A variational encoder–decoder approach to precise spectroscopic age estimation for large Galactic surveys
ABSTRACT Constraints on the formation and evolution of the Milky Way Galaxy require multidimensional measurements of kinematics, abundances, and ages for a large population of stars. Ages for luminous giants, which can be seen to large distances, are an essential component of studies of the Milky Wa...
Gespeichert in:
| Veröffentlicht in: | Monthly notices of the Royal Astronomical Society Jg. 522; H. 3; S. 4577 - 4597 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United Kingdom
Oxford University Press
02.05.2023
|
| Schlagworte: | |
| ISSN: | 0035-8711, 1365-2966 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | ABSTRACT
Constraints on the formation and evolution of the Milky Way Galaxy require multidimensional measurements of kinematics, abundances, and ages for a large population of stars. Ages for luminous giants, which can be seen to large distances, are an essential component of studies of the Milky Way, but they are traditionally very difficult to estimate precisely for a large data set and often require careful analysis on a star-by-star basis in asteroseismology. Because spectra are easier to obtain for large samples, being able to determine precise ages from spectra allows for large age samples to be constructed, but spectroscopic ages are often imprecise and contaminated by abundance correlations. Here we present an application of a variational encoder–decoder on cross-domain astronomical data to solve these issues. The model is trained on pairs of observations from APOGEE and Kepler of the same star in order to reduce the dimensionality of the APOGEE spectra in a latent space while removing abundance information. The low dimensional latent representation of these spectra can then be trained to predict age with just ∼1000 precise seismic ages. We demonstrate that this model produces more precise spectroscopic ages ($\sim 22~{{\ \rm per\ cent}}$ overall, $\sim 11~{{\ \rm per\ cent}}$ for red-clump stars) than previous data-driven spectroscopic ages while being less contaminated by abundance information (in particular, our ages do not depend on [α/M]). We create a public age catalogue for the APOGEE DR17 data set and use it to map the age distribution and the age-[Fe/H]-[α/M] distribution across the radial range of the Galactic disc. |
|---|---|
| AbstractList | Constraints on the formation and evolution of the Milky Way Galaxy require multidimensional measurements of kinematics, abundances, and ages for a large population of stars. Ages for luminous giants, which can be seen to large distances, are an essential component of studies of the Milky Way, but they are traditionally very difficult to estimate precisely for a large data set and often require careful analysis on a star-by-star basis in asteroseismology. Because spectra are easier to obtain for large samples, being able to determine precise ages from spectra allows for large age samples to be constructed, but spectroscopic ages are often imprecise and contaminated by abundance correlations. Here we present an application of a variational encoder–decoder on cross-domain astronomical data to solve these issues. The model is trained on pairs of observations from APOGEE and Kepler of the same star in order to reduce the dimensionality of the APOGEE spectra in a latent space while removing abundance information. The low dimensional latent representation of these spectra can then be trained to predict age with just ∼1000 precise seismic ages. We demonstrate that this model produces more precise spectroscopic ages ($\sim 22~{{\ \rm per\ cent}}$ overall, $\sim 11~{{\ \rm per\ cent}}$ for red-clump stars) than previous data-driven spectroscopic ages while being less contaminated by abundance information (in particular, our ages do not depend on [α/M]). We create a public age catalogue for the APOGEE DR17 data set and use it to map the age distribution and the age-[Fe/H]-[α/M] distribution across the radial range of the Galactic disc. ABSTRACT Constraints on the formation and evolution of the Milky Way Galaxy require multidimensional measurements of kinematics, abundances, and ages for a large population of stars. Ages for luminous giants, which can be seen to large distances, are an essential component of studies of the Milky Way, but they are traditionally very difficult to estimate precisely for a large data set and often require careful analysis on a star-by-star basis in asteroseismology. Because spectra are easier to obtain for large samples, being able to determine precise ages from spectra allows for large age samples to be constructed, but spectroscopic ages are often imprecise and contaminated by abundance correlations. Here we present an application of a variational encoder–decoder on cross-domain astronomical data to solve these issues. The model is trained on pairs of observations from APOGEE and Kepler of the same star in order to reduce the dimensionality of the APOGEE spectra in a latent space while removing abundance information. The low dimensional latent representation of these spectra can then be trained to predict age with just ∼1000 precise seismic ages. We demonstrate that this model produces more precise spectroscopic ages ($\sim 22~{{\ \rm per\ cent}}$ overall, $\sim 11~{{\ \rm per\ cent}}$ for red-clump stars) than previous data-driven spectroscopic ages while being less contaminated by abundance information (in particular, our ages do not depend on [α/M]). We create a public age catalogue for the APOGEE DR17 data set and use it to map the age distribution and the age-[Fe/H]-[α/M] distribution across the radial range of the Galactic disc. |
| Author | Bovy, Jo Miglio, Andrea Mackereth, J Ted Leung, Henry W |
| Author_xml | – sequence: 1 givenname: Henry W orcidid: 0000-0002-0036-2752 surname: Leung fullname: Leung, Henry W email: henrysky.leung@mail.utoronto.ca – sequence: 2 givenname: Jo orcidid: 0000-0001-6855-442X surname: Bovy fullname: Bovy, Jo – sequence: 3 givenname: J Ted orcidid: 0000-0001-8108-0935 surname: Mackereth fullname: Mackereth, J Ted – sequence: 4 givenname: Andrea orcidid: 0000-0001-5998-8533 surname: Miglio fullname: Miglio, Andrea |
| BackLink | https://www.osti.gov/biblio/1973305$$D View this record in Osti.gov |
| BookMark | eNqFULFOwzAUtFCRaAsrs8XGkPY5TpxkrCooSJVYYI5ebIcG0jiy3Urd-Af-kC_BpLAgIab39HR37-4mZNSZThNyyWDGoODzbWfRzZ1HxeIsPiFjxkUaxYUQIzIG4GmUZ4ydkYlzLwCQ8FiMyeuC7tE26BvTYUt1J43S9uPtXelho9j31qDcUG9ob7VsnKau19Jb46TpG0nxWVPtfLMdRGhtLG3RhuMKW5Q-INzO7vXBnZPTGlunL77nlDzd3jwu76L1w-p-uVhHkifgozQTNShRqwqSPMtBpUrVeRUXcaIgT5FXheJZAUJXwCToNE8YIubhniEvEj4lV0ddE1yVTjZey400XRdcl6zIOIc0gGZHkAxBnNV12dsQwR5KBuVXn-XQZ_nTZyAkvwhBeIjsLTbt37TrbzO7_r8Xn4dIkGU |
| CitedBy_id | crossref_primary_10_3847_2515_5172_ad16d3 crossref_primary_10_1051_0004_6361_202347330 crossref_primary_10_3847_1538_4357_addbe5 crossref_primary_10_1051_0004_6361_202347994 crossref_primary_10_1051_0004_6361_202349049 crossref_primary_10_1051_0004_6361_202348018 crossref_primary_10_3847_1538_4357_ad9aa1 crossref_primary_10_1051_0004_6361_202346666 crossref_primary_10_1093_mnras_stad1573 crossref_primary_10_1093_mnras_staf1047 crossref_primary_10_3847_2041_8213_adcd6f crossref_primary_10_3847_1538_4357_ad61df crossref_primary_10_1051_0004_6361_202453306 crossref_primary_10_3390_galaxies11030075 crossref_primary_10_1051_0004_6361_202453304 crossref_primary_10_1051_0004_6361_202452448 crossref_primary_10_1051_0004_6361_202453305 crossref_primary_10_1093_mnras_stad3015 crossref_primary_10_3847_1538_4357_ad3b90 crossref_primary_10_1093_mnras_stad2820 crossref_primary_10_3847_1538_3881_addd18 crossref_primary_10_3847_1538_3881_ad33bb crossref_primary_10_1051_0004_6361_202449669 |
| Cites_doi | 10.1051/0004-6361/202038834 10.1093/mnras/stv1731 10.1093/mnras/sty268 10.1088/0004-637X/767/1/82 10.3847/2041-8213/ab9caa 10.1093/mnras/stv1071 10.3847/1538-4357/ab2331 10.3847/1538-4357/aadb40 10.1146/annurev-astro-081915-023441 10.48550/arXiv.2206.05595 10.1051/0004-6361/201219196 10.1111/j.1365-2966.2011.19859.x 10.3847/0004-637X/823/2/114 10.3847/2041-8213/ab6443 10.3847/1538-4357/abece1 10.1051/0004-6361/201629272 10.3847/1538-4357/aaa08a 10.1088/0004-637X/808/2/132 10.1051/0004-6361/201730613 10.1093/mnras/staa1015 10.1038/s41586-018-0625-x 10.1038/s41550-021-01347-7 10.3847/1538-4357/ac14b1 10.3847/1538-4365/ab5364 10.1088/0067-0049/214/2/27 10.1093/mnras/stac484 10.1093/mnras/stv327 10.1051/0004-6361/201425039 10.1093/mnras/stx2109 10.1051/0004-6361:20065105 10.1007/s00159-013-0061-8 10.1002/aic.690370209 10.3847/1538-4365/ac4414 10.3847/1538-4357/aabfdb 10.1093/mnras/stab639 10.1051/0004-6361/201525865 10.1086/160554 10.1038/nature09935 10.1093/mnras/stx120 10.1086/676406 10.1088/0004-637X/723/2/1607 10.1088/0004-637X/790/2/127 10.3847/1538-4357/aae07f 10.1162/neco.1989.1.4.541 10.1093/mnras/stac610 10.1093/mnras/stx3298 10.3847/1538-4365/aaebfd 10.1093/mnras/sty2813 10.1051/0004-6361/202244524 10.1051/0004-6361/201423827 10.1038/nature14539 10.1093/mnras/stz1521 10.1007/s41116-019-0020-1 10.1088/0067-0049/215/2/19 10.3847/1538-4365/aa9e8a 10.1093/mnras/stx2000 10.1093/mnras/stz1554 10.3847/1538-3881/ab9644 10.1553/cia160s74 10.1088/0067-0049/216/2/29 10.1111/j.1745-3933.2009.00767.x 10.3847/1538-4365/aaaf74 10.1051/0004-6361/202038307 10.1093/mnras/stac3529 10.3847/1538-4357/ac22a5 10.3847/2041-8213/aabf8e 10.48550/ARXIV.1312.6114 10.3847/1538-4365/aa97df 10.1093/mnras/stab098 10.1007/s41114-018-0012-9 10.1093/mnras/stz2245 10.1093/mnras/sty613 10.1007/s10686-014-9383-4 10.3847/1538-4365/aa80e4 10.1093/mnras/stu1907 10.1126/science.1185402 10.1093/mnras/stab323 10.1051/0004-6361/201321397 10.1088/0004-637X/808/1/16 10.1038/s41586-022-04496-5 10.1051/0004-6361/201629957 10.3847/1538-3881/aa784d 10.1007/s10686-021-09711-1 10.3847/1538-4357/ac7c74 10.3847/1538-3881/aa7567 10.1093/mnras/stv2830 10.1051/0004-6361/201731094 10.1093/mnras/stab3044 10.1007/BF00648343 10.1086/311181 10.1093/mnras/sty3217 10.1051/0004-6361/201630240 10.3847/1538-4357/ab3e3c 10.3847/1538-4357/abca96 10.3847/1538-3881/ac8931 10.1093/mnras/stt536 10.1117/1.JATIS.1.1.014003 10.1093/mnras/stv2593 10.1093/mnras/stz2891 10.1146/annurev.astro.40.060401.093840 10.1051/0004-6361/200810860 10.1111/j.1745-3933.2011.01042.x 10.3847/0004-6256/151/6/144 10.1126/science.aac6933 10.1086/169725 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023 |
| Copyright_xml | – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023 |
| DBID | AAYXX CITATION OTOTI |
| DOI | 10.1093/mnras/stad1272 |
| DatabaseName | CrossRef OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Astronomy & Astrophysics |
| EISSN | 1365-2966 |
| EndPage | 4597 |
| ExternalDocumentID | 1973305 10_1093_mnras_stad1272 10.1093/mnras/stad1272 |
| GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABEJV ABGNP ABVLG ACUXJ AHGBF ALXQX AMNDL ANAKG CITATION JXSIZ 69O AABJS AABMN AAESY AAIYJ AAPBV ABPTK ADEIU ADIPN ADORX ADQLU AFUVZ AIKOY ARQIP AUCZF AZQFJ BYORX CASEJ DPORF DPPUQ OTOTI OWPYF PQEST UMP |
| ID | FETCH-LOGICAL-c340t-576f0d6fdb048780d5ddf8b2924d085a3b9d37906eb01c0e5841aaa83b97a3943 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000993852500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0035-8711 |
| IngestDate | Mon May 22 04:07:03 EDT 2023 Tue Nov 18 21:06:59 EST 2025 Sat Nov 29 05:37:33 EST 2025 Wed Aug 28 03:17:43 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | stars: fundamental parameters techniques: spectroscopic methods: data analysis |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c340t-576f0d6fdb048780d5ddf8b2924d085a3b9d37906eb01c0e5841aaa83b97a3943 |
| Notes | USDOE |
| ORCID | 0000-0002-0036-2752 0000-0001-5998-8533 0000-0001-8108-0935 0000-0001-6855-442X 0000000181080935 000000016855442X 0000000159988533 0000000200362752 |
| OpenAccessLink | https://www.osti.gov/biblio/2425086 |
| PageCount | 21 |
| ParticipantIDs | osti_scitechconnect_1973305 crossref_primary_10_1093_mnras_stad1272 crossref_citationtrail_10_1093_mnras_stad1272 oup_primary_10_1093_mnras_stad1272 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-02 |
| PublicationDateYYYYMMDD | 2023-05-02 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United Kingdom |
| PublicationPlace_xml | – name: United Kingdom |
| PublicationTitle | Monthly notices of the Royal Astronomical Society |
| PublicationYear | 2023 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Hekker (2024042700014455100_bib54) 2019; 487 Howell (2024042700014455100_bib59) 2014; 126 Bedding (2024042700014455100_bib11) 2011; 471 Miglio (2024042700014455100_bib87) 2021; 645 Nair (2024042700014455100_bib91) 2010 LeCun (2024042700014455100_bib69) 1989; 1 Scargle (2024042700014455100_bib109) 1982; 263 Patil (2024042700014455100_bib98) 2022 Ness (2024042700014455100_bib92) 2015; 808 Doersch (2024042700014455100_bib35) 2016 Gheller (2024042700014455100_bib48) 2022; 509 García (2024042700014455100_bib46) 2011; 414 Lomb (2024042700014455100_bib75) 1976; 39 Davies (2024042700014455100_bib30) 2016; 456 Appourchaux (2024042700014455100_bib7) 2020; 642 Astropy Collaboration (2024042700014455100_bib8) 2022; 935 Kramer (2024042700014455100_bib68) 1991; 37 Hayden (2024042700014455100_bib51) 2015; 808 Andrews (2024042700014455100_bib5) 2017; 472 Beane (2024042700014455100_bib10) 2018; 867 (2024042700014455100_bib3) 2022; 259 Bovy (2024042700014455100_bib19) 2014; 790 Kingma (2024042700014455100_bib64) 2013 Jofre (2024042700014455100_bib62) 2023; 671 De Silva (2024042700014455100_bib34) 2015; 449 Edvardsson (2024042700014455100_bib36) 1993; 275 Blancato (2024042700014455100_bib13) 2020 (2024042700014455100_bib42) 2022 Rodrigues (2024042700014455100_bib107) 2014; 445 Ness (2024042700014455100_bib93) 2016; 823 Pedregosa (2024042700014455100_bib99) 2012 Ness (2024042700014455100_bib94) 2018; 866 Yu (2024042700014455100_bib120) 2018; 236 Bovy (2024042700014455100_bib20) 2019; 490 Lightkurve Collaboration (2024042700014455100_bib74) 2018 Martig (2024042700014455100_bib81) 2016; 456 Auvergne (2024042700014455100_bib9) 2009; 506 da Silva (2024042700014455100_bib31) 2006; 458 de Jong (2024042700014455100_bib32) 2012 El-Badry (2024042700014455100_bib37) 2021; 506 Leung (2024042700014455100_bib71) 2019; 483 Sedaghat (2024042700014455100_bib110) 2018; 476 Bland-Hawthorn (2024042700014455100_bib14) 2016; 54 Brogaard (2024042700014455100_bib22) 2018; 476 Casey (2024042700014455100_bib24) 2016 Abadi (2024042700014455100_bib1) 2015 Zhang (2024042700014455100_bib121) 2021; 922 Cheng (2024042700014455100_bib25) 2020; 494 Montalbán (2024042700014455100_bib88) 2021; 5 McQuillan (2024042700014455100_bib83) 2013; 432 Haywood (2024042700014455100_bib52) 2013; 560 Pogge (2024042700014455100_bib102) 2020 Abbott (2024042700014455100_bib2) 2018; 21 Corsaro (2024042700014455100_bib29) 2017; 605 Rauer (2024042700014455100_bib104) 2014; 38 Mackereth (2024042700014455100_bib77) 2019; 489 Paczyński (2024042700014455100_bib97) 1998; 494 Majewski (2024042700014455100_bib79) 2017; 154 Kollmeier (2024042700014455100_bib67) 2017 Rix (2024042700014455100_bib106) 2013; 21 Silva Aguirre (2024042700014455100_bib112) 2020; 889 Freeman (2024042700014455100_bib39) 2002; 40 Kjeldsen (2024042700014455100_bib65) 1995; 293 O’Briain (2024042700014455100_bib96) 2021; 906 Bovy (2024042700014455100_bib18) 2015; 216 García (2024042700014455100_bib44) 2019; 16 García Pérez (2024042700014455100_bib45) 2016; 151 Cho (2024042700014455100_bib27) 2014 Stello (2024042700014455100_bib113) 2009; 400 Bonaca (2024042700014455100_bib16) 2020; 897 Huber (2024042700014455100_bib61) 2010; 723 Brown (2024042700014455100_bib23) 1991; 368 (2024042700014455100_bib43) 2016; 595 Huber (2024042700014455100_bib60) 2009; 160 Kingma (2024042700014455100_bib63) 2014 Mosser (2024042700014455100_bib89) 2014; 572 Brogaard (2024042700014455100_bib21) 2012; 543 Ciucă (2024042700014455100_bib28) 2021; 503 Helmi (2024042700014455100_bib55) 2018; 563 Ting (2024042700014455100_bib115) 2019; 879 de Mijolla (2024042700014455100_bib33) 2021; 913 Lecun (2024042700014455100_bib70) 2015; 521 Vaswani (2024042700014455100_bib116) 2017 Mowlavi (2024042700014455100_bib90) 2017; 606 Rodrigues (2024042700014455100_bib108) 2017; 467 Serenelli (2024042700014455100_bib111) 2017; 233 Lu (2024042700014455100_bib76) 2022; 512 Ness (2024042700014455100_bib95) 2019; 883 Metcalfe (2024042700014455100_bib84) 2014; 214 Pinsonneault (2024042700014455100_bib100) 2014; 215 Bennett (2024042700014455100_bib12) 2019; 482 Chiappini (2024042700014455100_bib26) 2015; 576 Masseron (2024042700014455100_bib82) 2015; 453 Borucki (2024042700014455100_bib17) 2010; 327 Leung (2024042700014455100_bib72) 2019; 489 Xiang (2024042700014455100_bib117) 2022; 603 Gaulme (2024042700014455100_bib47) 2013; 767 Miglio (2024042700014455100_bib85) 2012; 419 Ricker (2024042700014455100_bib105) 2015; 1 Mackereth (2024042700014455100_bib78) 2021; 502 Miglio (2024042700014455100_bib86) 2021; 51 Martig (2024042700014455100_bib80) 2015; 451 Frontera-Pons (2024042700014455100_bib40) 2017; 603 Blanton (2024042700014455100_bib15) 2017; 154 Hon (2024042700014455100_bib56) 2018; 859 Xiang (2024042700014455100_bib118) 2017; 232 Portillo (2024042700014455100_bib103) 2020; 160 Pinsonneault (2024042700014455100_bib101) 2018; 239 Angus (2024042700014455100_bib6) 2018; 474 Abolfathi (2024042700014455100_bib4) 2018; 235 Leung (2024042700014455100_bib73) 2023; 519 He (2024042700014455100_bib53) 2022; 512 Kochoska (2024042700014455100_bib66) 2017; 602 Xiang (2024042700014455100_bib119) 2019; 245 Fabbro (2024042700014455100_bib38) 2018; 475 Grosjean (2024042700014455100_bib49) 2014; 572 Fuller (2024042700014455100_bib41) 2015; 350 Hon (2024042700014455100_bib57) 2021; 919 Hawkins (2024042700014455100_bib50) 2018; 853 Ting (2024042700014455100_bib114) 2018; 858 Hon (2024042700014455100_bib58) 2022; 164 |
| References_xml | – volume: 642 start-page: A226 year: 2020 ident: 2024042700014455100_bib7 publication-title: A&A doi: 10.1051/0004-6361/202038834 – volume: 453 start-page: 1855 year: 2015 ident: 2024042700014455100_bib82 publication-title: MNRAS doi: 10.1093/mnras/stv1731 – volume: 476 start-page: 3729 year: 2018 ident: 2024042700014455100_bib22 publication-title: MNRAS doi: 10.1093/mnras/sty268 – volume: 767 start-page: 82 year: 2013 ident: 2024042700014455100_bib47 publication-title: ApJ doi: 10.1088/0004-637X/767/1/82 – volume: 897 start-page: L18 year: 2020 ident: 2024042700014455100_bib16 publication-title: ApJ doi: 10.3847/2041-8213/ab9caa – volume: 451 start-page: 2230 year: 2015 ident: 2024042700014455100_bib80 publication-title: MNRAS doi: 10.1093/mnras/stv1071 – volume: 879 start-page: 69 year: 2019 ident: 2024042700014455100_bib115 publication-title: ApJ doi: 10.3847/1538-4357/ab2331 – volume: 866 start-page: 15 year: 2018 ident: 2024042700014455100_bib94 publication-title: ApJ doi: 10.3847/1538-4357/aadb40 – volume: 54 start-page: 529 year: 2016 ident: 2024042700014455100_bib14 publication-title: ARA&A doi: 10.1146/annurev-astro-081915-023441 – year: 2022 ident: 2024042700014455100_bib42 doi: 10.48550/arXiv.2206.05595 – volume: 543 start-page: A106 year: 2012 ident: 2024042700014455100_bib21 publication-title: A&A doi: 10.1051/0004-6361/201219196 – volume: 293 start-page: 87 year: 1995 ident: 2024042700014455100_bib65 publication-title: A&A – volume: 419 start-page: 2077 year: 2012 ident: 2024042700014455100_bib85 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19859.x – volume: 823 start-page: 114 year: 2016 ident: 2024042700014455100_bib93 publication-title: ApJ doi: 10.3847/0004-637X/823/2/114 – volume: 889 start-page: L34 year: 2020 ident: 2024042700014455100_bib112 publication-title: ApJ doi: 10.3847/2041-8213/ab6443 – volume: 913 start-page: 12 year: 2021 ident: 2024042700014455100_bib33 publication-title: ApJ doi: 10.3847/1538-4357/abece1 – volume: 595 start-page: A1 year: 2016 ident: 2024042700014455100_bib43 publication-title: A&A doi: 10.1051/0004-6361/201629272 – volume: 853 start-page: 20 year: 2018 ident: 2024042700014455100_bib50 publication-title: ApJ doi: 10.3847/1538-4357/aaa08a – volume: 808 start-page: 132 year: 2015 ident: 2024042700014455100_bib51 publication-title: ApJ doi: 10.1088/0004-637X/808/2/132 – volume: 606 start-page: A92 year: 2017 ident: 2024042700014455100_bib90 publication-title: A&A doi: 10.1051/0004-6361/201730613 – volume: 494 start-page: 3750 year: 2020 ident: 2024042700014455100_bib25 publication-title: MNRAS doi: 10.1093/mnras/staa1015 – volume: 563 start-page: 85 year: 2018 ident: 2024042700014455100_bib55 publication-title: Nature doi: 10.1038/s41586-018-0625-x – volume: 5 start-page: 640 year: 2021 ident: 2024042700014455100_bib88 publication-title: Nat. Astron. doi: 10.1038/s41550-021-01347-7 – volume: 919 start-page: 131 year: 2021 ident: 2024042700014455100_bib57 publication-title: ApJ doi: 10.3847/1538-4357/ac14b1 – year: 2017 ident: 2024042700014455100_bib67 – volume: 245 start-page: 34 year: 2019 ident: 2024042700014455100_bib119 publication-title: ApJS doi: 10.3847/1538-4365/ab5364 – start-page: 807 volume-title: Proceedings of the 27th International Conference on International Conference on Machine Learning year: 2010 ident: 2024042700014455100_bib91 – volume: 214 start-page: 27 year: 2014 ident: 2024042700014455100_bib84 publication-title: ApJS doi: 10.1088/0067-0049/214/2/27 – volume: 512 start-page: 1710 year: 2022 ident: 2024042700014455100_bib53 publication-title: MNRAS doi: 10.1093/mnras/stac484 – volume: 449 start-page: 2604 year: 2015 ident: 2024042700014455100_bib34 publication-title: MNRAS doi: 10.1093/mnras/stv327 – volume: 572 start-page: L5 year: 2014 ident: 2024042700014455100_bib89 publication-title: A&A doi: 10.1051/0004-6361/201425039 – volume: 474 start-page: 2094 year: 2018 ident: 2024042700014455100_bib6 publication-title: MNRAS doi: 10.1093/mnras/stx2109 – volume: 458 start-page: 609 year: 2006 ident: 2024042700014455100_bib31 publication-title: A&A doi: 10.1051/0004-6361:20065105 – volume: 21 start-page: 61 year: 2013 ident: 2024042700014455100_bib106 publication-title: A&AR doi: 10.1007/s00159-013-0061-8 – volume: 37 start-page: 233 year: 1991 ident: 2024042700014455100_bib68 publication-title: AIChE J. doi: 10.1002/aic.690370209 – volume: 259 start-page: 35 year: 2022 ident: 2024042700014455100_bib3 publication-title: ApJS doi: 10.3847/1538-4365/ac4414 – volume: 859 start-page: 64 year: 2018 ident: 2024042700014455100_bib56 publication-title: ApJ doi: 10.3847/1538-4357/aabfdb – year: 2012 ident: 2024042700014455100_bib99 – volume: 503 start-page: 2814 year: 2021 ident: 2024042700014455100_bib28 publication-title: MNRAS doi: 10.1093/mnras/stab639 – year: 2020 ident: 2024042700014455100_bib13 – volume: 576 start-page: L12 year: 2015 ident: 2024042700014455100_bib26 publication-title: A&A doi: 10.1051/0004-6361/201525865 – volume: 263 start-page: 835 year: 1982 ident: 2024042700014455100_bib109 publication-title: ApJ doi: 10.1086/160554 – volume: 471 start-page: 608 year: 2011 ident: 2024042700014455100_bib11 publication-title: Nature doi: 10.1038/nature09935 – volume: 467 start-page: 1433 year: 2017 ident: 2024042700014455100_bib108 publication-title: MNRAS doi: 10.1093/mnras/stx120 – volume: 126 start-page: 398 year: 2014 ident: 2024042700014455100_bib59 publication-title: PASP doi: 10.1086/676406 – volume: 723 start-page: 1607 year: 2010 ident: 2024042700014455100_bib61 publication-title: ApJ doi: 10.1088/0004-637X/723/2/1607 – volume: 790 start-page: 127 year: 2014 ident: 2024042700014455100_bib19 publication-title: ApJ doi: 10.1088/0004-637X/790/2/127 – volume: 867 start-page: 31 year: 2018 ident: 2024042700014455100_bib10 publication-title: ApJ doi: 10.3847/1538-4357/aae07f – volume: 1 start-page: 541 year: 1989 ident: 2024042700014455100_bib69 publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 512 start-page: 2890 year: 2022 ident: 2024042700014455100_bib76 publication-title: MNRAS doi: 10.1093/mnras/stac610 – volume: 475 start-page: 2978 year: 2018 ident: 2024042700014455100_bib38 publication-title: MNRAS doi: 10.1093/mnras/stx3298 – volume: 239 start-page: 32 year: 2018 ident: 2024042700014455100_bib101 publication-title: ApJS doi: 10.3847/1538-4365/aaebfd – start-page: 1144781 volume-title: Proc. SPIE Conf. Ser. Vol. 11447, Ground-based and Airborne Instrumentation for Astronomy VIII year: 2020 ident: 2024042700014455100_bib102 – volume: 482 start-page: 1417 year: 2019 ident: 2024042700014455100_bib12 publication-title: MNRAS doi: 10.1093/mnras/sty2813 – volume: 671 start-page: A21 year: 2023 ident: 2024042700014455100_bib62 publication-title: A&A doi: 10.1051/0004-6361/202244524 – volume: 572 start-page: A11 year: 2014 ident: 2024042700014455100_bib49 publication-title: A&A doi: 10.1051/0004-6361/201423827 – volume-title: Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library year: 2018 ident: 2024042700014455100_bib74 – year: 2016 ident: 2024042700014455100_bib35 – volume: 521 start-page: 436 year: 2015 ident: 2024042700014455100_bib70 publication-title: Nature doi: 10.1038/nature14539 – volume: 489 start-page: 176 year: 2019 ident: 2024042700014455100_bib77 publication-title: MNRAS doi: 10.1093/mnras/stz1521 – volume: 16 start-page: 4 year: 2019 ident: 2024042700014455100_bib44 publication-title: Living Rev. Sol. Phys. doi: 10.1007/s41116-019-0020-1 – volume: 215 start-page: 19 year: 2014 ident: 2024042700014455100_bib100 publication-title: ApJS doi: 10.1088/0067-0049/215/2/19 – volume: 235 start-page: 42 year: 2018 ident: 2024042700014455100_bib4 publication-title: ApJS doi: 10.3847/1538-4365/aa9e8a – volume: 472 start-page: 675 year: 2017 ident: 2024042700014455100_bib5 publication-title: MNRAS doi: 10.1093/mnras/stx2000 – start-page: 84460T volume-title: Proc. SPIE Conf. Ser. Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV year: 2012 ident: 2024042700014455100_bib32 – volume: 487 start-page: 4343 year: 2019 ident: 2024042700014455100_bib54 publication-title: MNRAS doi: 10.1093/mnras/stz1554 – volume: 160 start-page: 45 year: 2020 ident: 2024042700014455100_bib103 publication-title: AJ doi: 10.3847/1538-3881/ab9644 – volume: 160 start-page: 74 year: 2009 ident: 2024042700014455100_bib60 publication-title: Commun. Asteroseismol. doi: 10.1553/cia160s74 – volume: 216 start-page: 29 year: 2015 ident: 2024042700014455100_bib18 publication-title: ApJS doi: 10.1088/0067-0049/216/2/29 – volume: 400 start-page: L80 year: 2009 ident: 2024042700014455100_bib113 publication-title: MNRAS doi: 10.1111/j.1745-3933.2009.00767.x – volume: 236 start-page: 42 year: 2018 ident: 2024042700014455100_bib120 publication-title: ApJS doi: 10.3847/1538-4365/aaaf74 – volume: 645 start-page: A85 year: 2021 ident: 2024042700014455100_bib87 publication-title: A&A doi: 10.1051/0004-6361/202038307 – volume: 519 start-page: 948 year: 2023 ident: 2024042700014455100_bib73 publication-title: MNRAS doi: 10.1093/mnras/stac3529 – volume: 922 start-page: 145 year: 2021 ident: 2024042700014455100_bib121 publication-title: ApJ doi: 10.3847/1538-4357/ac22a5 – volume: 858 start-page: L7 year: 2018 ident: 2024042700014455100_bib114 publication-title: ApJ doi: 10.3847/2041-8213/aabf8e – volume-title: Auto-Encoding Variational Bayes year: 2013 ident: 2024042700014455100_bib64 doi: 10.48550/ARXIV.1312.6114 – volume: 233 start-page: 23 year: 2017 ident: 2024042700014455100_bib111 publication-title: ApJS doi: 10.3847/1538-4365/aa97df – volume: 502 start-page: 1947 year: 2021 ident: 2024042700014455100_bib78 publication-title: MNRAS doi: 10.1093/mnras/stab098 – volume: 21 start-page: 3 year: 2018 ident: 2024042700014455100_bib2 publication-title: Living Rev. Relat. doi: 10.1007/s41114-018-0012-9 – volume: 489 start-page: 2079 year: 2019 ident: 2024042700014455100_bib72 publication-title: MNRAS doi: 10.1093/mnras/stz2245 – volume: 476 start-page: 5365 year: 2018 ident: 2024042700014455100_bib110 publication-title: MNRAS doi: 10.1093/mnras/sty613 – volume: 38 start-page: 249 year: 2014 ident: 2024042700014455100_bib104 publication-title: Exp. Astron. doi: 10.1007/s10686-014-9383-4 – volume: 232 start-page: 2 year: 2017 ident: 2024042700014455100_bib118 publication-title: ApJS doi: 10.3847/1538-4365/aa80e4 – year: 2017 ident: 2024042700014455100_bib116 – volume: 445 start-page: 2758 year: 2014 ident: 2024042700014455100_bib107 publication-title: MNRAS doi: 10.1093/mnras/stu1907 – volume: 327 start-page: 977 year: 2010 ident: 2024042700014455100_bib17 publication-title: Science doi: 10.1126/science.1185402 – volume: 506 start-page: 2269 year: 2021 ident: 2024042700014455100_bib37 publication-title: MNRAS doi: 10.1093/mnras/stab323 – volume: 560 start-page: A109 year: 2013 ident: 2024042700014455100_bib52 publication-title: A&A doi: 10.1051/0004-6361/201321397 – volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems year: 2015 ident: 2024042700014455100_bib1 – volume: 808 start-page: 16 year: 2015 ident: 2024042700014455100_bib92 publication-title: ApJ doi: 10.1088/0004-637X/808/1/16 – volume: 603 start-page: 599 year: 2022 ident: 2024042700014455100_bib117 publication-title: Nature doi: 10.1038/s41586-022-04496-5 – volume: 602 start-page: A110 year: 2017 ident: 2024042700014455100_bib66 publication-title: A&A doi: 10.1051/0004-6361/201629957 – volume: 154 start-page: 94 year: 2017 ident: 2024042700014455100_bib79 publication-title: AJ doi: 10.3847/1538-3881/aa784d – volume: 51 start-page: 963 year: 2021 ident: 2024042700014455100_bib86 publication-title: Exp. Astron. doi: 10.1007/s10686-021-09711-1 – year: 2016 ident: 2024042700014455100_bib24 – volume: 935 start-page: 167 year: 2022 ident: 2024042700014455100_bib8 publication-title: ApJ doi: 10.3847/1538-4357/ac7c74 – volume: 154 start-page: 28 year: 2017 ident: 2024042700014455100_bib15 publication-title: AJ doi: 10.3847/1538-3881/aa7567 – volume: 456 start-page: 3655 year: 2016 ident: 2024042700014455100_bib81 publication-title: MNRAS doi: 10.1093/mnras/stv2830 – volume: 605 start-page: A3 year: 2017 ident: 2024042700014455100_bib29 publication-title: A&A doi: 10.1051/0004-6361/201731094 – volume: 509 start-page: 990 year: 2022 ident: 2024042700014455100_bib48 publication-title: MNRAS doi: 10.1093/mnras/stab3044 – volume: 39 start-page: 447 year: 1976 ident: 2024042700014455100_bib75 publication-title: Ap&SS doi: 10.1007/BF00648343 – volume: 494 start-page: L219 year: 1998 ident: 2024042700014455100_bib97 publication-title: ApJ doi: 10.1086/311181 – year: 2022 ident: 2024042700014455100_bib98 – volume: 483 start-page: 3255 year: 2019 ident: 2024042700014455100_bib71 publication-title: MNRAS doi: 10.1093/mnras/sty3217 – volume: 603 start-page: A60 year: 2017 ident: 2024042700014455100_bib40 publication-title: A&A doi: 10.1051/0004-6361/201630240 – volume: 883 start-page: 177 year: 2019 ident: 2024042700014455100_bib95 publication-title: ApJ doi: 10.3847/1538-4357/ab3e3c – volume: 906 start-page: 130 year: 2021 ident: 2024042700014455100_bib96 publication-title: ApJ doi: 10.3847/1538-4357/abca96 – volume: 164 start-page: 135 year: 2022 ident: 2024042700014455100_bib58 publication-title: AJ doi: 10.3847/1538-3881/ac8931 – volume: 432 start-page: 1203 year: 2013 ident: 2024042700014455100_bib83 publication-title: MNRAS doi: 10.1093/mnras/stt536 – volume: 1 start-page: 014003 year: 2015 ident: 2024042700014455100_bib105 publication-title: J. Astron. Telesc. Instrum. Syst. doi: 10.1117/1.JATIS.1.1.014003 – volume: 456 start-page: 2183 year: 2016 ident: 2024042700014455100_bib30 publication-title: MNRAS doi: 10.1093/mnras/stv2593 – volume: 490 start-page: 4740 year: 2019 ident: 2024042700014455100_bib20 publication-title: MNRAS doi: 10.1093/mnras/stz2891 – volume: 40 start-page: 487 year: 2002 ident: 2024042700014455100_bib39 publication-title: ARA&A doi: 10.1146/annurev.astro.40.060401.093840 – volume: 506 start-page: 411 year: 2009 ident: 2024042700014455100_bib9 publication-title: A&A doi: 10.1051/0004-6361/200810860 – year: 2014 ident: 2024042700014455100_bib27 – year: 2014 ident: 2024042700014455100_bib63 – volume: 275 start-page: 101 year: 1993 ident: 2024042700014455100_bib36 publication-title: A&A – volume: 414 start-page: L6 year: 2011 ident: 2024042700014455100_bib46 publication-title: MNRAS doi: 10.1111/j.1745-3933.2011.01042.x – volume: 151 start-page: 144 year: 2016 ident: 2024042700014455100_bib45 publication-title: AJ doi: 10.3847/0004-6256/151/6/144 – volume: 350 start-page: 423 year: 2015 ident: 2024042700014455100_bib41 publication-title: Science doi: 10.1126/science.aac6933 – volume: 368 start-page: 599 year: 1991 ident: 2024042700014455100_bib23 publication-title: ApJ doi: 10.1086/169725 |
| SSID | ssj0004326 |
| Score | 2.5215442 |
| Snippet | ABSTRACT
Constraints on the formation and evolution of the Milky Way Galaxy require multidimensional measurements of kinematics, abundances, and ages for a... Constraints on the formation and evolution of the Milky Way Galaxy require multidimensional measurements of kinematics, abundances, and ages for a large... |
| SourceID | osti crossref oup |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 4577 |
| Title | A variational encoder–decoder approach to precise spectroscopic age estimation for large Galactic surveys |
| URI | https://www.osti.gov/biblio/1973305 |
| Volume | 522 |
| WOSCitedRecordID | wos000993852500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004326 issn: 0035-8711 databaseCode: TOX dateStart: 18591101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6yePDiW6wvgoieimnT3TTHZXH1oKsHhb2VvAqLa7u0dcGb_8F_6C9xknbXB4p6S9O0hMwk-WaS-QahI8FVFIc69ZmR2o_ioONLyowfSUHTUARMCRcofMkGg3g45DcNWXT5zRE-p6cPWSHKU8BKOgiZXW2Ddmw1-vZ6-B4BSV1iNUfACCZAMKdn_Pr5p-2nlcM0qiPbPmwq_ZV_dGcVLTfIEXdrUa-hBZOto-1uaX3Z-cMTPsauXLsqynXkXQEezgvnNoeXvfEIwKl72kD3XTwFI7lxBGJLZqlN8fr8oo0r4RnVOK5yPLEEGKXBLijTkl_mk5HCsA5hy9BRhz5iwL54bG-V43MxdoFXuHwspqAnm-iuf3bbu_CbtAu-ohGpfLBAUqI7qZYwu1lMdFvrNJYhWGoaAJqgkmvKOOkYSQJFDECYQAgRQz0TlEd0C7WyPDPbCJtISE40lQDbItkhXFDDiJRQT6MwDT3kz6SRqIaT3KbGGCf12ThN3Ggns9H20Mm8_aRm4_ix5a4VbgI4wpLhKntrSFVJwBmFFc5DhyDzX36x85dGu2jJJqB3VyDDPdSqikezjxbVtBqVxYFT0jer5Otq |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variational+encoder%E2%80%93decoder+approach+to+precise+spectroscopic+age+estimation+for+large+Galactic+surveys&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Leung%2C+Henry+W.&rft.au=Bovy%2C+Jo&rft.au=Mackereth%2C+J.+Ted&rft.au=Miglio%2C+Andrea&rft.date=2023-05-02&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=522&rft.issue=3&rft_id=info:doi/10.1093%2Fmnras%2Fstad1272&rft.externalDocID=1973305 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |