Spherical interpolation using the partition of unity method: An efficient and flexible algorithm

An efficient and flexible algorithm for the spherical interpolation of large scattered data sets is proposed. It is based on a partition of unity method on the sphere and uses spherical radial basis functions as local approximants. This technique exploits a suitable partition of the sphere into a nu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics letters Ročník 25; číslo 10; s. 1251 - 1256
Hlavní autori: Cavoretto, Roberto, De Rossi, Alessandra
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2012
Predmet:
ISSN:0893-9659, 1873-5452
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:An efficient and flexible algorithm for the spherical interpolation of large scattered data sets is proposed. It is based on a partition of unity method on the sphere and uses spherical radial basis functions as local approximants. This technique exploits a suitable partition of the sphere into a number of spherical zones, the construction of a certain number of cells such that the sphere is contained in the union of the cells, with some mild overlap among the cells, and finally the employment of an optimized spherical zone searching procedure. Some numerical experiments show the good accuracy of the spherical partition of unity method and the high efficiency of the algorithm.
ISSN:0893-9659
1873-5452
DOI:10.1016/j.aml.2011.11.006