 25 start-page: 329 year: 2020 ident: 10.1016/j.trc.2022.103997_b0085 article-title: Plug-in electric vehicles in China and the USA: a technology and market comparison publication-title: Mitig. Adapt. Strateg. Glob. Chang. doi: 10.1007/s11027-019-09907-z – volume: 94 start-page: 243 year: 2016 ident: 10.1016/j.trc.2022.103997_b0035 article-title: Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions publication-title: Transp. Res. Part A Policy Pract. doi: 10.1016/j.tra.2016.08.020 – ident: 10.1016/j.trc.2022.103997_b0090 doi: 10.1016/j.ejor.2020.05.001 – volume: 98 start-page: 195 year: 2016 ident: 10.1016/j.trc.2022.103997_b0040 article-title: An integrated flight scheduling and fleet assignment method based on a discrete choice model publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.05.040 – volume: 46 start-page: 271 year: 1990 ident: 10.1016/j.trc.2022.103997_b0055 article-title: Simulated annealing: A tool for operational research publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(90)90001-R – volume: 6019–6025 year: 2018 ident: 10.1016/j.trc.2022.103997_b0105 article-title: Data-driven model predictive control of autonomous mobility-on-demand systems publication-title: Proc. - IEEE Int. Conf. Robot. Autom. – ident: 10.1016/j.trc.2022.103997_b0215 doi: 10.1109/ICRA.2016.7487272 – volume: 93 start-page: 310 year: 2018 ident: 10.1016/j.trc.2022.103997_b0070 article-title: Impact of Ridesharing on Operational Efficiency of Shared Autonomous Electric Vehicle Fleet publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.04.022 – ident: 10.1016/j.trc.2022.103997_b0080 – ident: 10.1016/j.trc.2022.103997_b0005 – ident: 10.1016/j.trc.2022.103997_b0135 doi: 10.1016/j.trc.2017.11.016 – ident: 10.1016/j.trc.2022.103997_b0025 – ident: 10.1016/j.trc.2022.103997_b0050 – volume: 6 start-page: 28 year: 2017 ident: 10.1016/j.trc.2022.103997_b0150 article-title: Exploring the use of automated vehicles as last mile connection of train trips through an agent-based simulation model: An application to Delft publication-title: Netherlands. Int. J. Transp. Sci. Technol. doi: 10.1016/j.ijtst.2017.05.004 – volume: 172 start-page: 1 year: 2006 ident: 10.1016/j.trc.2022.103997_b0155 article-title: Airline fleet assignment concepts, models, and algorithms publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2005.01.056 – ident: 10.1016/j.trc.2022.103997_b0180 – volume: 149 start-page: 162 year: 2021 ident: 10.1016/j.trc.2022.103997_b0020 article-title: Integrated flight scheduling and fleet assignment with improved supply-demand interactions publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2021.05.001 – volume: 100 start-page: 34 year: 2019 ident: 10.1016/j.trc.2022.103997_b0095 article-title: Optimization of shared autonomous electric vehicles operations with charge scheduling and vehicle-to-grid publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2019.01.011 – volume: 49 start-page: 475 year: 2015 ident: 10.1016/j.trc.2022.103997_b0130 article-title: An agent-based simulation model to assess the impacts of introducing a shared-taxi system: an application to Lisbon (Portugal) publication-title: J. Adv. Transp. doi: 10.1002/atr.1283 – ident: 10.1016/j.trc.2022.103997_b0075 – volume: 162 start-page: 1629 year: 2020 ident: 10.1016/j.trc.2022.103997_b0200 article-title: An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency publication-title: Renew. Energy doi: 10.1016/j.renene.2020.09.055 |
| SSID | ssj0001957 |
| Score | 2.474333 |
| Snippet | •We propose a space–time-energy flow-based integer program to design SAEV systems.•Optimization of fleet (size and composition) and chargers (types and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103997 |
| SubjectTerms | Electric charging Flow-based model Integer programming Mathematical optimization Shared automated electric vehicles |
| Title | A space–time-energy flow-based integer programming model to design and operate a regional shared automated electric vehicle (SAEV) system and corresponding charging network |
| URI | https://dx.doi.org/10.1016/j.trc.2022.103997 |
| Volume | 147 |
| WOSCitedRecordID | wos000973067100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0968-090X databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001957 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5FLRJwQFBALX_aAwfAcmWvnTh7tEr4O1RIKSg3a73eKKkSO0rc0CPvwHvwUDwHB2b2x3ZbQIDExbKc7MbxfN6dnf3mG0KeikTJmAWRL4Nc-eCBwzgoGCxcwTsJRZTnIhe62ERyfDycTPj7Xu-7y4XZLpKyHJ6f89V_NTVcA2Nj6uxfmLvpFC7AORgdjmB2OP6R4VMPBgmpHIshwurxvjIpftNF9cnHiaswOhFq7QhaSwwZ6LI46I0WmtehNxaqFcouK094WMNBxw03M81aF2d1Bf4unJlaOnPpbdUMbwfd1nE6-oghByMVbdPnsBLIqjKJNFqjCU9Kw0TvusmN5LqBp1Ukmh2Cw7uuvSM9gGPeqM71cpsDHTrka3BokQGQiAWq6r7UzFVvjAWTzU5A-3nVbhPoAkaa3TBW8JDqzpuD1eSX8Fi8dLFU80LAOAr_xRCNr3RmgygscrxrF9lz2T0tlUqHSAdIDQkmF2YLIxB6ZeYxQZDTw3qNwpiMoZoBN9TjS4LeY-wXu2UI2xClEHZZ0ucwreymb0eTd40nEXKjVOvuw-3Ka37ipR_6uV_V8ZVObpNbdpFDUwPOO6Snyj1y3eXAb_bIzY4M5l3yNaUast8-f-mAlbZgpRastANWqsFK64oasFJAGLVgpYI6sFIDVtqAlTqwUgtW-gyh-pwaoOpuLgCVOqBSC9R75MOr0cnRG9_WEfFlFAe13y8GvAh4rmCuUkUYFzA4MVHEEcw4qp9zFSaomhdPuRxKGKJkMWBMCi76agBrTx7dJztlVap9QqMiScAB7wdTbC-FiDmLhRRDGUJrmRyQwFkhk1ZkH2u9LDLHpjzNwHAZGi4zhjsgL5omK6Mw87svx860mXWRjeubAQ5_3ezBvzV7SG60L8sjslOvz9Rjck1u6_lm_cSi9QcmhegN |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+space%E2%80%93time-energy+flow-based+integer+programming+model+to+design+and+operate+a+regional+shared+automated+electric+vehicle+%28SAEV%29+system+and+corresponding+charging+network&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Gon%C3%A7alves+Duarte+Santos%2C+Gon%C3%A7alo&rft.au=Birolini%2C+Sebastian&rft.au=Homem+de+Almeida+Correia%2C+Gon%C3%A7alo&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.volume=147&rft_id=info:doi/10.1016%2Fj.trc.2022.103997&rft.externalDocID=S0968090X22004107 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |