A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60%WC ceramic coating on Inconel 718

Direct metal laser deposition of ceramic-metal composite coatings has received much attention in the recent past over other conventional methods due to a large number of advantages. However, formation of cracks due to large thermal gradients and rapid cooling rates limits its application. Therefore,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Surface & coatings technology Ročník 389; s. 125646
Hlavní autori: Sadhu, Abhijit, Choudhary, Amit, Sarkar, Sagar, Nair, Amal M., Nayak, Pravanjan, Pawar, Sagar Dadasahed, Muvvala, Gopinath, Pal, Surjya K., Nath, Ashish Kumar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Lausanne Elsevier B.V 15.05.2020
Elsevier BV
Predmet:
ISSN:0257-8972, 1879-3347
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Direct metal laser deposition of ceramic-metal composite coatings has received much attention in the recent past over other conventional methods due to a large number of advantages. However, formation of cracks due to large thermal gradients and rapid cooling rates limits its application. Therefore, in the present study the influence of cooling rate on crack mitigation in multilayer direct metal laser deposition of NiCrSiBC-60%WC on Inconel 718 substrate has been investigated by monitoring the thermal history of the molten pool using an IR pyrometer. Cracks could not be mitigated by varying the cooling rate through changing the scan speed within the present experimental range of 300 mm/min to 700 mm/min, possibly due to the large thermal gradients build up between the substrate and the deposited clad track. Therefore, in order to decrease the cooling rate and the thermal gradient, and study their effect on crack mitigation pre-heating of the substrates at two different temperatures, 300 °C and 500 °C was employed during the deposition process. Crack-free coatings could be obtained with substrate pre-heating, except at the lower pre-heating temperature of 300 °C and the highest scan speed of 700 mm/min which had yielded a relatively fast cooling rate. Also, at the higher pre-heating temperature of 500 °C and the lowest scan speed of 300 mm/min scan speed micro-cracks were observed inside the coating due to severe dissolution of WC particles making the matrix brittle. Further, residual stresses, hardness and wear resistance of the deposited coating under above experimental conditions were determined and correlated with the cooling rate and the microstructure. •Laser cladding of NiCrSiBC–60%WC on Inconel 718 is carried out and the molten pool thermal history is monitored.•Effect of scan speed, substrate pre-heating and corresponding cooling rates on mitigation of cracks is investigated.•Influence of cooling rate on WC decomposition and resulting hardness and wear characteristics is investigated.
AbstractList Direct metal laser deposition of ceramic-metal composite coatings has received much attention in the recent past over other conventional methods due to a large number of advantages. However, formation of cracks due to large thermal gradients and rapid cooling rates limits its application. Therefore, in the present study the influence of cooling rate on crack mitigation in multilayer direct metal laser deposition of NiCrSiBC-60%WC on Inconel 718 substrate has been investigated by monitoring the thermal history of the molten pool using an IR pyrometer. Cracks could not be mitigated by varying the cooling rate through changing the scan speed within the present experimental range of 300 mm/min to 700 mm/min, possibly due to the large thermal gradients build up between the substrate and the deposited clad track. Therefore, in order to decrease the cooling rate and the thermal gradient, and study their effect on crack mitigation pre-heating of the substrates at two different temperatures, 300 °C and 500 °C was employed during the deposition process. Crack-free coatings could be obtained with substrate pre-heating, except at the lower pre-heating temperature of 300 °C and the highest scan speed of 700 mm/min which had yielded a relatively fast cooling rate. Also, at the higher pre-heating temperature of 500 °C and the lowest scan speed of 300 mm/min scan speed micro-cracks were observed inside the coating due to severe dissolution of WC particles making the matrix brittle. Further, residual stresses, hardness and wear resistance of the deposited coating under above experimental conditions were determined and correlated with the cooling rate and the microstructure.
Direct metal laser deposition of ceramic-metal composite coatings has received much attention in the recent past over other conventional methods due to a large number of advantages. However, formation of cracks due to large thermal gradients and rapid cooling rates limits its application. Therefore, in the present study the influence of cooling rate on crack mitigation in multilayer direct metal laser deposition of NiCrSiBC-60%WC on Inconel 718 substrate has been investigated by monitoring the thermal history of the molten pool using an IR pyrometer. Cracks could not be mitigated by varying the cooling rate through changing the scan speed within the present experimental range of 300 mm/min to 700 mm/min, possibly due to the large thermal gradients build up between the substrate and the deposited clad track. Therefore, in order to decrease the cooling rate and the thermal gradient, and study their effect on crack mitigation pre-heating of the substrates at two different temperatures, 300 °C and 500 °C was employed during the deposition process. Crack-free coatings could be obtained with substrate pre-heating, except at the lower pre-heating temperature of 300 °C and the highest scan speed of 700 mm/min which had yielded a relatively fast cooling rate. Also, at the higher pre-heating temperature of 500 °C and the lowest scan speed of 300 mm/min scan speed micro-cracks were observed inside the coating due to severe dissolution of WC particles making the matrix brittle. Further, residual stresses, hardness and wear resistance of the deposited coating under above experimental conditions were determined and correlated with the cooling rate and the microstructure. •Laser cladding of NiCrSiBC–60%WC on Inconel 718 is carried out and the molten pool thermal history is monitored.•Effect of scan speed, substrate pre-heating and corresponding cooling rates on mitigation of cracks is investigated.•Influence of cooling rate on WC decomposition and resulting hardness and wear characteristics is investigated.
ArticleNumber 125646
Author Pawar, Sagar Dadasahed
Sadhu, Abhijit
Choudhary, Amit
Muvvala, Gopinath
Nayak, Pravanjan
Pal, Surjya K.
Nair, Amal M.
Sarkar, Sagar
Nath, Ashish Kumar
Author_xml – sequence: 1
  givenname: Abhijit
  surname: Sadhu
  fullname: Sadhu, Abhijit
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India
– sequence: 2
  givenname: Amit
  surname: Choudhary
  fullname: Choudhary, Amit
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India
– sequence: 3
  givenname: Sagar
  surname: Sarkar
  fullname: Sarkar, Sagar
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India
– sequence: 4
  givenname: Amal M.
  surname: Nair
  fullname: Nair, Amal M.
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India
– sequence: 5
  givenname: Pravanjan
  surname: Nayak
  fullname: Nayak, Pravanjan
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India
– sequence: 6
  givenname: Sagar Dadasahed
  surname: Pawar
  fullname: Pawar, Sagar Dadasahed
  organization: Department of Mechanical and Aerospace Engineering, Indian Institute of Technology, Hyderabad, India
– sequence: 7
  givenname: Gopinath
  surname: Muvvala
  fullname: Muvvala, Gopinath
  organization: Department of Mechanical and Aerospace Engineering, Indian Institute of Technology, Hyderabad, India
– sequence: 8
  givenname: Surjya K.
  surname: Pal
  fullname: Pal, Surjya K.
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India
– sequence: 9
  givenname: Ashish Kumar
  surname: Nath
  fullname: Nath, Ashish Kumar
  email: aknath@mech.iitkgp.ac.in
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India
BookMark eNqFkc1O3DAUhS1EJQbaV0CWUJcZrh0nTqQuSqMWkFC7aKsuLY9zDZ5m4qntIPEsfVkcAhs2rPyj75xrn3NMDkc_IiGnDNYMWH2-XccpWON1WnPg-ZJXtagPyIo1si3KUshDsgJeyaJpJT8ixzFuAYDJVqzI_wsa09Q_UD_SdIfUjXaYcDRIvaVx2sQUdEK6D1jcoU5uvJ3JnUvuNp_yNmMmaPM3ZintXUCT6A6THuigIwba495H94J-d1346b50RQ0f_3TUYNA7Z-j8-Gfr69Hk7w1UsuY9eWf1EPHD83pCfn_7-qu7Km5-XF53FzeFKQWkooKNFNwwFFZWrNGodQ2N3LQa2r7uWwumh7Lktq7QNlxoA7IBgbzfIC9tW56Qs8V3H_y_CWNSWz-FMY9UXJS8qnJuM_VpoUzwMQa0yrj0lEGOyA2KgZrrUFv1Uoea61BLHVlev5Lvg9vp8PC28PMixBzBvcOgonFzQ0vYqvfuLYtHrzSsFA
CitedBy_id crossref_primary_10_1016_j_ijrmhm_2024_106771
crossref_primary_10_1016_j_surfcoat_2021_127635
crossref_primary_10_3390_jmmp7060196
crossref_primary_10_1007_s40430_023_04500_7
crossref_primary_10_1016_j_msea_2022_142865
crossref_primary_10_1016_j_ceramint_2021_10_048
crossref_primary_10_3390_app11041966
crossref_primary_10_1016_j_ijrmhm_2021_105720
crossref_primary_10_1016_j_nxmate_2025_100524
crossref_primary_10_1016_j_optlastec_2023_109393
crossref_primary_10_1007_s11837_024_06885_9
crossref_primary_10_1016_j_surfin_2020_100699
crossref_primary_10_1016_j_addlet_2022_100028
crossref_primary_10_1016_j_jmapro_2021_07_043
crossref_primary_10_1007_s11665_024_10566_8
crossref_primary_10_1016_j_jmapro_2022_09_014
crossref_primary_10_1016_j_jallcom_2025_179547
crossref_primary_10_1016_j_optlastec_2021_107738
crossref_primary_10_1080_17452759_2024_2443578
crossref_primary_10_1134_S0021894423060032
crossref_primary_10_1016_j_jmapro_2025_05_050
crossref_primary_10_1016_j_jmatprotec_2025_119037
crossref_primary_10_52899_24141437_2025_01_107
crossref_primary_10_1016_j_addma_2022_103009
crossref_primary_10_1016_j_jmapro_2022_11_067
crossref_primary_10_1177_13621718241235471
crossref_primary_10_3390_ma14133609
crossref_primary_10_3390_met11081326
crossref_primary_10_1016_j_optlastec_2021_107129
crossref_primary_10_1016_j_jallcom_2025_180738
crossref_primary_10_3390_coatings13061117
crossref_primary_10_1134_S0021894423060020
crossref_primary_10_1007_s11595_025_3063_2
crossref_primary_10_1016_j_ceramint_2024_06_209
crossref_primary_10_1016_j_msea_2023_145952
crossref_primary_10_1016_j_surfcoat_2021_126884
crossref_primary_10_1016_j_surfcoat_2024_130393
crossref_primary_10_3390_coatings13010151
crossref_primary_10_1002_srin_202300228
crossref_primary_10_3390_ma17010121
crossref_primary_10_1080_02670844_2023_2249653
crossref_primary_10_3390_jmmp7030110
crossref_primary_10_1016_j_surfcoat_2023_129556
crossref_primary_10_3390_ma17092104
crossref_primary_10_1007_s11661_023_07257_9
crossref_primary_10_1007_s11665_024_09980_9
crossref_primary_10_1080_17452759_2023_2301482
crossref_primary_10_1016_j_surfcoat_2022_129076
crossref_primary_10_1007_s10853_024_10506_w
crossref_primary_10_1016_j_surfcoat_2020_126480
crossref_primary_10_1016_j_optlastec_2025_112819
crossref_primary_10_1016_j_jallcom_2025_180521
crossref_primary_10_1007_s10853_023_09043_9
crossref_primary_10_1016_j_aime_2025_100167
crossref_primary_10_1016_j_msea_2022_142777
crossref_primary_10_1016_j_surfcoat_2025_132485
crossref_primary_10_1016_j_ceramint_2022_04_189
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124186
crossref_primary_10_1007_s40516_024_00254_9
crossref_primary_10_1016_j_ceramint_2021_12_108
crossref_primary_10_1016_j_surfcoat_2021_128034
crossref_primary_10_1007_s40516_022_00193_3
crossref_primary_10_1016_j_ijleo_2023_171506
crossref_primary_10_3390_pr11041118
crossref_primary_10_1016_j_surfcoat_2022_129029
crossref_primary_10_1016_j_matchar_2022_112355
crossref_primary_10_1016_j_mtcomm_2025_112515
crossref_primary_10_1080_02670836_2022_2118790
crossref_primary_10_1016_j_matchar_2022_112479
crossref_primary_10_1007_s11665_025_11289_0
Cites_doi 10.1111/j.1151-2916.1955.tb14545.x
10.1016/j.apsusc.2008.04.003
10.1007/BF02650140
10.1016/j.surfcoat.2005.11.093
10.1016/j.jmapro.2019.01.001
10.1016/S0921-5093(99)00159-8
10.1016/j.surfcoat.2019.04.063
10.1007/BF02659015
10.1016/j.jallcom.2017.12.364
10.1016/j.msea.2007.07.058
10.1016/j.optlastec.2014.12.005
10.1016/j.optlastec.2011.06.017
10.1016/j.wear.2004.09.041
10.1016/j.ijrmhm.2016.11.001
10.1016/j.ijrmhm.2019.02.024
10.1016/j.ijleo.2015.10.043
10.1016/j.matlet.2017.02.076
10.3390/met9121342
10.1016/j.apsusc.2015.03.168
10.1016/j.wear.2014.12.021
10.1016/j.apsusc.2009.05.161
10.1016/j.jallcom.2010.06.115
10.1016/j.phpro.2011.03.042
10.1016/j.optlastec.2010.09.001
10.1016/j.phpro.2011.03.043
10.1016/j.ceramint.2018.04.087
10.1016/j.ijrmhm.2016.06.019
10.1016/j.apsusc.2010.05.079
10.1016/j.surfcoat.2006.01.040
10.1016/j.surfcoat.2019.01.022
10.1016/j.mser.2004.01.001
10.1016/j.jallcom.2017.04.254
10.1016/j.apsusc.2012.10.193
10.1016/j.wear.2013.12.019
10.1016/j.surfcoat.2018.07.037
10.1179/mst.1992.8.8.657
10.1016/j.actamat.2006.07.049
10.1016/j.surfcoat.2019.01.104
10.1016/j.ijmecsci.2014.03.010
10.1016/S1002-0721(16)60061-3
10.1016/j.surfcoat.2019.04.052
10.1016/j.addma.2018.11.024
10.1016/j.surfcoat.2012.01.044
10.1016/j.euromechsol.2018.09.007
10.1016/j.optlaseng.2010.03.012
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV May 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV May 15, 2020
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
DOI 10.1016/j.surfcoat.2020.125646
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
ExternalDocumentID 10_1016_j_surfcoat_2020_125646
S0257897220303157
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
~HD
7QQ
7SR
8BQ
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JG9
SSH
ID FETCH-LOGICAL-c340t-50b742c1e4f7518aeaa6087b9a09d6d9f0cd0332f65ef824ac07804e2dbe23f93
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528194000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0257-8972
IngestDate Fri Jul 25 03:40:32 EDT 2025
Sat Nov 29 07:19:15 EST 2025
Tue Nov 18 22:35:38 EST 2025
Fri Feb 23 02:49:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Residual stresses
Abrasion wear
Molten pool thermal history
Direct metal laser deposition
Ceramic-metal composite
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-50b742c1e4f7518aeaa6087b9a09d6d9f0cd0332f65ef824ac07804e2dbe23f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2432558979
PQPubID 2045394
ParticipantIDs proquest_journals_2432558979
crossref_citationtrail_10_1016_j_surfcoat_2020_125646
crossref_primary_10_1016_j_surfcoat_2020_125646
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2020_125646
PublicationCentury 2000
PublicationDate 2020-05-15
PublicationDateYYYYMMDD 2020-05-15
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Tobar, Álvarez, Amado, Rodríguez, Yáñez (bb0180) 2006; 200
Van Acker, Vanhoyweghen, Persoons, Vangrunderbeek (bb0055) 2005; 258
Wu, Chen (bb0250) 1999; 270
Zhou, Dai, Zheng (bb0165) 2011; 43
Atamert, Bhadeshia (bb0005) 1989; 20
Kumara, Segerstark, Hanning, Dixit, Joshi, Moverare, Nylén (bb0200) 2019; 25
Zhou, Zeng, Hu, Huang (bb0125) 2008; 255
Muvvala, Patra Karmakar, Nath (bb0175) 2017; 714
Lu, Cao, Lu, Zhang, Luo (bb0050) 2019; 369
Quazi, Fazal, Haseeb, Yusof, Masjuki, Arslan (bb0035) 2016; 34
Tobar, Álvarez, Amado, Rodríguez, Yáñez (bb0075) 2006; 200
Zhou, Dai (bb0160) 2010; 256
Lee, Park, Yoo, Lee, Woo, Park (bb0070) 2015; 345
Bartkowski, Młynarczak, Piasecki, Dudziak, Gościański, Bartkowska (bb0080) 2015; 68
Minlin, Wenjin, Jialie (bb0025) 2000; 20
Fernández, García, Cuetos, González, Noriega, Cadenas (bb0060) 2015; 324-325
Sang, Chen, Zhao, Wang, Wang, Lu, Song, Xu, Zhang (bb0100) 2019; 9
Yilbas, Akhtar, Karatas (bb0220) 2010; 48
Gopinath, Thota, Nath (bb0195) 2019; 362
Tobar, Álvarez, Amado, Rodríguez, Yáñez (bb0090) 2006; 200
Amado, Tobar, Yánez, Amigó, Candel (bb0065) 2011; 12
Erfanmanesh, Abdollah-Pour, Mohammadian-Semnani, Shoja-Razavi (bb0085) 2018; 44
Zhou, Huang, Zeng, Hu (bb0145) 2008; 480
Wang, Zhou, Kou (bb0230) 2019; 73
Zhou, Zeng (bb0155) 2010; 505
Verwimp, Rombouts, Geerinckx, Motmans (bb0105) 2011; 12
Wang, Zhou, Dai, Lei, Guo, Gu, Wang (bb0135) 2017; 64
Chen, Wang, Zhao, Lu, Wang, Sha, Chen, Zhang (bb0020) 2019; 369
Zhou, Lei, Dai, Guo, Gu, Panc (bb0140) 2016; 60
Zhang, Kovacevic (bb0110) 2019; 38
Oladijo, Venter, Cornish, Sacks (bb0215) 2012; 206
Nerz, Kushner, Rotolico (bb0245) 1992; 1
Díaz-Álvarez, Cantero, Miguélez, Soldani (bb0210) 2014; 82
Kadolkar, Watkins, De Hosson, Kooi, Dahotre (bb0130) 2007; 55
Xu, Kutsuna, Liu, Yamada (bb0010) 2006; 201
Shu, Li, Zhang, Yao, Li, Dai (bb0115) 2017; 195
Albert Sue, Schajer (bb0120) 1998; 5
Muvvala, Patra Karmakar, Nath (bb0205) 2018; 740
Chen, Xu, Lu, Wang, Chen, Zhang (bb0095) 2018; 350
Barin (bb0240) 1995
Zhou, Dai, Zheng (bb0170) 2012; 44
Patra Karmakar, Gopinath, Nath (bb0190) 2019; 361
Wanga, Zhanga, Shub, Yang (bb0235) 2019; 81
Oberlander, Lugscheider (bb0015) 1992; 8
Fu, Zhang, Chang, Dai (bb0030) 2016; 127
Madhukar, Mullick, Shukla, Kumar, Nath (bb0185) 2013; 264
Wu, Yu, Law, Wang (bb0040) 2004; 44
Li, Luo, Li (bb0045) 2014; 310
Zhou, Dai, Zeng (bb0150) 2009; 255
Kingery (bb0225) 1955; 38
Fu (10.1016/j.surfcoat.2020.125646_bb0030) 2016; 127
Wu (10.1016/j.surfcoat.2020.125646_bb0250) 1999; 270
Chen (10.1016/j.surfcoat.2020.125646_bb0020) 2019; 369
Tobar (10.1016/j.surfcoat.2020.125646_bb0180) 2006; 200
Wang (10.1016/j.surfcoat.2020.125646_bb0230) 2019; 73
Amado (10.1016/j.surfcoat.2020.125646_bb0065) 2011; 12
Shu (10.1016/j.surfcoat.2020.125646_bb0115) 2017; 195
Atamert (10.1016/j.surfcoat.2020.125646_bb0005) 1989; 20
Nerz (10.1016/j.surfcoat.2020.125646_bb0245) 1992; 1
Li (10.1016/j.surfcoat.2020.125646_bb0045) 2014; 310
Verwimp (10.1016/j.surfcoat.2020.125646_bb0105) 2011; 12
Zhang (10.1016/j.surfcoat.2020.125646_bb0110) 2019; 38
Zhou (10.1016/j.surfcoat.2020.125646_bb0145) 2008; 480
Tobar (10.1016/j.surfcoat.2020.125646_bb0075) 2006; 200
Wanga (10.1016/j.surfcoat.2020.125646_bb0235) 2019; 81
Albert Sue (10.1016/j.surfcoat.2020.125646_bb0120) 1998; 5
Yilbas (10.1016/j.surfcoat.2020.125646_bb0220) 2010; 48
Lu (10.1016/j.surfcoat.2020.125646_bb0050) 2019; 369
Muvvala (10.1016/j.surfcoat.2020.125646_bb0205) 2018; 740
Oladijo (10.1016/j.surfcoat.2020.125646_bb0215) 2012; 206
Madhukar (10.1016/j.surfcoat.2020.125646_bb0185) 2013; 264
Bartkowski (10.1016/j.surfcoat.2020.125646_bb0080) 2015; 68
Kadolkar (10.1016/j.surfcoat.2020.125646_bb0130) 2007; 55
Zhou (10.1016/j.surfcoat.2020.125646_bb0160) 2010; 256
Sang (10.1016/j.surfcoat.2020.125646_bb0100) 2019; 9
Zhou (10.1016/j.surfcoat.2020.125646_bb0165) 2011; 43
Zhou (10.1016/j.surfcoat.2020.125646_bb0155) 2010; 505
Muvvala (10.1016/j.surfcoat.2020.125646_bb0175) 2017; 714
Wang (10.1016/j.surfcoat.2020.125646_bb0135) 2017; 64
Oberlander (10.1016/j.surfcoat.2020.125646_bb0015) 1992; 8
Quazi (10.1016/j.surfcoat.2020.125646_bb0035) 2016; 34
Kingery (10.1016/j.surfcoat.2020.125646_bb0225) 1955; 38
Barin (10.1016/j.surfcoat.2020.125646_bb0240) 1995
Zhou (10.1016/j.surfcoat.2020.125646_bb0140) 2016; 60
Zhou (10.1016/j.surfcoat.2020.125646_bb0170) 2012; 44
Gopinath (10.1016/j.surfcoat.2020.125646_bb0195) 2019; 362
Fernández (10.1016/j.surfcoat.2020.125646_bb0060) 2015; 324-325
Van Acker (10.1016/j.surfcoat.2020.125646_bb0055) 2005; 258
Díaz-Álvarez (10.1016/j.surfcoat.2020.125646_bb0210) 2014; 82
Patra Karmakar (10.1016/j.surfcoat.2020.125646_bb0190) 2019; 361
Wu (10.1016/j.surfcoat.2020.125646_bb0040) 2004; 44
Minlin (10.1016/j.surfcoat.2020.125646_bb0025) 2000; 20
Xu (10.1016/j.surfcoat.2020.125646_bb0010) 2006; 201
Erfanmanesh (10.1016/j.surfcoat.2020.125646_bb0085) 2018; 44
Lee (10.1016/j.surfcoat.2020.125646_bb0070) 2015; 345
Zhou (10.1016/j.surfcoat.2020.125646_bb0150) 2009; 255
Kumara (10.1016/j.surfcoat.2020.125646_bb0200) 2019; 25
Tobar (10.1016/j.surfcoat.2020.125646_bb0090) 2006; 200
Chen (10.1016/j.surfcoat.2020.125646_bb0095) 2018; 350
Zhou (10.1016/j.surfcoat.2020.125646_bb0125) 2008; 255
References_xml – volume: 324-325
  start-page: 80
  year: 2015
  end-page: 89
  ident: bb0060
  article-title: Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC
  publication-title: Wear
– volume: 264
  start-page: 892
  year: 2013
  end-page: 901
  ident: bb0185
  article-title: Effect of laser operating mode in paint removal with a fiber laser
  publication-title: Appl. Surf. Sci.
– volume: 38
  start-page: 63
  year: 2019
  end-page: 75
  ident: bb0110
  article-title: Laser cladding of iron-based erosion resistant metal matrix composites
  publication-title: J. Manuf. Process.
– volume: 68
  start-page: 191
  year: 2015
  end-page: 201
  ident: bb0080
  article-title: Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding
  publication-title: Opt. Laser Technol.
– volume: 25
  start-page: 357
  year: 2019
  end-page: 364
  ident: bb0200
  article-title: Microstructure modelling of laser metal powder directed energy deposition of alloy 718
  publication-title: Additive Manufacturing
– volume: 270
  start-page: 183
  year: 1999
  end-page: 189
  ident: bb0250
  article-title: Nonequilibrium microstructure and their evolution in a Fe-Cr-W-Ni-C laser cladding coating
  publication-title: Material Science and Engineering A
– volume: 206
  start-page: 4725
  year: 2012
  end-page: 4729
  ident: bb0215
  article-title: X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates
  publication-title: Surface & Coatings Technology
– volume: 256
  start-page: 7395
  year: 2010
  end-page: 7399
  ident: bb0160
  article-title: Microstructure evolution of Fe-based WC composite coating prepared by laser induction hybrid rapid cladding
  publication-title: Appl. Surf. Sci.
– volume: 740
  start-page: 545
  year: 2018
  end-page: 558
  ident: bb0205
  article-title: In-process detection of microstructural changes in laser cladding of in-situ Inconel 718/TiC metal matrix composite coating
  publication-title: J. Alloys Compd.
– volume: 64
  start-page: 234
  year: 2017
  end-page: 241
  ident: bb0135
  article-title: Evaluation and mechanisms on heat damage of WC particles in Ni60/WC composite coatings by laser induction hybrid cladding
  publication-title: Int. Journal of Refractory Metals and Hard Materials
– volume: 44
  start-page: 1
  year: 2004
  end-page: 44
  ident: bb0040
  article-title: Properties of lead-free solder alloys with rare earth element additions
  publication-title: Materials Science and Engineering: R: Reports
– volume: 258
  start-page: 194
  year: 2005
  end-page: 202
  ident: bb0055
  article-title: Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings
  publication-title: Wear
– volume: 20
  start-page: 25
  year: 2000
  end-page: 30
  ident: bb0025
  article-title: The critical influence factors on crack formation during high power CO
  publication-title: Laser Appl
– volume: 255
  start-page: 1646
  year: 2008
  end-page: 1653
  ident: bb0125
  article-title: Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization
  publication-title: Appl. Surf. Sci.
– volume: 505
  start-page: 685
  year: 2010
  end-page: 691
  ident: bb0155
  article-title: Growth characteristics and mechanism of carbides precipitated in WC–Fe composite coatings by laser induction hybrid rapid cladding
  publication-title: J. Alloys Compd.
– volume: 5
  start-page: 647
  year: 1998
  end-page: 653
  ident: bb0120
  article-title: Stress determination for coatings
  publication-title: Surface Engineering. ASM Handbook
– volume: 48
  start-page: 740
  year: 2010
  end-page: 749
  ident: bb0220
  article-title: Laser surface treatment of Inconel 718 alloy: thermal stress analysis
  publication-title: Opt. Lasers Eng.
– volume: 9
  start-page: 1342
  year: 2019
  ident: bb0100
  article-title: Particle size-dependent microstructure, hardness and electrochemical corrosion behavior of atmospheric plasma sprayed NiCrBSi coatings
  publication-title: Metals
– volume: 200
  start-page: 6313
  year: 2006
  end-page: 6317
  ident: bb0075
  article-title: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel
  publication-title: Surface & Coatings Technology
– volume: 369
  start-page: 228
  year: 2019
  end-page: 237
  ident: bb0050
  article-title: Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding
  publication-title: Surface & Coatings Technology
– volume: 345
  start-page: 286
  year: 2015
  end-page: 294
  ident: bb0070
  article-title: Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr
  publication-title: Appl. Surf. Sci.
– volume: 60
  start-page: 17
  year: 2016
  end-page: 27
  ident: bb0140
  article-title: A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding
  publication-title: Int. Journal of Refractory Metals and Hard Materials
– volume: 44
  start-page: 12805
  year: 2018
  end-page: 12814
  ident: bb0085
  article-title: Kinetics and oxidation behavior of laser clad WC-Co and Ni/WC-Co coatings
  publication-title: Ceram. Int.
– volume: 8
  start-page: 657
  year: 1992
  end-page: 665
  ident: bb0015
  article-title: Comparison of properties of coatings produced by laser cladding and conventional methods
  publication-title: Mater. Sci. Technol.
– volume: 195
  start-page: 178
  year: 2017
  end-page: 181
  ident: bb0115
  article-title: In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding
  publication-title: Materials letter
– volume: 38
  start-page: 3
  year: 1955
  end-page: 15
  ident: bb0225
  article-title: Factors affecting thermal stress resistance of ceramic materials
  publication-title: J. Am. Ceram. Soc.
– volume: 1
  start-page: 147
  year: 1992
  end-page: 152
  ident: bb0245
  article-title: Microstructural evaluation of tungsten carbide cobalt coatings
  publication-title: J. Therm. Spray Technol.
– volume: 714
  start-page: 514
  year: 2017
  end-page: 521
  ident: bb0175
  article-title: Monitoring and assessment of tungsten carbide wettability in laser cladded metal matrix composite coating using an IR pyrometer
  publication-title: J. Alloys Compd.
– volume: 201
  start-page: 1138
  year: 2006
  end-page: 1144
  ident: bb0010
  article-title: Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel
  publication-title: Surface & Coatings Technology
– volume: 34
  start-page: 549
  year: 2016
  end-page: 563
  ident: bb0035
  article-title: Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: a review
  publication-title: J. Rare Earths
– volume: 361
  start-page: 136
  year: 2019
  end-page: 149
  ident: bb0190
  article-title: Effect of tempering on laser remelted AISI H13 tool steel
  publication-title: Surface & Coatings Technology
– volume: 82
  start-page: 161
  year: 2014
  end-page: 169
  ident: bb0210
  article-title: Numerical analysis of thermomechanical phenomena influencing tool wear in finishing turning of Inconel 718
  publication-title: Int. J. Mech. Sci.
– volume: 20
  start-page: 1037
  year: 1989
  end-page: 1054
  ident: bb0005
  article-title: Comparison of the microstructures and abrasive wear properties of satellite hardfacing alloys deposited by arc welding and laser cladding
  publication-title: Metall. Trans. A.
– volume: 350
  start-page: 436
  year: 2018
  end-page: 444
  ident: bb0095
  article-title: Improved hardness and wear resistance of plasma sprayed nanostructured NiCrBSi coating via short-time heat treatment
  publication-title: Surface & Coatings Technology
– volume: 12
  start-page: 330
  year: 2011
  end-page: 337
  ident: bb0105
  article-title: Applications of laser cladded WC-based wear resistant coatings
  publication-title: Phys. Procedia
– volume: 43
  start-page: 613
  year: 2011
  end-page: 621
  ident: bb0165
  article-title: Analytical modeling and experimental investigation of laser induction hybrid rapid cladding for Ni-based WC composite coatings
  publication-title: Opt. Laser Technol.
– volume: 55
  start-page: 1203
  year: 2007
  end-page: 1214
  ident: bb0130
  article-title: State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys
  publication-title: Acta Mater.
– volume: 44
  start-page: 190
  year: 2012
  end-page: 197
  ident: bb0170
  article-title: Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding
  publication-title: Opt. Laser Technol.
– volume: 12
  start-page: 338
  year: 2011
  end-page: 344
  ident: bb0065
  article-title: Crack free tungsten carbide reinforced Ni(Cr) layers obtained by laser cladding
  publication-title: Phys. Procedia
– volume: 127
  start-page: 200
  year: 2016
  end-page: 202
  ident: bb0030
  article-title: Analysis on the physical mechanism of laser cladding crack and its influence factors
  publication-title: Optik
– volume: 73
  start-page: 282
  year: 2019
  end-page: 305
  ident: bb0230
  article-title: An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks
  publication-title: European Journal of Mechanics - A/Solids
– volume: 310
  start-page: 72
  year: 2014
  end-page: 82
  ident: bb0045
  article-title: Effect of Y
  publication-title: Wear
– volume: 362
  start-page: 150
  year: 2019
  end-page: 166
  ident: bb0195
  article-title: Role of molten pool thermo cycle in laser surface alloying of AISI 1020 steel with in-situ synthesized TiN
  publication-title: Surface & Coatings Technology
– volume: 200
  start-page: 6313
  year: 2006
  end-page: 6317
  ident: bb0180
  article-title: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel
  publication-title: Surface & Coatings Technology
– volume: 200
  start-page: 6313
  year: 2006
  end-page: 6317
  ident: bb0090
  article-title: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel
  publication-title: Surface & Coatings Technology
– volume: 255
  start-page: 8494
  year: 2009
  end-page: 8500
  ident: bb0150
  article-title: Effects of process parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cooling
  publication-title: Appl. Surf. Sci.
– year: 1995
  ident: bb0240
  article-title: Thermochemical Data of Pure Substances
– volume: 369
  start-page: 31
  year: 2019
  end-page: 43
  ident: bb0020
  article-title: Automatic remelting and enhanced mechanical performance of a plasma sprayed NiCrBSi coating
  publication-title: Surface & Coatings Technology
– volume: 480
  start-page: 564
  year: 2008
  end-page: 572
  ident: bb0145
  article-title: Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding
  publication-title: Material Science and Engineering A
– volume: 81
  start-page: 63
  year: 2019
  end-page: 70
  ident: bb0235
  article-title: High temperature wear resistance and thermal fatigue behavior of Stellite-6/WC coatings produced by laser cladding with Co-coated WC powder
  publication-title: International Journal of Refractory Metals & Hard Materials
– volume: 38
  start-page: 3
  year: 1955
  ident: 10.1016/j.surfcoat.2020.125646_bb0225
  article-title: Factors affecting thermal stress resistance of ceramic materials
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1955.tb14545.x
– volume: 255
  start-page: 1646
  year: 2008
  ident: 10.1016/j.surfcoat.2020.125646_bb0125
  article-title: Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.04.003
– volume: 20
  start-page: 1037
  year: 1989
  ident: 10.1016/j.surfcoat.2020.125646_bb0005
  article-title: Comparison of the microstructures and abrasive wear properties of satellite hardfacing alloys deposited by arc welding and laser cladding
  publication-title: Metall. Trans. A.
  doi: 10.1007/BF02650140
– volume: 200
  start-page: 6313
  year: 2006
  ident: 10.1016/j.surfcoat.2020.125646_bb0180
  article-title: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2005.11.093
– volume: 38
  start-page: 63
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125646_bb0110
  article-title: Laser cladding of iron-based erosion resistant metal matrix composites
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2019.01.001
– volume: 270
  start-page: 183
  year: 1999
  ident: 10.1016/j.surfcoat.2020.125646_bb0250
  article-title: Nonequilibrium microstructure and their evolution in a Fe-Cr-W-Ni-C laser cladding coating
  publication-title: Material Science and Engineering A
  doi: 10.1016/S0921-5093(99)00159-8
– volume: 369
  start-page: 228
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125646_bb0050
  article-title: Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2019.04.063
– volume: 1
  start-page: 147
  issue: 2
  year: 1992
  ident: 10.1016/j.surfcoat.2020.125646_bb0245
  article-title: Microstructural evaluation of tungsten carbide cobalt coatings
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/BF02659015
– volume: 740
  start-page: 545
  year: 2018
  ident: 10.1016/j.surfcoat.2020.125646_bb0205
  article-title: In-process detection of microstructural changes in laser cladding of in-situ Inconel 718/TiC metal matrix composite coating
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.12.364
– volume: 480
  start-page: 564
  year: 2008
  ident: 10.1016/j.surfcoat.2020.125646_bb0145
  article-title: Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding
  publication-title: Material Science and Engineering A
  doi: 10.1016/j.msea.2007.07.058
– volume: 68
  start-page: 191
  year: 2015
  ident: 10.1016/j.surfcoat.2020.125646_bb0080
  article-title: Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2014.12.005
– volume: 44
  start-page: 190
  year: 2012
  ident: 10.1016/j.surfcoat.2020.125646_bb0170
  article-title: Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2011.06.017
– volume: 258
  start-page: 194
  year: 2005
  ident: 10.1016/j.surfcoat.2020.125646_bb0055
  article-title: Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings
  publication-title: Wear
  doi: 10.1016/j.wear.2004.09.041
– volume: 64
  start-page: 234
  year: 2017
  ident: 10.1016/j.surfcoat.2020.125646_bb0135
  article-title: Evaluation and mechanisms on heat damage of WC particles in Ni60/WC composite coatings by laser induction hybrid cladding
  publication-title: Int. Journal of Refractory Metals and Hard Materials
  doi: 10.1016/j.ijrmhm.2016.11.001
– volume: 81
  start-page: 63
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125646_bb0235
  article-title: High temperature wear resistance and thermal fatigue behavior of Stellite-6/WC coatings produced by laser cladding with Co-coated WC powder
  publication-title: International Journal of Refractory Metals & Hard Materials
  doi: 10.1016/j.ijrmhm.2019.02.024
– volume: 127
  start-page: 200
  year: 2016
  ident: 10.1016/j.surfcoat.2020.125646_bb0030
  article-title: Analysis on the physical mechanism of laser cladding crack and its influence factors
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.10.043
– volume: 195
  start-page: 178
  year: 2017
  ident: 10.1016/j.surfcoat.2020.125646_bb0115
  article-title: In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding
  publication-title: Materials letter
  doi: 10.1016/j.matlet.2017.02.076
– volume: 9
  start-page: 1342
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125646_bb0100
  article-title: Particle size-dependent microstructure, hardness and electrochemical corrosion behavior of atmospheric plasma sprayed NiCrBSi coatings
  publication-title: Metals
  doi: 10.3390/met9121342
– volume: 345
  start-page: 286
  year: 2015
  ident: 10.1016/j.surfcoat.2020.125646_bb0070
  article-title: Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.03.168
– volume: 324-325
  start-page: 80
  year: 2015
  ident: 10.1016/j.surfcoat.2020.125646_bb0060
  article-title: Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC
  publication-title: Wear
  doi: 10.1016/j.wear.2014.12.021
– volume: 255
  start-page: 8494
  year: 2009
  ident: 10.1016/j.surfcoat.2020.125646_bb0150
  article-title: Effects of process parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cooling
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.05.161
– volume: 505
  start-page: 685
  year: 2010
  ident: 10.1016/j.surfcoat.2020.125646_bb0155
  article-title: Growth characteristics and mechanism of carbides precipitated in WC–Fe composite coatings by laser induction hybrid rapid cladding
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.06.115
– volume: 12
  start-page: 330
  year: 2011
  ident: 10.1016/j.surfcoat.2020.125646_bb0105
  article-title: Applications of laser cladded WC-based wear resistant coatings
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2011.03.042
– volume: 43
  start-page: 613
  year: 2011
  ident: 10.1016/j.surfcoat.2020.125646_bb0165
  article-title: Analytical modeling and experimental investigation of laser induction hybrid rapid cladding for Ni-based WC composite coatings
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2010.09.001
– year: 1995
  ident: 10.1016/j.surfcoat.2020.125646_bb0240
– volume: 12
  start-page: 338
  year: 2011
  ident: 10.1016/j.surfcoat.2020.125646_bb0065
  article-title: Crack free tungsten carbide reinforced Ni(Cr) layers obtained by laser cladding
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2011.03.043
– volume: 44
  start-page: 12805
  year: 2018
  ident: 10.1016/j.surfcoat.2020.125646_bb0085
  article-title: Kinetics and oxidation behavior of laser clad WC-Co and Ni/WC-Co coatings
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.04.087
– volume: 60
  start-page: 17
  year: 2016
  ident: 10.1016/j.surfcoat.2020.125646_bb0140
  article-title: A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding
  publication-title: Int. Journal of Refractory Metals and Hard Materials
  doi: 10.1016/j.ijrmhm.2016.06.019
– volume: 256
  start-page: 7395
  year: 2010
  ident: 10.1016/j.surfcoat.2020.125646_bb0160
  article-title: Microstructure evolution of Fe-based WC composite coating prepared by laser induction hybrid rapid cladding
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.05.079
– volume: 201
  start-page: 1138
  year: 2006
  ident: 10.1016/j.surfcoat.2020.125646_bb0010
  article-title: Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2006.01.040
– volume: 361
  start-page: 136
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125646_bb0190
  article-title: Effect of tempering on laser remelted AISI H13 tool steel
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2019.01.022
– volume: 44
  start-page: 1
  year: 2004
  ident: 10.1016/j.surfcoat.2020.125646_bb0040
  article-title: Properties of lead-free solder alloys with rare earth element additions
  publication-title: Materials Science and Engineering: R: Reports
  doi: 10.1016/j.mser.2004.01.001
– volume: 714
  start-page: 514
  year: 2017
  ident: 10.1016/j.surfcoat.2020.125646_bb0175
  article-title: Monitoring and assessment of tungsten carbide wettability in laser cladded metal matrix composite coating using an IR pyrometer
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.04.254
– volume: 200
  start-page: 6313
  year: 2006
  ident: 10.1016/j.surfcoat.2020.125646_bb0075
  article-title: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2005.11.093
– volume: 200
  start-page: 6313
  year: 2006
  ident: 10.1016/j.surfcoat.2020.125646_bb0090
  article-title: Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2005.11.093
– volume: 264
  start-page: 892
  year: 2013
  ident: 10.1016/j.surfcoat.2020.125646_bb0185
  article-title: Effect of laser operating mode in paint removal with a fiber laser
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.10.193
– volume: 310
  start-page: 72
  year: 2014
  ident: 10.1016/j.surfcoat.2020.125646_bb0045
  article-title: Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding
  publication-title: Wear
  doi: 10.1016/j.wear.2013.12.019
– volume: 350
  start-page: 436
  year: 2018
  ident: 10.1016/j.surfcoat.2020.125646_bb0095
  article-title: Improved hardness and wear resistance of plasma sprayed nanostructured NiCrBSi coating via short-time heat treatment
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2018.07.037
– volume: 5
  start-page: 647
  year: 1998
  ident: 10.1016/j.surfcoat.2020.125646_bb0120
  article-title: Stress determination for coatings
– volume: 8
  start-page: 657
  year: 1992
  ident: 10.1016/j.surfcoat.2020.125646_bb0015
  article-title: Comparison of properties of coatings produced by laser cladding and conventional methods
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/mst.1992.8.8.657
– volume: 55
  start-page: 1203
  year: 2007
  ident: 10.1016/j.surfcoat.2020.125646_bb0130
  article-title: State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.07.049
– volume: 362
  start-page: 150
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125646_bb0195
  article-title: Role of molten pool thermo cycle in laser surface alloying of AISI 1020 steel with in-situ synthesized TiN
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2019.01.104
– volume: 82
  start-page: 161
  year: 2014
  ident: 10.1016/j.surfcoat.2020.125646_bb0210
  article-title: Numerical analysis of thermomechanical phenomena influencing tool wear in finishing turning of Inconel 718
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2014.03.010
– volume: 34
  start-page: 549
  year: 2016
  ident: 10.1016/j.surfcoat.2020.125646_bb0035
  article-title: Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: a review
  publication-title: J. Rare Earths
  doi: 10.1016/S1002-0721(16)60061-3
– volume: 20
  start-page: 25
  year: 2000
  ident: 10.1016/j.surfcoat.2020.125646_bb0025
  article-title: The critical influence factors on crack formation during high power CO2 laser cladding of NiCrSiB alloy by powder feeding
  publication-title: Laser Appl
– volume: 369
  start-page: 31
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125646_bb0020
  article-title: Automatic remelting and enhanced mechanical performance of a plasma sprayed NiCrBSi coating
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2019.04.052
– volume: 25
  start-page: 357
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125646_bb0200
  article-title: Microstructure modelling of laser metal powder directed energy deposition of alloy 718
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2018.11.024
– volume: 206
  start-page: 4725
  year: 2012
  ident: 10.1016/j.surfcoat.2020.125646_bb0215
  article-title: X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2012.01.044
– volume: 73
  start-page: 282
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125646_bb0230
  article-title: An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks
  publication-title: European Journal of Mechanics - A/Solids
  doi: 10.1016/j.euromechsol.2018.09.007
– volume: 48
  start-page: 740
  year: 2010
  ident: 10.1016/j.surfcoat.2020.125646_bb0220
  article-title: Laser surface treatment of Inconel 718 alloy: thermal stress analysis
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2010.03.012
SSID ssj0001794
Score 2.5627499
Snippet Direct metal laser deposition of ceramic-metal composite coatings has received much attention in the recent past over other conventional methods due to a large...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125646
SubjectTerms Abrasion wear
Ceramic coatings
Ceramic-metal composite
Cermets
Cooling rate
Cracks
Direct metal laser deposition
Heat treating
Laser beam heating
Laser cooling
Laser deposition
Lasers
Microcracks
Molten pool thermal history
Multilayers
Nickel base alloys
Protective coatings
Residual stress
Residual stresses
Substrates
Superalloys
Tungsten carbide
Wear resistance
Title A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60%WC ceramic coating on Inconel 718
URI https://dx.doi.org/10.1016/j.surfcoat.2020.125646
https://www.proquest.com/docview/2432558979
Volume 389
WOSCitedRecordID wos000528194000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3347
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001794
  issn: 0257-8972
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKhgQ8IBggBgP5gT5VGYkTx_FjCa0ATQWpHetb5DjOmtKmJW2n_Rf-Gb8GfyWtoDB44CVqE9tJc09Pbux77wHgFU458_xMOIQR7gRezhwWpvKrS6OUZoQFNNdiE2QwiMZj-qnV-l7nwlzNSFlG19d0-V9NLfdJY6vU2X8wdzOo3CE_S6PLrTS73P6V4bumZKxdBVDRVkaFRLmFK0kTuhytqg3gKB7WQc9lZ16YWhvGe-SVyrzXgbKaEZXOtDSldLS1nngd6KVnG4q4GhZvYid02whfxB0uKiVx3-GLZnDJQYtSzDrEcuC0TkKpcsaFBp9tveqsf5nqH7JsstEUlk6KadGE6cSTxSabMBMG0J1vDwxZ9cWEjQ_ZJWuCjwesMMLdc5WOvDvbgfRCvcn3NFNwTRrO5x2ilLTjRNRIAJ0KQ-QRoY7vm2qeNdP7Rq3IcrW39wliJjOm8tFV5eq3n6qrOJVuYBjsKdk9-Jj0z8_OklFvPGr7_eVXR-mZqXX_tv_WYOsWOEQEU8m4h933vfGHxk9QVKhnAO3V7-Sv7z_971ynn5wI7RmNHoD79pUGdg0UH4KWKI_AnbhWEjwC93aKXj4C37pQAxQuSigBChuAwkUOG4DCHYCqlluAqmYGoLIrNACFGqBQAxRuAaqa7gL0IoYWntACTg1t4QklPB-D835vFL9zrESIw_3AXTvYTUmAuCeCXK0fMsFY6EYkpcylWZjR3OWZ6_soD7HIIxQw7qqKWwJlqUB-Tv0n4KCU53gKIHbzFKMoykjIAuxlERJewHGaBh4nGY6OAa7vfsJt_Xwl4zJL6kDJaVJbLVFWS4zVjsHrpt_SVJC5sQetjZtYP9jczESC9Ma-JzUaEktKqwQFPsJYYow--_Ph5-Du9k93Ag7W1Ua8ALf51bpYVS8tgH8AMlDgYg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+on+the+influence+of+substrate+pre-heating+on+mitigation+of+cracks+in+direct+metal+laser+deposition+of+NiCrSiBC-60%25WC+ceramic+coating+on+Inconel+718&rft.jtitle=Surface+%26+coatings+technology&rft.au=Sadhu%2C+Abhijit&rft.au=Choudhary%2C+Amit&rft.au=Sarkar%2C+Sagar&rft.au=Nair%2C+Amal+M&rft.date=2020-05-15&rft.pub=Elsevier+BV&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=389&rft.spage=1&rft_id=info:doi/10.1016%2Fj.surfcoat.2020.125646&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon