A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60%WC ceramic coating on Inconel 718
Direct metal laser deposition of ceramic-metal composite coatings has received much attention in the recent past over other conventional methods due to a large number of advantages. However, formation of cracks due to large thermal gradients and rapid cooling rates limits its application. Therefore,...
Uložené v:
| Vydané v: | Surface & coatings technology Ročník 389; s. 125646 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Lausanne
Elsevier B.V
15.05.2020
Elsevier BV |
| Predmet: | |
| ISSN: | 0257-8972, 1879-3347 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Direct metal laser deposition of ceramic-metal composite coatings has received much attention in the recent past over other conventional methods due to a large number of advantages. However, formation of cracks due to large thermal gradients and rapid cooling rates limits its application. Therefore, in the present study the influence of cooling rate on crack mitigation in multilayer direct metal laser deposition of NiCrSiBC-60%WC on Inconel 718 substrate has been investigated by monitoring the thermal history of the molten pool using an IR pyrometer. Cracks could not be mitigated by varying the cooling rate through changing the scan speed within the present experimental range of 300 mm/min to 700 mm/min, possibly due to the large thermal gradients build up between the substrate and the deposited clad track. Therefore, in order to decrease the cooling rate and the thermal gradient, and study their effect on crack mitigation pre-heating of the substrates at two different temperatures, 300 °C and 500 °C was employed during the deposition process. Crack-free coatings could be obtained with substrate pre-heating, except at the lower pre-heating temperature of 300 °C and the highest scan speed of 700 mm/min which had yielded a relatively fast cooling rate. Also, at the higher pre-heating temperature of 500 °C and the lowest scan speed of 300 mm/min scan speed micro-cracks were observed inside the coating due to severe dissolution of WC particles making the matrix brittle. Further, residual stresses, hardness and wear resistance of the deposited coating under above experimental conditions were determined and correlated with the cooling rate and the microstructure.
•Laser cladding of NiCrSiBC–60%WC on Inconel 718 is carried out and the molten pool thermal history is monitored.•Effect of scan speed, substrate pre-heating and corresponding cooling rates on mitigation of cracks is investigated.•Influence of cooling rate on WC decomposition and resulting hardness and wear characteristics is investigated. |
|---|---|
| AbstractList | Direct metal laser deposition of ceramic-metal composite coatings has received much attention in the recent past over other conventional methods due to a large number of advantages. However, formation of cracks due to large thermal gradients and rapid cooling rates limits its application. Therefore, in the present study the influence of cooling rate on crack mitigation in multilayer direct metal laser deposition of NiCrSiBC-60%WC on Inconel 718 substrate has been investigated by monitoring the thermal history of the molten pool using an IR pyrometer. Cracks could not be mitigated by varying the cooling rate through changing the scan speed within the present experimental range of 300 mm/min to 700 mm/min, possibly due to the large thermal gradients build up between the substrate and the deposited clad track. Therefore, in order to decrease the cooling rate and the thermal gradient, and study their effect on crack mitigation pre-heating of the substrates at two different temperatures, 300 °C and 500 °C was employed during the deposition process. Crack-free coatings could be obtained with substrate pre-heating, except at the lower pre-heating temperature of 300 °C and the highest scan speed of 700 mm/min which had yielded a relatively fast cooling rate. Also, at the higher pre-heating temperature of 500 °C and the lowest scan speed of 300 mm/min scan speed micro-cracks were observed inside the coating due to severe dissolution of WC particles making the matrix brittle. Further, residual stresses, hardness and wear resistance of the deposited coating under above experimental conditions were determined and correlated with the cooling rate and the microstructure. Direct metal laser deposition of ceramic-metal composite coatings has received much attention in the recent past over other conventional methods due to a large number of advantages. However, formation of cracks due to large thermal gradients and rapid cooling rates limits its application. Therefore, in the present study the influence of cooling rate on crack mitigation in multilayer direct metal laser deposition of NiCrSiBC-60%WC on Inconel 718 substrate has been investigated by monitoring the thermal history of the molten pool using an IR pyrometer. Cracks could not be mitigated by varying the cooling rate through changing the scan speed within the present experimental range of 300 mm/min to 700 mm/min, possibly due to the large thermal gradients build up between the substrate and the deposited clad track. Therefore, in order to decrease the cooling rate and the thermal gradient, and study their effect on crack mitigation pre-heating of the substrates at two different temperatures, 300 °C and 500 °C was employed during the deposition process. Crack-free coatings could be obtained with substrate pre-heating, except at the lower pre-heating temperature of 300 °C and the highest scan speed of 700 mm/min which had yielded a relatively fast cooling rate. Also, at the higher pre-heating temperature of 500 °C and the lowest scan speed of 300 mm/min scan speed micro-cracks were observed inside the coating due to severe dissolution of WC particles making the matrix brittle. Further, residual stresses, hardness and wear resistance of the deposited coating under above experimental conditions were determined and correlated with the cooling rate and the microstructure. •Laser cladding of NiCrSiBC–60%WC on Inconel 718 is carried out and the molten pool thermal history is monitored.•Effect of scan speed, substrate pre-heating and corresponding cooling rates on mitigation of cracks is investigated.•Influence of cooling rate on WC decomposition and resulting hardness and wear characteristics is investigated. |
| ArticleNumber | 125646 |
| Author | Pawar, Sagar Dadasahed Sadhu, Abhijit Choudhary, Amit Muvvala, Gopinath Nayak, Pravanjan Pal, Surjya K. Nair, Amal M. Sarkar, Sagar Nath, Ashish Kumar |
| Author_xml | – sequence: 1 givenname: Abhijit surname: Sadhu fullname: Sadhu, Abhijit organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India – sequence: 2 givenname: Amit surname: Choudhary fullname: Choudhary, Amit organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India – sequence: 3 givenname: Sagar surname: Sarkar fullname: Sarkar, Sagar organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India – sequence: 4 givenname: Amal M. surname: Nair fullname: Nair, Amal M. organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India – sequence: 5 givenname: Pravanjan surname: Nayak fullname: Nayak, Pravanjan organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India – sequence: 6 givenname: Sagar Dadasahed surname: Pawar fullname: Pawar, Sagar Dadasahed organization: Department of Mechanical and Aerospace Engineering, Indian Institute of Technology, Hyderabad, India – sequence: 7 givenname: Gopinath surname: Muvvala fullname: Muvvala, Gopinath organization: Department of Mechanical and Aerospace Engineering, Indian Institute of Technology, Hyderabad, India – sequence: 8 givenname: Surjya K. surname: Pal fullname: Pal, Surjya K. organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India – sequence: 9 givenname: Ashish Kumar surname: Nath fullname: Nath, Ashish Kumar email: aknath@mech.iitkgp.ac.in organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India |
| BookMark | eNqFkc1O3DAUhS1EJQbaV0CWUJcZrh0nTqQuSqMWkFC7aKsuLY9zDZ5m4qntIPEsfVkcAhs2rPyj75xrn3NMDkc_IiGnDNYMWH2-XccpWON1WnPg-ZJXtagPyIo1si3KUshDsgJeyaJpJT8ixzFuAYDJVqzI_wsa09Q_UD_SdIfUjXaYcDRIvaVx2sQUdEK6D1jcoU5uvJ3JnUvuNp_yNmMmaPM3ZintXUCT6A6THuigIwba495H94J-d1346b50RQ0f_3TUYNA7Z-j8-Gfr69Hk7w1UsuY9eWf1EPHD83pCfn_7-qu7Km5-XF53FzeFKQWkooKNFNwwFFZWrNGodQ2N3LQa2r7uWwumh7Lktq7QNlxoA7IBgbzfIC9tW56Qs8V3H_y_CWNSWz-FMY9UXJS8qnJuM_VpoUzwMQa0yrj0lEGOyA2KgZrrUFv1Uoea61BLHVlev5Lvg9vp8PC28PMixBzBvcOgonFzQ0vYqvfuLYtHrzSsFA |
| CitedBy_id | crossref_primary_10_1016_j_ijrmhm_2024_106771 crossref_primary_10_1016_j_surfcoat_2021_127635 crossref_primary_10_3390_jmmp7060196 crossref_primary_10_1007_s40430_023_04500_7 crossref_primary_10_1016_j_msea_2022_142865 crossref_primary_10_1016_j_ceramint_2021_10_048 crossref_primary_10_3390_app11041966 crossref_primary_10_1016_j_ijrmhm_2021_105720 crossref_primary_10_1016_j_nxmate_2025_100524 crossref_primary_10_1016_j_optlastec_2023_109393 crossref_primary_10_1007_s11837_024_06885_9 crossref_primary_10_1016_j_surfin_2020_100699 crossref_primary_10_1016_j_addlet_2022_100028 crossref_primary_10_1016_j_jmapro_2021_07_043 crossref_primary_10_1007_s11665_024_10566_8 crossref_primary_10_1016_j_jmapro_2022_09_014 crossref_primary_10_1016_j_jallcom_2025_179547 crossref_primary_10_1016_j_optlastec_2021_107738 crossref_primary_10_1080_17452759_2024_2443578 crossref_primary_10_1134_S0021894423060032 crossref_primary_10_1016_j_jmapro_2025_05_050 crossref_primary_10_1016_j_jmatprotec_2025_119037 crossref_primary_10_52899_24141437_2025_01_107 crossref_primary_10_1016_j_addma_2022_103009 crossref_primary_10_1016_j_jmapro_2022_11_067 crossref_primary_10_1177_13621718241235471 crossref_primary_10_3390_ma14133609 crossref_primary_10_3390_met11081326 crossref_primary_10_1016_j_optlastec_2021_107129 crossref_primary_10_1016_j_jallcom_2025_180738 crossref_primary_10_3390_coatings13061117 crossref_primary_10_1134_S0021894423060020 crossref_primary_10_1007_s11595_025_3063_2 crossref_primary_10_1016_j_ceramint_2024_06_209 crossref_primary_10_1016_j_msea_2023_145952 crossref_primary_10_1016_j_surfcoat_2021_126884 crossref_primary_10_1016_j_surfcoat_2024_130393 crossref_primary_10_3390_coatings13010151 crossref_primary_10_1002_srin_202300228 crossref_primary_10_3390_ma17010121 crossref_primary_10_1080_02670844_2023_2249653 crossref_primary_10_3390_jmmp7030110 crossref_primary_10_1016_j_surfcoat_2023_129556 crossref_primary_10_3390_ma17092104 crossref_primary_10_1007_s11661_023_07257_9 crossref_primary_10_1007_s11665_024_09980_9 crossref_primary_10_1080_17452759_2023_2301482 crossref_primary_10_1016_j_surfcoat_2022_129076 crossref_primary_10_1007_s10853_024_10506_w crossref_primary_10_1016_j_surfcoat_2020_126480 crossref_primary_10_1016_j_optlastec_2025_112819 crossref_primary_10_1016_j_jallcom_2025_180521 crossref_primary_10_1007_s10853_023_09043_9 crossref_primary_10_1016_j_aime_2025_100167 crossref_primary_10_1016_j_msea_2022_142777 crossref_primary_10_1016_j_surfcoat_2025_132485 crossref_primary_10_1016_j_ceramint_2022_04_189 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124186 crossref_primary_10_1007_s40516_024_00254_9 crossref_primary_10_1016_j_ceramint_2021_12_108 crossref_primary_10_1016_j_surfcoat_2021_128034 crossref_primary_10_1007_s40516_022_00193_3 crossref_primary_10_1016_j_ijleo_2023_171506 crossref_primary_10_3390_pr11041118 crossref_primary_10_1016_j_surfcoat_2022_129029 crossref_primary_10_1016_j_matchar_2022_112355 crossref_primary_10_1016_j_mtcomm_2025_112515 crossref_primary_10_1080_02670836_2022_2118790 crossref_primary_10_1016_j_matchar_2022_112479 crossref_primary_10_1007_s11665_025_11289_0 |
| Cites_doi | 10.1111/j.1151-2916.1955.tb14545.x 10.1016/j.apsusc.2008.04.003 10.1007/BF02650140 10.1016/j.surfcoat.2005.11.093 10.1016/j.jmapro.2019.01.001 10.1016/S0921-5093(99)00159-8 10.1016/j.surfcoat.2019.04.063 10.1007/BF02659015 10.1016/j.jallcom.2017.12.364 10.1016/j.msea.2007.07.058 10.1016/j.optlastec.2014.12.005 10.1016/j.optlastec.2011.06.017 10.1016/j.wear.2004.09.041 10.1016/j.ijrmhm.2016.11.001 10.1016/j.ijrmhm.2019.02.024 10.1016/j.ijleo.2015.10.043 10.1016/j.matlet.2017.02.076 10.3390/met9121342 10.1016/j.apsusc.2015.03.168 10.1016/j.wear.2014.12.021 10.1016/j.apsusc.2009.05.161 10.1016/j.jallcom.2010.06.115 10.1016/j.phpro.2011.03.042 10.1016/j.optlastec.2010.09.001 10.1016/j.phpro.2011.03.043 10.1016/j.ceramint.2018.04.087 10.1016/j.ijrmhm.2016.06.019 10.1016/j.apsusc.2010.05.079 10.1016/j.surfcoat.2006.01.040 10.1016/j.surfcoat.2019.01.022 10.1016/j.mser.2004.01.001 10.1016/j.jallcom.2017.04.254 10.1016/j.apsusc.2012.10.193 10.1016/j.wear.2013.12.019 10.1016/j.surfcoat.2018.07.037 10.1179/mst.1992.8.8.657 10.1016/j.actamat.2006.07.049 10.1016/j.surfcoat.2019.01.104 10.1016/j.ijmecsci.2014.03.010 10.1016/S1002-0721(16)60061-3 10.1016/j.surfcoat.2019.04.052 10.1016/j.addma.2018.11.024 10.1016/j.surfcoat.2012.01.044 10.1016/j.euromechsol.2018.09.007 10.1016/j.optlaseng.2010.03.012 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright Elsevier BV May 15, 2020 |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV May 15, 2020 |
| DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD JG9 |
| DOI | 10.1016/j.surfcoat.2020.125646 |
| DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1879-3347 |
| ExternalDocumentID | 10_1016_j_surfcoat_2020_125646 S0257897220303157 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EJD FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- SEW SMS SPG WUQ ~HD 7QQ 7SR 8BQ 8FD AFXIZ AGCQF AGRNS BNPGV JG9 SSH |
| ID | FETCH-LOGICAL-c340t-50b742c1e4f7518aeaa6087b9a09d6d9f0cd0332f65ef824ac07804e2dbe23f93 |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528194000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0257-8972 |
| IngestDate | Fri Jul 25 03:40:32 EDT 2025 Sat Nov 29 07:19:15 EST 2025 Tue Nov 18 22:35:38 EST 2025 Fri Feb 23 02:49:44 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Residual stresses Abrasion wear Molten pool thermal history Direct metal laser deposition Ceramic-metal composite |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-50b742c1e4f7518aeaa6087b9a09d6d9f0cd0332f65ef824ac07804e2dbe23f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2432558979 |
| PQPubID | 2045394 |
| ParticipantIDs | proquest_journals_2432558979 crossref_citationtrail_10_1016_j_surfcoat_2020_125646 crossref_primary_10_1016_j_surfcoat_2020_125646 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2020_125646 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-15 |
| PublicationDateYYYYMMDD | 2020-05-15 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Surface & coatings technology |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Tobar, Álvarez, Amado, Rodríguez, Yáñez (bb0180) 2006; 200 Van Acker, Vanhoyweghen, Persoons, Vangrunderbeek (bb0055) 2005; 258 Wu, Chen (bb0250) 1999; 270 Zhou, Dai, Zheng (bb0165) 2011; 43 Atamert, Bhadeshia (bb0005) 1989; 20 Kumara, Segerstark, Hanning, Dixit, Joshi, Moverare, Nylén (bb0200) 2019; 25 Zhou, Zeng, Hu, Huang (bb0125) 2008; 255 Muvvala, Patra Karmakar, Nath (bb0175) 2017; 714 Lu, Cao, Lu, Zhang, Luo (bb0050) 2019; 369 Quazi, Fazal, Haseeb, Yusof, Masjuki, Arslan (bb0035) 2016; 34 Tobar, Álvarez, Amado, Rodríguez, Yáñez (bb0075) 2006; 200 Zhou, Dai (bb0160) 2010; 256 Lee, Park, Yoo, Lee, Woo, Park (bb0070) 2015; 345 Bartkowski, Młynarczak, Piasecki, Dudziak, Gościański, Bartkowska (bb0080) 2015; 68 Minlin, Wenjin, Jialie (bb0025) 2000; 20 Fernández, García, Cuetos, González, Noriega, Cadenas (bb0060) 2015; 324-325 Sang, Chen, Zhao, Wang, Wang, Lu, Song, Xu, Zhang (bb0100) 2019; 9 Yilbas, Akhtar, Karatas (bb0220) 2010; 48 Gopinath, Thota, Nath (bb0195) 2019; 362 Tobar, Álvarez, Amado, Rodríguez, Yáñez (bb0090) 2006; 200 Amado, Tobar, Yánez, Amigó, Candel (bb0065) 2011; 12 Erfanmanesh, Abdollah-Pour, Mohammadian-Semnani, Shoja-Razavi (bb0085) 2018; 44 Zhou, Huang, Zeng, Hu (bb0145) 2008; 480 Wang, Zhou, Kou (bb0230) 2019; 73 Zhou, Zeng (bb0155) 2010; 505 Verwimp, Rombouts, Geerinckx, Motmans (bb0105) 2011; 12 Wang, Zhou, Dai, Lei, Guo, Gu, Wang (bb0135) 2017; 64 Chen, Wang, Zhao, Lu, Wang, Sha, Chen, Zhang (bb0020) 2019; 369 Zhou, Lei, Dai, Guo, Gu, Panc (bb0140) 2016; 60 Zhang, Kovacevic (bb0110) 2019; 38 Oladijo, Venter, Cornish, Sacks (bb0215) 2012; 206 Nerz, Kushner, Rotolico (bb0245) 1992; 1 Díaz-Álvarez, Cantero, Miguélez, Soldani (bb0210) 2014; 82 Kadolkar, Watkins, De Hosson, Kooi, Dahotre (bb0130) 2007; 55 Xu, Kutsuna, Liu, Yamada (bb0010) 2006; 201 Shu, Li, Zhang, Yao, Li, Dai (bb0115) 2017; 195 Albert Sue, Schajer (bb0120) 1998; 5 Muvvala, Patra Karmakar, Nath (bb0205) 2018; 740 Chen, Xu, Lu, Wang, Chen, Zhang (bb0095) 2018; 350 Barin (bb0240) 1995 Zhou, Dai, Zheng (bb0170) 2012; 44 Patra Karmakar, Gopinath, Nath (bb0190) 2019; 361 Wanga, Zhanga, Shub, Yang (bb0235) 2019; 81 Oberlander, Lugscheider (bb0015) 1992; 8 Fu, Zhang, Chang, Dai (bb0030) 2016; 127 Madhukar, Mullick, Shukla, Kumar, Nath (bb0185) 2013; 264 Wu, Yu, Law, Wang (bb0040) 2004; 44 Li, Luo, Li (bb0045) 2014; 310 Zhou, Dai, Zeng (bb0150) 2009; 255 Kingery (bb0225) 1955; 38 Fu (10.1016/j.surfcoat.2020.125646_bb0030) 2016; 127 Wu (10.1016/j.surfcoat.2020.125646_bb0250) 1999; 270 Chen (10.1016/j.surfcoat.2020.125646_bb0020) 2019; 369 Tobar (10.1016/j.surfcoat.2020.125646_bb0180) 2006; 200 Wang (10.1016/j.surfcoat.2020.125646_bb0230) 2019; 73 Amado (10.1016/j.surfcoat.2020.125646_bb0065) 2011; 12 Shu (10.1016/j.surfcoat.2020.125646_bb0115) 2017; 195 Atamert (10.1016/j.surfcoat.2020.125646_bb0005) 1989; 20 Nerz (10.1016/j.surfcoat.2020.125646_bb0245) 1992; 1 Li (10.1016/j.surfcoat.2020.125646_bb0045) 2014; 310 Verwimp (10.1016/j.surfcoat.2020.125646_bb0105) 2011; 12 Zhang (10.1016/j.surfcoat.2020.125646_bb0110) 2019; 38 Zhou (10.1016/j.surfcoat.2020.125646_bb0145) 2008; 480 Tobar (10.1016/j.surfcoat.2020.125646_bb0075) 2006; 200 Wanga (10.1016/j.surfcoat.2020.125646_bb0235) 2019; 81 Albert Sue (10.1016/j.surfcoat.2020.125646_bb0120) 1998; 5 Yilbas (10.1016/j.surfcoat.2020.125646_bb0220) 2010; 48 Lu (10.1016/j.surfcoat.2020.125646_bb0050) 2019; 369 Muvvala (10.1016/j.surfcoat.2020.125646_bb0205) 2018; 740 Oladijo (10.1016/j.surfcoat.2020.125646_bb0215) 2012; 206 Madhukar (10.1016/j.surfcoat.2020.125646_bb0185) 2013; 264 Bartkowski (10.1016/j.surfcoat.2020.125646_bb0080) 2015; 68 Kadolkar (10.1016/j.surfcoat.2020.125646_bb0130) 2007; 55 Zhou (10.1016/j.surfcoat.2020.125646_bb0160) 2010; 256 Sang (10.1016/j.surfcoat.2020.125646_bb0100) 2019; 9 Zhou (10.1016/j.surfcoat.2020.125646_bb0165) 2011; 43 Zhou (10.1016/j.surfcoat.2020.125646_bb0155) 2010; 505 Muvvala (10.1016/j.surfcoat.2020.125646_bb0175) 2017; 714 Wang (10.1016/j.surfcoat.2020.125646_bb0135) 2017; 64 Oberlander (10.1016/j.surfcoat.2020.125646_bb0015) 1992; 8 Quazi (10.1016/j.surfcoat.2020.125646_bb0035) 2016; 34 Kingery (10.1016/j.surfcoat.2020.125646_bb0225) 1955; 38 Barin (10.1016/j.surfcoat.2020.125646_bb0240) 1995 Zhou (10.1016/j.surfcoat.2020.125646_bb0140) 2016; 60 Zhou (10.1016/j.surfcoat.2020.125646_bb0170) 2012; 44 Gopinath (10.1016/j.surfcoat.2020.125646_bb0195) 2019; 362 Fernández (10.1016/j.surfcoat.2020.125646_bb0060) 2015; 324-325 Van Acker (10.1016/j.surfcoat.2020.125646_bb0055) 2005; 258 Díaz-Álvarez (10.1016/j.surfcoat.2020.125646_bb0210) 2014; 82 Patra Karmakar (10.1016/j.surfcoat.2020.125646_bb0190) 2019; 361 Wu (10.1016/j.surfcoat.2020.125646_bb0040) 2004; 44 Minlin (10.1016/j.surfcoat.2020.125646_bb0025) 2000; 20 Xu (10.1016/j.surfcoat.2020.125646_bb0010) 2006; 201 Erfanmanesh (10.1016/j.surfcoat.2020.125646_bb0085) 2018; 44 Lee (10.1016/j.surfcoat.2020.125646_bb0070) 2015; 345 Zhou (10.1016/j.surfcoat.2020.125646_bb0150) 2009; 255 Kumara (10.1016/j.surfcoat.2020.125646_bb0200) 2019; 25 Tobar (10.1016/j.surfcoat.2020.125646_bb0090) 2006; 200 Chen (10.1016/j.surfcoat.2020.125646_bb0095) 2018; 350 Zhou (10.1016/j.surfcoat.2020.125646_bb0125) 2008; 255 |
| References_xml | – volume: 324-325 start-page: 80 year: 2015 end-page: 89 ident: bb0060 article-title: Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC publication-title: Wear – volume: 264 start-page: 892 year: 2013 end-page: 901 ident: bb0185 article-title: Effect of laser operating mode in paint removal with a fiber laser publication-title: Appl. Surf. Sci. – volume: 38 start-page: 63 year: 2019 end-page: 75 ident: bb0110 article-title: Laser cladding of iron-based erosion resistant metal matrix composites publication-title: J. Manuf. Process. – volume: 68 start-page: 191 year: 2015 end-page: 201 ident: bb0080 article-title: Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding publication-title: Opt. Laser Technol. – volume: 25 start-page: 357 year: 2019 end-page: 364 ident: bb0200 article-title: Microstructure modelling of laser metal powder directed energy deposition of alloy 718 publication-title: Additive Manufacturing – volume: 270 start-page: 183 year: 1999 end-page: 189 ident: bb0250 article-title: Nonequilibrium microstructure and their evolution in a Fe-Cr-W-Ni-C laser cladding coating publication-title: Material Science and Engineering A – volume: 206 start-page: 4725 year: 2012 end-page: 4729 ident: bb0215 article-title: X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates publication-title: Surface & Coatings Technology – volume: 256 start-page: 7395 year: 2010 end-page: 7399 ident: bb0160 article-title: Microstructure evolution of Fe-based WC composite coating prepared by laser induction hybrid rapid cladding publication-title: Appl. Surf. Sci. – volume: 740 start-page: 545 year: 2018 end-page: 558 ident: bb0205 article-title: In-process detection of microstructural changes in laser cladding of in-situ Inconel 718/TiC metal matrix composite coating publication-title: J. Alloys Compd. – volume: 64 start-page: 234 year: 2017 end-page: 241 ident: bb0135 article-title: Evaluation and mechanisms on heat damage of WC particles in Ni60/WC composite coatings by laser induction hybrid cladding publication-title: Int. Journal of Refractory Metals and Hard Materials – volume: 44 start-page: 1 year: 2004 end-page: 44 ident: bb0040 article-title: Properties of lead-free solder alloys with rare earth element additions publication-title: Materials Science and Engineering: R: Reports – volume: 258 start-page: 194 year: 2005 end-page: 202 ident: bb0055 article-title: Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings publication-title: Wear – volume: 20 start-page: 25 year: 2000 end-page: 30 ident: bb0025 article-title: The critical influence factors on crack formation during high power CO publication-title: Laser Appl – volume: 255 start-page: 1646 year: 2008 end-page: 1653 ident: bb0125 article-title: Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization publication-title: Appl. Surf. Sci. – volume: 505 start-page: 685 year: 2010 end-page: 691 ident: bb0155 article-title: Growth characteristics and mechanism of carbides precipitated in WC–Fe composite coatings by laser induction hybrid rapid cladding publication-title: J. Alloys Compd. – volume: 5 start-page: 647 year: 1998 end-page: 653 ident: bb0120 article-title: Stress determination for coatings publication-title: Surface Engineering. ASM Handbook – volume: 48 start-page: 740 year: 2010 end-page: 749 ident: bb0220 article-title: Laser surface treatment of Inconel 718 alloy: thermal stress analysis publication-title: Opt. Lasers Eng. – volume: 9 start-page: 1342 year: 2019 ident: bb0100 article-title: Particle size-dependent microstructure, hardness and electrochemical corrosion behavior of atmospheric plasma sprayed NiCrBSi coatings publication-title: Metals – volume: 200 start-page: 6313 year: 2006 end-page: 6317 ident: bb0075 article-title: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel publication-title: Surface & Coatings Technology – volume: 369 start-page: 228 year: 2019 end-page: 237 ident: bb0050 article-title: Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding publication-title: Surface & Coatings Technology – volume: 345 start-page: 286 year: 2015 end-page: 294 ident: bb0070 article-title: Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr publication-title: Appl. Surf. Sci. – volume: 60 start-page: 17 year: 2016 end-page: 27 ident: bb0140 article-title: A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding publication-title: Int. Journal of Refractory Metals and Hard Materials – volume: 44 start-page: 12805 year: 2018 end-page: 12814 ident: bb0085 article-title: Kinetics and oxidation behavior of laser clad WC-Co and Ni/WC-Co coatings publication-title: Ceram. Int. – volume: 8 start-page: 657 year: 1992 end-page: 665 ident: bb0015 article-title: Comparison of properties of coatings produced by laser cladding and conventional methods publication-title: Mater. Sci. Technol. – volume: 195 start-page: 178 year: 2017 end-page: 181 ident: bb0115 article-title: In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding publication-title: Materials letter – volume: 38 start-page: 3 year: 1955 end-page: 15 ident: bb0225 article-title: Factors affecting thermal stress resistance of ceramic materials publication-title: J. Am. Ceram. Soc. – volume: 1 start-page: 147 year: 1992 end-page: 152 ident: bb0245 article-title: Microstructural evaluation of tungsten carbide cobalt coatings publication-title: J. Therm. Spray Technol. – volume: 714 start-page: 514 year: 2017 end-page: 521 ident: bb0175 article-title: Monitoring and assessment of tungsten carbide wettability in laser cladded metal matrix composite coating using an IR pyrometer publication-title: J. Alloys Compd. – volume: 201 start-page: 1138 year: 2006 end-page: 1144 ident: bb0010 article-title: Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel publication-title: Surface & Coatings Technology – volume: 34 start-page: 549 year: 2016 end-page: 563 ident: bb0035 article-title: Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: a review publication-title: J. Rare Earths – volume: 361 start-page: 136 year: 2019 end-page: 149 ident: bb0190 article-title: Effect of tempering on laser remelted AISI H13 tool steel publication-title: Surface & Coatings Technology – volume: 82 start-page: 161 year: 2014 end-page: 169 ident: bb0210 article-title: Numerical analysis of thermomechanical phenomena influencing tool wear in finishing turning of Inconel 718 publication-title: Int. J. Mech. Sci. – volume: 20 start-page: 1037 year: 1989 end-page: 1054 ident: bb0005 article-title: Comparison of the microstructures and abrasive wear properties of satellite hardfacing alloys deposited by arc welding and laser cladding publication-title: Metall. Trans. A. – volume: 350 start-page: 436 year: 2018 end-page: 444 ident: bb0095 article-title: Improved hardness and wear resistance of plasma sprayed nanostructured NiCrBSi coating via short-time heat treatment publication-title: Surface & Coatings Technology – volume: 12 start-page: 330 year: 2011 end-page: 337 ident: bb0105 article-title: Applications of laser cladded WC-based wear resistant coatings publication-title: Phys. Procedia – volume: 43 start-page: 613 year: 2011 end-page: 621 ident: bb0165 article-title: Analytical modeling and experimental investigation of laser induction hybrid rapid cladding for Ni-based WC composite coatings publication-title: Opt. Laser Technol. – volume: 55 start-page: 1203 year: 2007 end-page: 1214 ident: bb0130 article-title: State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys publication-title: Acta Mater. – volume: 44 start-page: 190 year: 2012 end-page: 197 ident: bb0170 article-title: Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding publication-title: Opt. Laser Technol. – volume: 12 start-page: 338 year: 2011 end-page: 344 ident: bb0065 article-title: Crack free tungsten carbide reinforced Ni(Cr) layers obtained by laser cladding publication-title: Phys. Procedia – volume: 127 start-page: 200 year: 2016 end-page: 202 ident: bb0030 article-title: Analysis on the physical mechanism of laser cladding crack and its influence factors publication-title: Optik – volume: 73 start-page: 282 year: 2019 end-page: 305 ident: bb0230 article-title: An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks publication-title: European Journal of Mechanics - A/Solids – volume: 310 start-page: 72 year: 2014 end-page: 82 ident: bb0045 article-title: Effect of Y publication-title: Wear – volume: 362 start-page: 150 year: 2019 end-page: 166 ident: bb0195 article-title: Role of molten pool thermo cycle in laser surface alloying of AISI 1020 steel with in-situ synthesized TiN publication-title: Surface & Coatings Technology – volume: 200 start-page: 6313 year: 2006 end-page: 6317 ident: bb0180 article-title: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel publication-title: Surface & Coatings Technology – volume: 200 start-page: 6313 year: 2006 end-page: 6317 ident: bb0090 article-title: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel publication-title: Surface & Coatings Technology – volume: 255 start-page: 8494 year: 2009 end-page: 8500 ident: bb0150 article-title: Effects of process parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cooling publication-title: Appl. Surf. Sci. – year: 1995 ident: bb0240 article-title: Thermochemical Data of Pure Substances – volume: 369 start-page: 31 year: 2019 end-page: 43 ident: bb0020 article-title: Automatic remelting and enhanced mechanical performance of a plasma sprayed NiCrBSi coating publication-title: Surface & Coatings Technology – volume: 480 start-page: 564 year: 2008 end-page: 572 ident: bb0145 article-title: Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding publication-title: Material Science and Engineering A – volume: 81 start-page: 63 year: 2019 end-page: 70 ident: bb0235 article-title: High temperature wear resistance and thermal fatigue behavior of Stellite-6/WC coatings produced by laser cladding with Co-coated WC powder publication-title: International Journal of Refractory Metals & Hard Materials – volume: 38 start-page: 3 year: 1955 ident: 10.1016/j.surfcoat.2020.125646_bb0225 article-title: Factors affecting thermal stress resistance of ceramic materials publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1955.tb14545.x – volume: 255 start-page: 1646 year: 2008 ident: 10.1016/j.surfcoat.2020.125646_bb0125 article-title: Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.04.003 – volume: 20 start-page: 1037 year: 1989 ident: 10.1016/j.surfcoat.2020.125646_bb0005 article-title: Comparison of the microstructures and abrasive wear properties of satellite hardfacing alloys deposited by arc welding and laser cladding publication-title: Metall. Trans. A. doi: 10.1007/BF02650140 – volume: 200 start-page: 6313 year: 2006 ident: 10.1016/j.surfcoat.2020.125646_bb0180 article-title: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2005.11.093 – volume: 38 start-page: 63 year: 2019 ident: 10.1016/j.surfcoat.2020.125646_bb0110 article-title: Laser cladding of iron-based erosion resistant metal matrix composites publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2019.01.001 – volume: 270 start-page: 183 year: 1999 ident: 10.1016/j.surfcoat.2020.125646_bb0250 article-title: Nonequilibrium microstructure and their evolution in a Fe-Cr-W-Ni-C laser cladding coating publication-title: Material Science and Engineering A doi: 10.1016/S0921-5093(99)00159-8 – volume: 369 start-page: 228 year: 2019 ident: 10.1016/j.surfcoat.2020.125646_bb0050 article-title: Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2019.04.063 – volume: 1 start-page: 147 issue: 2 year: 1992 ident: 10.1016/j.surfcoat.2020.125646_bb0245 article-title: Microstructural evaluation of tungsten carbide cobalt coatings publication-title: J. Therm. Spray Technol. doi: 10.1007/BF02659015 – volume: 740 start-page: 545 year: 2018 ident: 10.1016/j.surfcoat.2020.125646_bb0205 article-title: In-process detection of microstructural changes in laser cladding of in-situ Inconel 718/TiC metal matrix composite coating publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.12.364 – volume: 480 start-page: 564 year: 2008 ident: 10.1016/j.surfcoat.2020.125646_bb0145 article-title: Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding publication-title: Material Science and Engineering A doi: 10.1016/j.msea.2007.07.058 – volume: 68 start-page: 191 year: 2015 ident: 10.1016/j.surfcoat.2020.125646_bb0080 article-title: Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2014.12.005 – volume: 44 start-page: 190 year: 2012 ident: 10.1016/j.surfcoat.2020.125646_bb0170 article-title: Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2011.06.017 – volume: 258 start-page: 194 year: 2005 ident: 10.1016/j.surfcoat.2020.125646_bb0055 article-title: Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings publication-title: Wear doi: 10.1016/j.wear.2004.09.041 – volume: 64 start-page: 234 year: 2017 ident: 10.1016/j.surfcoat.2020.125646_bb0135 article-title: Evaluation and mechanisms on heat damage of WC particles in Ni60/WC composite coatings by laser induction hybrid cladding publication-title: Int. Journal of Refractory Metals and Hard Materials doi: 10.1016/j.ijrmhm.2016.11.001 – volume: 81 start-page: 63 year: 2019 ident: 10.1016/j.surfcoat.2020.125646_bb0235 article-title: High temperature wear resistance and thermal fatigue behavior of Stellite-6/WC coatings produced by laser cladding with Co-coated WC powder publication-title: International Journal of Refractory Metals & Hard Materials doi: 10.1016/j.ijrmhm.2019.02.024 – volume: 127 start-page: 200 year: 2016 ident: 10.1016/j.surfcoat.2020.125646_bb0030 article-title: Analysis on the physical mechanism of laser cladding crack and its influence factors publication-title: Optik doi: 10.1016/j.ijleo.2015.10.043 – volume: 195 start-page: 178 year: 2017 ident: 10.1016/j.surfcoat.2020.125646_bb0115 article-title: In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding publication-title: Materials letter doi: 10.1016/j.matlet.2017.02.076 – volume: 9 start-page: 1342 year: 2019 ident: 10.1016/j.surfcoat.2020.125646_bb0100 article-title: Particle size-dependent microstructure, hardness and electrochemical corrosion behavior of atmospheric plasma sprayed NiCrBSi coatings publication-title: Metals doi: 10.3390/met9121342 – volume: 345 start-page: 286 year: 2015 ident: 10.1016/j.surfcoat.2020.125646_bb0070 article-title: Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.03.168 – volume: 324-325 start-page: 80 year: 2015 ident: 10.1016/j.surfcoat.2020.125646_bb0060 article-title: Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC publication-title: Wear doi: 10.1016/j.wear.2014.12.021 – volume: 255 start-page: 8494 year: 2009 ident: 10.1016/j.surfcoat.2020.125646_bb0150 article-title: Effects of process parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cooling publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.05.161 – volume: 505 start-page: 685 year: 2010 ident: 10.1016/j.surfcoat.2020.125646_bb0155 article-title: Growth characteristics and mechanism of carbides precipitated in WC–Fe composite coatings by laser induction hybrid rapid cladding publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.06.115 – volume: 12 start-page: 330 year: 2011 ident: 10.1016/j.surfcoat.2020.125646_bb0105 article-title: Applications of laser cladded WC-based wear resistant coatings publication-title: Phys. Procedia doi: 10.1016/j.phpro.2011.03.042 – volume: 43 start-page: 613 year: 2011 ident: 10.1016/j.surfcoat.2020.125646_bb0165 article-title: Analytical modeling and experimental investigation of laser induction hybrid rapid cladding for Ni-based WC composite coatings publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2010.09.001 – year: 1995 ident: 10.1016/j.surfcoat.2020.125646_bb0240 – volume: 12 start-page: 338 year: 2011 ident: 10.1016/j.surfcoat.2020.125646_bb0065 article-title: Crack free tungsten carbide reinforced Ni(Cr) layers obtained by laser cladding publication-title: Phys. Procedia doi: 10.1016/j.phpro.2011.03.043 – volume: 44 start-page: 12805 year: 2018 ident: 10.1016/j.surfcoat.2020.125646_bb0085 article-title: Kinetics and oxidation behavior of laser clad WC-Co and Ni/WC-Co coatings publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.04.087 – volume: 60 start-page: 17 year: 2016 ident: 10.1016/j.surfcoat.2020.125646_bb0140 article-title: A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding publication-title: Int. Journal of Refractory Metals and Hard Materials doi: 10.1016/j.ijrmhm.2016.06.019 – volume: 256 start-page: 7395 year: 2010 ident: 10.1016/j.surfcoat.2020.125646_bb0160 article-title: Microstructure evolution of Fe-based WC composite coating prepared by laser induction hybrid rapid cladding publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.05.079 – volume: 201 start-page: 1138 year: 2006 ident: 10.1016/j.surfcoat.2020.125646_bb0010 article-title: Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2006.01.040 – volume: 361 start-page: 136 year: 2019 ident: 10.1016/j.surfcoat.2020.125646_bb0190 article-title: Effect of tempering on laser remelted AISI H13 tool steel publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2019.01.022 – volume: 44 start-page: 1 year: 2004 ident: 10.1016/j.surfcoat.2020.125646_bb0040 article-title: Properties of lead-free solder alloys with rare earth element additions publication-title: Materials Science and Engineering: R: Reports doi: 10.1016/j.mser.2004.01.001 – volume: 714 start-page: 514 year: 2017 ident: 10.1016/j.surfcoat.2020.125646_bb0175 article-title: Monitoring and assessment of tungsten carbide wettability in laser cladded metal matrix composite coating using an IR pyrometer publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.04.254 – volume: 200 start-page: 6313 year: 2006 ident: 10.1016/j.surfcoat.2020.125646_bb0075 article-title: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2005.11.093 – volume: 200 start-page: 6313 year: 2006 ident: 10.1016/j.surfcoat.2020.125646_bb0090 article-title: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2005.11.093 – volume: 264 start-page: 892 year: 2013 ident: 10.1016/j.surfcoat.2020.125646_bb0185 article-title: Effect of laser operating mode in paint removal with a fiber laser publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.10.193 – volume: 310 start-page: 72 year: 2014 ident: 10.1016/j.surfcoat.2020.125646_bb0045 article-title: Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding publication-title: Wear doi: 10.1016/j.wear.2013.12.019 – volume: 350 start-page: 436 year: 2018 ident: 10.1016/j.surfcoat.2020.125646_bb0095 article-title: Improved hardness and wear resistance of plasma sprayed nanostructured NiCrBSi coating via short-time heat treatment publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2018.07.037 – volume: 5 start-page: 647 year: 1998 ident: 10.1016/j.surfcoat.2020.125646_bb0120 article-title: Stress determination for coatings – volume: 8 start-page: 657 year: 1992 ident: 10.1016/j.surfcoat.2020.125646_bb0015 article-title: Comparison of properties of coatings produced by laser cladding and conventional methods publication-title: Mater. Sci. Technol. doi: 10.1179/mst.1992.8.8.657 – volume: 55 start-page: 1203 year: 2007 ident: 10.1016/j.surfcoat.2020.125646_bb0130 article-title: State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.07.049 – volume: 362 start-page: 150 year: 2019 ident: 10.1016/j.surfcoat.2020.125646_bb0195 article-title: Role of molten pool thermo cycle in laser surface alloying of AISI 1020 steel with in-situ synthesized TiN publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2019.01.104 – volume: 82 start-page: 161 year: 2014 ident: 10.1016/j.surfcoat.2020.125646_bb0210 article-title: Numerical analysis of thermomechanical phenomena influencing tool wear in finishing turning of Inconel 718 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2014.03.010 – volume: 34 start-page: 549 year: 2016 ident: 10.1016/j.surfcoat.2020.125646_bb0035 article-title: Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: a review publication-title: J. Rare Earths doi: 10.1016/S1002-0721(16)60061-3 – volume: 20 start-page: 25 year: 2000 ident: 10.1016/j.surfcoat.2020.125646_bb0025 article-title: The critical influence factors on crack formation during high power CO2 laser cladding of NiCrSiB alloy by powder feeding publication-title: Laser Appl – volume: 369 start-page: 31 year: 2019 ident: 10.1016/j.surfcoat.2020.125646_bb0020 article-title: Automatic remelting and enhanced mechanical performance of a plasma sprayed NiCrBSi coating publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2019.04.052 – volume: 25 start-page: 357 year: 2019 ident: 10.1016/j.surfcoat.2020.125646_bb0200 article-title: Microstructure modelling of laser metal powder directed energy deposition of alloy 718 publication-title: Additive Manufacturing doi: 10.1016/j.addma.2018.11.024 – volume: 206 start-page: 4725 year: 2012 ident: 10.1016/j.surfcoat.2020.125646_bb0215 article-title: X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2012.01.044 – volume: 73 start-page: 282 year: 2019 ident: 10.1016/j.surfcoat.2020.125646_bb0230 article-title: An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks publication-title: European Journal of Mechanics - A/Solids doi: 10.1016/j.euromechsol.2018.09.007 – volume: 48 start-page: 740 year: 2010 ident: 10.1016/j.surfcoat.2020.125646_bb0220 article-title: Laser surface treatment of Inconel 718 alloy: thermal stress analysis publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2010.03.012 |
| SSID | ssj0001794 |
| Score | 2.5627499 |
| Snippet | Direct metal laser deposition of ceramic-metal composite coatings has received much attention in the recent past over other conventional methods due to a large... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125646 |
| SubjectTerms | Abrasion wear Ceramic coatings Ceramic-metal composite Cermets Cooling rate Cracks Direct metal laser deposition Heat treating Laser beam heating Laser cooling Laser deposition Lasers Microcracks Molten pool thermal history Multilayers Nickel base alloys Protective coatings Residual stress Residual stresses Substrates Superalloys Tungsten carbide Wear resistance |
| Title | A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60%WC ceramic coating on Inconel 718 |
| URI | https://dx.doi.org/10.1016/j.surfcoat.2020.125646 https://www.proquest.com/docview/2432558979 |
| Volume | 389 |
| WOSCitedRecordID | wos000528194000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3347 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001794 issn: 0257-8972 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKhgQ8IBggBgP5gT5VGYkTx_FjCa0ATQWpHetb5DjOmtKmJW2n_Rf-Gb8GfyWtoDB44CVqE9tJc09Pbux77wHgFU458_xMOIQR7gRezhwWpvKrS6OUZoQFNNdiE2QwiMZj-qnV-l7nwlzNSFlG19d0-V9NLfdJY6vU2X8wdzOo3CE_S6PLrTS73P6V4bumZKxdBVDRVkaFRLmFK0kTuhytqg3gKB7WQc9lZ16YWhvGe-SVyrzXgbKaEZXOtDSldLS1nngd6KVnG4q4GhZvYid02whfxB0uKiVx3-GLZnDJQYtSzDrEcuC0TkKpcsaFBp9tveqsf5nqH7JsstEUlk6KadGE6cSTxSabMBMG0J1vDwxZ9cWEjQ_ZJWuCjwesMMLdc5WOvDvbgfRCvcn3NFNwTRrO5x2ilLTjRNRIAJ0KQ-QRoY7vm2qeNdP7Rq3IcrW39wliJjOm8tFV5eq3n6qrOJVuYBjsKdk9-Jj0z8_OklFvPGr7_eVXR-mZqXX_tv_WYOsWOEQEU8m4h933vfGHxk9QVKhnAO3V7-Sv7z_971ynn5wI7RmNHoD79pUGdg0UH4KWKI_AnbhWEjwC93aKXj4C37pQAxQuSigBChuAwkUOG4DCHYCqlluAqmYGoLIrNACFGqBQAxRuAaqa7gL0IoYWntACTg1t4QklPB-D835vFL9zrESIw_3AXTvYTUmAuCeCXK0fMsFY6EYkpcylWZjR3OWZ6_soD7HIIxQw7qqKWwJlqUB-Tv0n4KCU53gKIHbzFKMoykjIAuxlERJewHGaBh4nGY6OAa7vfsJt_Xwl4zJL6kDJaVJbLVFWS4zVjsHrpt_SVJC5sQetjZtYP9jczESC9Ma-JzUaEktKqwQFPsJYYow--_Ph5-Du9k93Ag7W1Ua8ALf51bpYVS8tgH8AMlDgYg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+on+the+influence+of+substrate+pre-heating+on+mitigation+of+cracks+in+direct+metal+laser+deposition+of+NiCrSiBC-60%25WC+ceramic+coating+on+Inconel+718&rft.jtitle=Surface+%26+coatings+technology&rft.au=Sadhu%2C+Abhijit&rft.au=Choudhary%2C+Amit&rft.au=Sarkar%2C+Sagar&rft.au=Nair%2C+Amal+M&rft.date=2020-05-15&rft.pub=Elsevier+BV&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=389&rft.spage=1&rft_id=info:doi/10.1016%2Fj.surfcoat.2020.125646&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |