A numerical algorithm for zero counting, I: Complexity and accuracy

We describe an algorithm to count the number of distinct real zeros of a polynomial (square) system f . The algorithm performs O ( log ( n D κ ( f ) ) ) iterations (grid refinements) where n is the number of polynomials (as well as the dimension of the ambient space), D is a bound on the polynomials...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Complexity Vol. 24; no. 5; pp. 582 - 605
Main Authors: Cucker, Felipe, Krick, Teresa, Malajovich, Gregorio, Wschebor, Mario
Format: Journal Article
Language:English
Published: Elsevier Inc 01.10.2008
Subjects:
ISSN:0885-064X, 1090-2708
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We describe an algorithm to count the number of distinct real zeros of a polynomial (square) system f . The algorithm performs O ( log ( n D κ ( f ) ) ) iterations (grid refinements) where n is the number of polynomials (as well as the dimension of the ambient space), D is a bound on the polynomials’ degree, and κ ( f ) is a condition number for the system. Each iteration uses an exponential number of operations. The algorithm uses finite-precision arithmetic and a major feature of our results is a bound for the precision required to ensure that the returned output is correct which is polynomial in n and D and logarithmic in κ ( f ) . The algorithm parallelizes well in the sense that each iteration can be computed in parallel polynomial time in n , log D and log ( κ ( f ) ) .
AbstractList We describe an algorithm to count the number of distinct real zeros of a polynomial (square) system f . The algorithm performs O ( log ( n D κ ( f ) ) ) iterations (grid refinements) where n is the number of polynomials (as well as the dimension of the ambient space), D is a bound on the polynomials’ degree, and κ ( f ) is a condition number for the system. Each iteration uses an exponential number of operations. The algorithm uses finite-precision arithmetic and a major feature of our results is a bound for the precision required to ensure that the returned output is correct which is polynomial in n and D and logarithmic in κ ( f ) . The algorithm parallelizes well in the sense that each iteration can be computed in parallel polynomial time in n , log D and log ( κ ( f ) ) .
Author Malajovich, Gregorio
Krick, Teresa
Wschebor, Mario
Cucker, Felipe
Author_xml – sequence: 1
  givenname: Felipe
  surname: Cucker
  fullname: Cucker, Felipe
  email: macucker@cityu.edu.hk
  organization: Department of Mathematics, City University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Teresa
  surname: Krick
  fullname: Krick, Teresa
  email: krick@dm.uba.ar
  organization: Departamento de Matemática, Univ. de Buenos Aires, Argentina
– sequence: 3
  givenname: Gregorio
  surname: Malajovich
  fullname: Malajovich, Gregorio
  email: gregorio@ufrj.br
  organization: Depto. de Matemática Aplicada, Univ. Federal do Rio de Janeiro, Brazil
– sequence: 4
  givenname: Mario
  surname: Wschebor
  fullname: Wschebor, Mario
  email: wschebor@cmat.edu.uy
  organization: Centro de Matemática, Universidad de la República, Uruguay
BookMark eNp9kLtOwzAYhS1UJErhAdj8ACT8jnNxYKoiLpUqsYDEZvmW4iixK8dFlKcnVZkYOp3lfEc63yWaOe8MQjcEUgKkvOvSTvk0A2Ap0BSAnKE5gRqSrAI2Q3NgrEigzD8u0OU4dlOBFCWZo2aJ3W4wwSrRY9FvfLDxc8CtD_jHBI-V37lo3eYWr-5x44dtb75t3GPhNBZK7YJQ-yt03op-NNd_uUDvT49vzUuyfn1eNct1omgOMSmqzLR5LY0oZFbWsmWaFaWqmKRCalnnpSFatZVhtMpKBVpT0DJrpSkq2oKiC1Qdd1Xw4xhMy5WNIlrvYhC25wT4wQXv-OSCH1xwoHy6OpHkH7kNdhBhf5J5ODJmuvRlTeCjssYpo20wKnLt7Qn6F-bEei4
CitedBy_id crossref_primary_10_1016_j_aam_2011_07_001
crossref_primary_10_1007_s10208_018_9380_5
crossref_primary_10_1017_fms_2022_89
crossref_primary_10_1007_s11401_018_1070_8
crossref_primary_10_1145_3275242
crossref_primary_10_1007_s10208_019_09418_y
crossref_primary_10_1017_fms_2015_2
crossref_primary_10_1016_j_jsc_2022_08_013
crossref_primary_10_1090_mcom_3647
crossref_primary_10_1007_s10208_017_9358_8
crossref_primary_10_1016_j_jco_2011_11_005
crossref_primary_10_1007_s10208_022_09599_z
crossref_primary_10_1007_s10208_020_09483_8
crossref_primary_10_1016_j_tcs_2011_01_009
crossref_primary_10_1007_s00454_022_00403_x
crossref_primary_10_1090_S0025_5718_2013_02765_2
Cites_doi 10.1006/jcom.1993.1002
10.1016/S0304-3975(98)00190-X
10.1016/j.jco.2005.10.001
10.1016/S0747-7171(88)80006-3
10.1016/0304-3975(94)00065-4
10.1093/imanum/23.3.395
10.1007/BF01202001
10.1016/j.jco.2004.10.001
10.1006/jcom.1999.0503
10.1145/300515.300519
10.1016/S0747-7171(88)80005-1
10.1016/j.jco.2005.11.001
10.1145/79147.214077
10.1137/S1052623401386794
10.1137/0733008
ContentType Journal Article
Copyright 2008 Elsevier Inc.
Copyright_xml – notice: 2008 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jco.2008.03.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-2708
EndPage 605
ExternalDocumentID 10_1016_j_jco_2008_03_001
S0885064X08000162
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c340t-572ef49bea5b269bf8d856c78b3abdb946e1dcf7e83726c0dd30db2fbe573f0c3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000261347200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-064X
IngestDate Tue Nov 18 21:39:29 EST 2025
Sat Nov 29 01:55:41 EST 2025
Fri Feb 23 02:34:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Polynomial systems
Finite precision
Counting algorithms
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-572ef49bea5b269bf8d856c78b3abdb946e1dcf7e83726c0dd30db2fbe573f0c3
OpenAccessLink https://dx.doi.org/10.1016/j.jco.2008.03.001
PageCount 24
ParticipantIDs crossref_citationtrail_10_1016_j_jco_2008_03_001
crossref_primary_10_1016_j_jco_2008_03_001
elsevier_sciencedirect_doi_10_1016_j_jco_2008_03_001
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationTitle Journal of Complexity
PublicationYear 2008
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bank, Giusti, Heintz, Pardo (b1) 2005; 21
Cucker, Zhou (b9) 2007
Higham (b17) 1996
Grigoriev, Vorobjov (b13) 1988; 5
Malajovich (b19) 1994; 133
Heintz, Roy, Solerno (b16) 1994
Shub, Smale (b22) 1993; 9
Weyl (b26) 1932
Cucker (b6) 1999; 15
Meer (b20) 2000; 242
Shub, Smale (b21) 1993; 6
Bürgisser, Cucker (b3) 2006; 22
Grigoriev, Vorobjov (b14) 1992; 2
Smale (b24) 1986
Han, Wagner (b15) 1990; 37
Dedieu, Priouret, Malajovich (b10) 2003; 23
Shub, Smale (b23) 1996; 33
Golub, Van Loan (b11) 1996
Cucker, Smale (b8) 1999; 46
Grigoriev (b12) 1988; 5
Blum, Cucker, Shub, Smale (b2) 1998
Wüthrich (b27) 1976; vol. 43
Cheung, Cucker (b4) 2006; 22
Li (b18) 2003; vol. 11
Collins (b5) 1975; vol. 33
Cucker, Peña (b7) 2002; 12
Tarski (b25) 1951
Collins (10.1016/j.jco.2008.03.001_b5) 1975; vol. 33
Malajovich (10.1016/j.jco.2008.03.001_b19) 1994; 133
Shub (10.1016/j.jco.2008.03.001_b22) 1993; 9
Heintz (10.1016/j.jco.2008.03.001_b16) 1994
Wüthrich (10.1016/j.jco.2008.03.001_b27) 1976; vol. 43
Weyl (10.1016/j.jco.2008.03.001_b26) 1932
Shub (10.1016/j.jco.2008.03.001_b23) 1996; 33
Li (10.1016/j.jco.2008.03.001_b18) 2003; vol. 11
Cheung (10.1016/j.jco.2008.03.001_b4) 2006; 22
Cucker (10.1016/j.jco.2008.03.001_b6) 1999; 15
Shub (10.1016/j.jco.2008.03.001_b21) 1993; 6
Grigoriev (10.1016/j.jco.2008.03.001_b12) 1988; 5
Blum (10.1016/j.jco.2008.03.001_b2) 1998
Han (10.1016/j.jco.2008.03.001_b15) 1990; 37
Tarski (10.1016/j.jco.2008.03.001_b25) 1951
Higham (10.1016/j.jco.2008.03.001_b17) 1996
Bürgisser (10.1016/j.jco.2008.03.001_b3) 2006; 22
Meer (10.1016/j.jco.2008.03.001_b20) 2000; 242
Dedieu (10.1016/j.jco.2008.03.001_b10) 2003; 23
Smale (10.1016/j.jco.2008.03.001_b24) 1986
Grigoriev (10.1016/j.jco.2008.03.001_b13) 1988; 5
Golub (10.1016/j.jco.2008.03.001_b11) 1996
Cucker (10.1016/j.jco.2008.03.001_b7) 2002; 12
Cucker (10.1016/j.jco.2008.03.001_b8) 1999; 46
Bank (10.1016/j.jco.2008.03.001_b1) 2005; 21
Cucker (10.1016/j.jco.2008.03.001_b9) 2007
Grigoriev (10.1016/j.jco.2008.03.001_b14) 1992; 2
References_xml – year: 1996
  ident: b17
  article-title: Accuracy and Stability of Numerical Algorithms
– volume: 33
  start-page: 128
  year: 1996
  end-page: 148
  ident: b23
  article-title: Complexity of Bézout’s theorem IV: Probability of success; extensions
  publication-title: SIAM J. Numer. Anal.
– year: 1986
  ident: b24
  article-title: Newton’s method estimates from data at one point
  publication-title: The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics
– volume: 12
  start-page: 522
  year: 2002
  end-page: 554
  ident: b7
  article-title: A primal-dual algorithm for solving polyhedral conic systems with a finite-precision machine
  publication-title: SIAM J. Optim.
– volume: 133
  start-page: 65
  year: 1994
  end-page: 84
  ident: b19
  article-title: On generalized Newton algorithms: Quadratic convergence, path-following and error analysis
  publication-title: Theoret. Comput. Sci.
– volume: 46
  start-page: 113
  year: 1999
  end-page: 184
  ident: b8
  article-title: Complexity estimates depending on condition and round-off error
  publication-title: J. ACM
– volume: 6
  start-page: 459
  year: 1993
  end-page: 501
  ident: b21
  article-title: Complexity of Bézout’s theorem I: Geometric aspects
  publication-title: J. Amer. Math. Soc.
– volume: 5
  start-page: 37
  year: 1988
  end-page: 64
  ident: b13
  article-title: Solving systems of polynomial inequalities in subexponential time
  publication-title: J. Symbolic Comput.
– year: 1996
  ident: b11
  article-title: Matrix Computations
– volume: 23
  start-page: 395
  year: 2003
  end-page: 419
  ident: b10
  article-title: Newton method on Riemannian manifolds: Covariant alpha-theory
  publication-title: IMA J. Numer. Anal.
– start-page: 449
  year: 1994
  end-page: 465
  ident: b16
  article-title: Single exponential path finding in semi-algebraic sets II: The general case
  publication-title: Algebraic Geometry and its Applications
– volume: 22
  start-page: 147
  year: 2006
  end-page: 191
  ident: b3
  article-title: Counting complexity classes for numeric computations II: Algebraic and semialgebraic sets
  publication-title: J. Complexity
– volume: 22
  start-page: 305
  year: 2006
  end-page: 335
  ident: b4
  article-title: Solving linear programs with finite precision: II. Algorithms
  publication-title: J. Complexity
– year: 1951
  ident: b25
  article-title: A Decision Method for Elementary Algebra and Geometry
– volume: 9
  start-page: 4
  year: 1993
  end-page: 14
  ident: b22
  article-title: Complexity of Bézout’s theorem III: Condition number and packing
  publication-title: J. Complexity
– volume: 21
  start-page: 377
  year: 2005
  end-page: 412
  ident: b1
  article-title: Generalized polar varieties: Geometry and algorithms
  publication-title: J. Complexity
– volume: vol. 11
  start-page: 209
  year: 2003
  end-page: 304
  ident: b18
  publication-title: Numerical Solution of Polynomial Systems by Homotopy Continuation Methods
– year: 1932
  ident: b26
  article-title: The Theory of Groups and Quantum Mechanics
– volume: 5
  start-page: 65
  year: 1988
  end-page: 108
  ident: b12
  article-title: Complexity of deciding Tarski algebra
  publication-title: J. Symbolic Comput.
– year: 2007
  ident: b9
  article-title: Learning Theory: An Approximation Theory Viewpoint
– volume: 15
  start-page: 214
  year: 1999
  end-page: 226
  ident: b6
  article-title: Approximate zeros and condition numbers
  publication-title: J. Complexity
– volume: 37
  start-page: 626
  year: 1990
  end-page: 642
  ident: b15
  article-title: An efficient and fast parallel-connected component algorithm
  publication-title: J. ACM
– year: 1998
  ident: b2
  article-title: Complexity and Real Computation
– volume: vol. 33
  start-page: 134
  year: 1975
  end-page: 183
  ident: b5
  publication-title: Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Deccomposition
– volume: vol. 43
  start-page: 138
  year: 1976
  end-page: 162
  ident: b27
  publication-title: Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper
– volume: 242
  start-page: 41
  year: 2000
  end-page: 58
  ident: b20
  article-title: Counting problems over the reals
  publication-title: Theoret. Comput. Sci.
– volume: 2
  start-page: 133
  year: 1992
  end-page: 186
  ident: b14
  article-title: Counting connected components of a semialgebraic set in subexponential time
  publication-title: Comput. Complexity
– volume: 9
  start-page: 4
  year: 1993
  ident: 10.1016/j.jco.2008.03.001_b22
  article-title: Complexity of Bézout’s theorem III: Condition number and packing
  publication-title: J. Complexity
  doi: 10.1006/jcom.1993.1002
– year: 1996
  ident: 10.1016/j.jco.2008.03.001_b11
– year: 1996
  ident: 10.1016/j.jco.2008.03.001_b17
– volume: 6
  start-page: 459
  year: 1993
  ident: 10.1016/j.jco.2008.03.001_b21
  article-title: Complexity of Bézout’s theorem I: Geometric aspects
  publication-title: J. Amer. Math. Soc.
– year: 1932
  ident: 10.1016/j.jco.2008.03.001_b26
– volume: 242
  start-page: 41
  year: 2000
  ident: 10.1016/j.jco.2008.03.001_b20
  article-title: Counting problems over the reals
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(98)00190-X
– volume: 22
  start-page: 305
  year: 2006
  ident: 10.1016/j.jco.2008.03.001_b4
  article-title: Solving linear programs with finite precision: II. Algorithms
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2005.10.001
– volume: 5
  start-page: 65
  year: 1988
  ident: 10.1016/j.jco.2008.03.001_b12
  article-title: Complexity of deciding Tarski algebra
  publication-title: J. Symbolic Comput.
  doi: 10.1016/S0747-7171(88)80006-3
– volume: 133
  start-page: 65
  year: 1994
  ident: 10.1016/j.jco.2008.03.001_b19
  article-title: On generalized Newton algorithms: Quadratic convergence, path-following and error analysis
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(94)00065-4
– volume: 23
  start-page: 395
  year: 2003
  ident: 10.1016/j.jco.2008.03.001_b10
  article-title: Newton method on Riemannian manifolds: Covariant alpha-theory
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/23.3.395
– year: 2007
  ident: 10.1016/j.jco.2008.03.001_b9
– volume: 2
  start-page: 133
  year: 1992
  ident: 10.1016/j.jco.2008.03.001_b14
  article-title: Counting connected components of a semialgebraic set in subexponential time
  publication-title: Comput. Complexity
  doi: 10.1007/BF01202001
– volume: 21
  start-page: 377
  year: 2005
  ident: 10.1016/j.jco.2008.03.001_b1
  article-title: Generalized polar varieties: Geometry and algorithms
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2004.10.001
– volume: 15
  start-page: 214
  year: 1999
  ident: 10.1016/j.jco.2008.03.001_b6
  article-title: Approximate zeros and condition numbers
  publication-title: J. Complexity
  doi: 10.1006/jcom.1999.0503
– volume: vol. 33
  start-page: 134
  year: 1975
  ident: 10.1016/j.jco.2008.03.001_b5
– volume: 46
  start-page: 113
  year: 1999
  ident: 10.1016/j.jco.2008.03.001_b8
  article-title: Complexity estimates depending on condition and round-off error
  publication-title: J. ACM
  doi: 10.1145/300515.300519
– volume: 5
  start-page: 37
  year: 1988
  ident: 10.1016/j.jco.2008.03.001_b13
  article-title: Solving systems of polynomial inequalities in subexponential time
  publication-title: J. Symbolic Comput.
  doi: 10.1016/S0747-7171(88)80005-1
– volume: 22
  start-page: 147
  year: 2006
  ident: 10.1016/j.jco.2008.03.001_b3
  article-title: Counting complexity classes for numeric computations II: Algebraic and semialgebraic sets
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2005.11.001
– start-page: 449
  year: 1994
  ident: 10.1016/j.jco.2008.03.001_b16
  article-title: Single exponential path finding in semi-algebraic sets II: The general case
– volume: 37
  start-page: 626
  issue: 3
  year: 1990
  ident: 10.1016/j.jco.2008.03.001_b15
  article-title: An efficient and fast parallel-connected component algorithm
  publication-title: J. ACM
  doi: 10.1145/79147.214077
– volume: 12
  start-page: 522
  year: 2002
  ident: 10.1016/j.jco.2008.03.001_b7
  article-title: A primal-dual algorithm for solving polyhedral conic systems with a finite-precision machine
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623401386794
– year: 1986
  ident: 10.1016/j.jco.2008.03.001_b24
  article-title: Newton’s method estimates from data at one point
– volume: vol. 43
  start-page: 138
  year: 1976
  ident: 10.1016/j.jco.2008.03.001_b27
– volume: 33
  start-page: 128
  year: 1996
  ident: 10.1016/j.jco.2008.03.001_b23
  article-title: Complexity of Bézout’s theorem IV: Probability of success; extensions
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0733008
– year: 1998
  ident: 10.1016/j.jco.2008.03.001_b2
– volume: vol. 11
  start-page: 209
  year: 2003
  ident: 10.1016/j.jco.2008.03.001_b18
– year: 1951
  ident: 10.1016/j.jco.2008.03.001_b25
SSID ssj0011561
Score 1.9703987
Snippet We describe an algorithm to count the number of distinct real zeros of a polynomial (square) system f . The algorithm performs O ( log ( n D κ ( f ) ) )...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 582
SubjectTerms Counting algorithms
Finite precision
Polynomial systems
Title A numerical algorithm for zero counting, I: Complexity and accuracy
URI https://dx.doi.org/10.1016/j.jco.2008.03.001
Volume 24
WOSCitedRecordID wos000261347200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2708
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0011561
  issn: 0885-064X
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE-1vOQDJ0qQN7bjmNuqakWBVhwWaW9R_KJdLckq3a0qTvx07PiRpVBED1yiKK_dZD59Hnu-mQHgFTNGIGxkZlROM1eQK-Oc8EyhmlCplCG6rzP7iZ2clLMZ_zwa_Yi5MBcL1jTl5SVf_ldT22PW2C519gbmTg-1B-y-NbrdWrPb7T8ZfrLXrH0YxomPv7Z29n_6rVcTftdduxebQ_Tk4NYDHCO4qpgrX4mplnLd1fKXaO-G1zpcnaIXSZlxqBdnywSUj11o0j7Vdkqf2P-4XtTz1vLT6ZAi47Vg_dhgJ9uOAUMaUTgRVyXKpG8byItm1t2ZbTKtz5YOiKLZJnFS34IojMFFn4r9O737lYb527lsgwzW1acdD2NZjN9fGeKS8DBq2uaVfURowYmdru8W2M4Z5ZbatydHB7MPKRJl57djPxPx7xMj471G8Mr_-LNvs-GvTO-De8FkcOIB8gCMdPMQ3D1OVXrPH4H9CUxQgQkq0EIFOqjACJU38OgdHAwPLUxghMlj8OXwYLr_PgtNNTKJCVpllOXaEC50TUVecGFKVdJCslLgWijBSaHHShqmS8zyQiKlMFIiN0JThg2S-AnYatpG7wCI67wsBOKGUE7sPteYEVRjiTGvGWK7AMXPUclQcd41PllU15phF7xOtyx9uZW_XUziN66Cv-j9wMri5frbnt7kN56BOwO8n4OtVbfWL8BtebE6O-9eBrD8BKYVivE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+algorithm+for+zero+counting%2C+I%3A+Complexity+and+accuracy&rft.jtitle=Journal+of+Complexity&rft.au=Cucker%2C+Felipe&rft.au=Krick%2C+Teresa&rft.au=Malajovich%2C+Gregorio&rft.au=Wschebor%2C+Mario&rft.date=2008-10-01&rft.issn=0885-064X&rft.volume=24&rft.issue=5-6&rft.spage=582&rft.epage=605&rft_id=info:doi/10.1016%2Fj.jco.2008.03.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jco_2008_03_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-064X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-064X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-064X&client=summon