A universal optimization strategy for ant colony optimization algorithms based on the Physarum-inspired mathematical model

Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO...

Full description

Saved in:
Bibliographic Details
Published in:Bioinspiration & biomimetics Vol. 9; no. 3; p. 036006
Main Authors: Zhang, Zili, Gao, Chao, Liu, Yuxin, Qian, Tao
Format: Journal Article
Language:English
Published: England 01.09.2014
Subjects:
ISSN:1748-3190, 1748-3190
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO algorithms. The new optimization strategy takes advantages of the unique feature of critical paths reserved in the process of evolving adaptive networks of the Physarum-inspired mathematical model (PMM). The optimized algorithms, denoted as PMACO algorithms, can enhance the amount of pheromone in the critical paths and promote the exploitation of the optimal solution. Experimental results in synthetic and real networks show that the PMACO algorithms are more efficient and robust than the traditional ACO algorithms, which are adaptable to solve the TSP with single or multiple objectives. Meanwhile, we further analyse the influence of parameters on the performance of the PMACO algorithms. Based on these analyses, the best values of these parameters are worked out for the TSP.
AbstractList Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO algorithms. The new optimization strategy takes advantages of the unique feature of critical paths reserved in the process of evolving adaptive networks of the Physarum-inspired mathematical model (PMM). The optimized algorithms, denoted as PMACO algorithms, can enhance the amount of pheromone in the critical paths and promote the exploitation of the optimal solution. Experimental results in synthetic and real networks show that the PMACO algorithms are more efficient and robust than the traditional ACO algorithms, which are adaptable to solve the TSP with single or multiple objectives. Meanwhile, we further analyse the influence of parameters on the performance of the PMACO algorithms. Based on these analyses, the best values of these parameters are worked out for the TSP.Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO algorithms. The new optimization strategy takes advantages of the unique feature of critical paths reserved in the process of evolving adaptive networks of the Physarum-inspired mathematical model (PMM). The optimized algorithms, denoted as PMACO algorithms, can enhance the amount of pheromone in the critical paths and promote the exploitation of the optimal solution. Experimental results in synthetic and real networks show that the PMACO algorithms are more efficient and robust than the traditional ACO algorithms, which are adaptable to solve the TSP with single or multiple objectives. Meanwhile, we further analyse the influence of parameters on the performance of the PMACO algorithms. Based on these analyses, the best values of these parameters are worked out for the TSP.
Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO algorithms. The new optimization strategy takes advantages of the unique feature of critical paths reserved in the process of evolving adaptive networks of the Physarum-inspired mathematical model (PMM). The optimized algorithms, denoted as PMACO algorithms, can enhance the amount of pheromone in the critical paths and promote the exploitation of the optimal solution. Experimental results in synthetic and real networks show that the PMACO algorithms are more efficient and robust than the traditional ACO algorithms, which are adaptable to solve the TSP with single or multiple objectives. Meanwhile, we further analyse the influence of parameters on the performance of the PMACO algorithms. Based on these analyses, the best values of these parameters are worked out for the TSP.
Author Gao, Chao
Zhang, Zili
Liu, Yuxin
Qian, Tao
Author_xml – sequence: 1
  givenname: Zili
  surname: Zhang
  fullname: Zhang, Zili
  organization: School of Computer and Information Science, Southwest University, Chongqing 400715, People's Republic of China. School of Information Technology, Deakin University, 3217, Australia
– sequence: 2
  givenname: Chao
  surname: Gao
  fullname: Gao, Chao
– sequence: 3
  givenname: Yuxin
  surname: Liu
  fullname: Liu, Yuxin
– sequence: 4
  givenname: Tao
  surname: Qian
  fullname: Qian, Tao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24613939$$D View this record in MEDLINE/PubMed
BookMark eNpVkEtLxDAUhYOMOA_9ByJZuqlNmrSTLIfBFwzoQtclbdKZSJPUJBU6v96AI-jmnst3DvfCWYKZdVYBcI3RHUaM5XhNWUYwK3KekxyRCqHqDCxOmKPZn30OliF8IFRSzooLMC9ohQknfAGOGzha_aV8ED10Q9RGH0XUzsIQvYhqP8HOeShshK3rnZ3-h0S_d17HgwmwEUFJmFg8KPh6mILwo8m0DYP2yTAi8TR0mx4ZJ1V_Cc470Qd1ddIVeH-4f9s-ZbuXx-ftZpe1hKKYlYiSrhIMk6JlpEWcVrzkMmnXSNLIjsqiEpyt1xWhgkmCSEsko6KhtMPJXIHbn7uDd5-jCrE2OrSq74VVbgw1LktWFqk-nKI3p-jYGCXrwWsj_FT_9lV8A0SWcbQ
CitedBy_id crossref_primary_10_1007_s00500_019_04452_y
crossref_primary_10_1016_j_plrev_2018_05_002
crossref_primary_10_1007_s11047_016_9545_6
crossref_primary_10_1371_journal_pone_0146709
crossref_primary_10_1109_ACCESS_2020_3035584
crossref_primary_10_1016_j_plrev_2019_01_018
crossref_primary_10_1109_TCBB_2015_2462349
crossref_primary_10_1080_03081079_2014_997532
crossref_primary_10_1109_ACCESS_2019_2899382
crossref_primary_10_1109_TCBB_2016_2638824
crossref_primary_10_1016_j_engappai_2020_103649
crossref_primary_10_1007_s10462_021_10112_1
crossref_primary_10_1007_s11047_015_9530_5
crossref_primary_10_1016_j_plrev_2019_01_003
crossref_primary_10_1016_j_asoc_2017_07_043
crossref_primary_10_3390_app10186180
crossref_primary_10_1007_s00607_018_0621_x
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1748-3182/9/3/036006
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1748-3190
ExternalDocumentID 24613939
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
02O
1JI
1WK
4.4
53G
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACARI
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AERVB
AFYNE
AGQPQ
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ARNYC
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CGR
CJUJL
CRLBU
CS3
CUY
CVF
DU5
EBS
ECM
EDWGO
EIF
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NPM
NT-
NT.
P2P
PJBAE
Q02
RIN
RO9
ROL
RPA
S3P
SY9
TN5
W28
7X8
AEINN
ID FETCH-LOGICAL-c340t-5043f6a8132c83c0946959d094fbd3bdf4d26a9877634a8d303c3d84ab44f14d2
IEDL.DBID 7X8
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000342116600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-3190
IngestDate Thu Oct 02 06:19:51 EDT 2025
Mon Jul 21 05:50:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-5043f6a8132c83c0946959d094fbd3bdf4d26a9877634a8d303c3d84ab44f14d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24613939
PQID 1558526001
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1558526001
pubmed_primary_24613939
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinspiration & biomimetics
PublicationTitleAlternate Bioinspir Biomim
PublicationYear 2014
SSID ssj0054982
Score 2.2229457
Snippet Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 036006
SubjectTerms Algorithms
Animals
Ants - physiology
Behavior, Animal - physiology
Biomimetics - methods
Computer Simulation
Game Theory
Models, Biological
Numerical Analysis, Computer-Assisted
Physarum polycephalum - physiology
Title A universal optimization strategy for ant colony optimization algorithms based on the Physarum-inspired mathematical model
URI https://www.ncbi.nlm.nih.gov/pubmed/24613939
https://www.proquest.com/docview/1558526001
Volume 9
WOSCitedRecordID wos000342116600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA_qPHjxNR_zRQTxVvpI2iYnGeLwoGMHhd1Kmq_Vge3mugnzr_dL2k08CIKXFpKGhOTr987vI-SKKy_3Yw0OgI8GCg9jJw24NslUwDioiIE96Ye43xfDoRw0DreqSatc8kTLqGGsjY_cRbknQoOm7t9M3h1TNcpEV5sSGuukxVCVMVQdD1dRBDR9bLEoVLqND1B6y6tzaPQ1bSJwpctcZOOeF_2uZFph09v57zJ3yXajZtJuTRd7ZC0r90m7W6KJXSzoNbWJn9aj3iafXTqv0zNwxBhZSNHczaRVDV27oKjZUjwCaiCuy8XPj9TbCy5g9lpU1IhEoNiGWqWdQk3nhTMqTTQfO4oVRCxOZEvwHJDn3t3T7b3TlGRwNOPezDF4Z3mkBNqwWjCNtmEkQwn4zlNgKeQcgkhJESPb4koACkjNQHCVcp772HlINspxmR0TGqCh5HEI04xH3OepyBXEyuDNC8aCEDrkcrnDCZK8iWOoMhvPq-R7jzvkqD6mZFJjcyQGHo9JJk_-MPqUbKH6w-uMsTPSyvGHz87Jpv6YjarphaUlfPYHj18pNNRy
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+optimization+strategy+for+ant+colony+optimization+algorithms+based+on+the+Physarum-inspired+mathematical+model&rft.jtitle=Bioinspiration+%26+biomimetics&rft.au=Zhang%2C+Zili&rft.au=Gao%2C+Chao&rft.au=Liu%2C+Yuxin&rft.au=Qian%2C+Tao&rft.date=2014-09-01&rft.eissn=1748-3190&rft.volume=9&rft.issue=3&rft.spage=036006&rft_id=info:doi/10.1088%2F1748-3182%2F9%2F3%2F036006&rft_id=info%3Apmid%2F24613939&rft_id=info%3Apmid%2F24613939&rft.externalDocID=24613939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3190&client=summon