Machine Unlearning: Solutions and Challenges

Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation. To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific train...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on emerging topics in computational intelligence Vol. 8; no. 3; pp. 2150 - 2168
Main Authors: Xu, Jie, Wu, Zihan, Wang, Cong, Jia, Xiaohua
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2471-285X, 2471-285X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation. To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models. This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning. We categorize existing solutions into exact unlearning approaches that remove data influence thoroughly and approximate unlearning approaches that efficiently minimize data influence. By comprehensively reviewing solutions, we identify and discuss their strengths and limitations. Furthermore, we propose future directions to advance machine unlearning and establish it as an essential capability for trustworthy and adaptive machine learning models. This paper provides researchers with a roadmap of open problems, encouraging impactful contributions to address real-world needs for selective data removal.
AbstractList Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation. To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models. This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning. We categorize existing solutions into exact unlearning approaches that remove data influence thoroughly and approximate unlearning approaches that efficiently minimize data influence. By comprehensively reviewing solutions, we identify and discuss their strengths and limitations. Furthermore, we propose future directions to advance machine unlearning and establish it as an essential capability for trustworthy and adaptive machine learning models. This paper provides researchers with a roadmap of open problems, encouraging impactful contributions to address real-world needs for selective data removal.
Author Jia, Xiaohua
Xu, Jie
Wang, Cong
Wu, Zihan
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-9924-4157
  surname: Xu
  fullname: Xu, Jie
  email: jiexu49-c@my.cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong
– sequence: 2
  givenname: Zihan
  orcidid: 0000-0002-6551-6177
  surname: Wu
  fullname: Wu, Zihan
  organization: Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong
– sequence: 3
  givenname: Cong
  orcidid: 0000-0003-0547-315X
  surname: Wang
  fullname: Wang, Cong
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong
– sequence: 4
  givenname: Xiaohua
  orcidid: 0000-0001-8702-8302
  surname: Jia
  fullname: Jia, Xiaohua
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong
BookMark eNp9kE1PAjEQhhuDiYj8AeNhE68u9tO23gzxgwTjQUi8NaWdwpK1i-1y8N-7CAfiwdPM4X3mzTznqBebCAhdEjwiBOvb2eNsPBlRTPmIMakpxyeoT7kkJVXio3e0n6FhzmuMMdWCMMH76ObVulUVoZjHGmyKVVzeF-9NvW2rJubCRl-MV7auIS4hX6DTYOsMw8McoPlT1_1STt-eJ-OHaekYx23JgxKgFsETCNpSKaW3juIQHPGceRkUZdxpDhYI1wvGuQ8gglBSE-wpZgN0vb-7Sc3XFnJr1s02xa7SMCy0oIxI2qXoPuVSk3OCYDap-rTp2xBsdmLMrxizE2MOYjpI_YFc1drds22yVf0_erVHKwA46uJKqTvOfgC-SXHo
CODEN ITETCU
CitedBy_id crossref_primary_10_1016_j_ijepes_2025_110929
crossref_primary_10_1145_3749987
crossref_primary_10_1109_ACCESS_2025_3603866
crossref_primary_10_1109_JIOT_2024_3481213
crossref_primary_10_3390_ai6060108
crossref_primary_10_1145_3679014
crossref_primary_10_1007_s11227_025_07478_2
crossref_primary_10_23919_cje_2024_00_219
crossref_primary_10_3390_app15020647
crossref_primary_10_1109_TNNLS_2025_3530988
crossref_primary_10_1016_j_imavis_2025_105489
crossref_primary_10_1109_OJCS_2025_3543483
crossref_primary_10_1007_s10115_024_02312_2
crossref_primary_10_1080_02564602_2025_2522083
crossref_primary_10_1016_j_jisa_2025_104010
crossref_primary_10_1109_JIOT_2025_3583362
crossref_primary_10_1109_TCE_2025_3571956
crossref_primary_10_1080_14778238_2024_2420816
Cites_doi 10.1109/TDSC.2022.3194884
10.1109/TPAMI.2022.3229593
10.1109/INFOCOM53939.2023.10229075
10.1145/3460120.3484756
10.1002/j.1538-7305.1948.tb01338.x
10.1016/j.tics.2013.01.001
10.1007/978-3-030-58526-6_23
10.1007/s10462-009-9124-7
10.1109/SP46215.2023.10179336
10.1109/TMM.2017.2751969
10.1201/b12207
10.1109/INFOCOM48880.2022.9796721
10.1145/3548606.3559352
10.1109/tnnls.2023.3266233
10.2118/18761-MS
10.1145/3374664.3375751
10.1609/aimag.v29i3.2157
10.1109/CVPR42600.2020.01009
10.5555/3045118.3045167
10.1109/CVPR52688.2022.01017
10.56553/popets-2022-0072
10.1609/aaai.v36i8.20846
10.1007/978-3-319-57959-7
10.1145/3535101
10.1109/tdsc.2024.3382321
10.1023/A:1022859003006
10.1109/BigData47090.2019.9006179
10.1145/2523813
10.1007/11787006_1
10.1109/CVPR52729.2023.00750
10.1145/3485447.3511997
10.1145/3488932.3517406
10.1145/3603620
10.1145/3543507.3583547
10.1080/01621459.1974.10482962
10.1109/INFOCOM48880.2022.9796974
10.1109/SP46214.2022.9833596
10.1016/j.clsr.2017.08.007
10.24963/ijcai.2022/556
10.1109/EuroSP53844.2022.00027
10.1007/BF01582063
10.1109/5.726791
10.1109/CVPR52729.2023.01929
10.1109/CVPR46437.2021.00085
10.1145/3543507.3583521
10.1109/CVPR.2009.5206848
10.1145/3448016.3457239
10.1109/SP40001.2021.00106
10.14778/2824032.2824067
10.1109/TIFS.2024.3358993
10.1109/SP40001.2021.00019
10.24963/ijcai.2021/137
10.1109/SP.2015.35
10.1109/CVPR42600.2020.00932
10.1109/mc.2023.3333319
10.1145/3543507.3583305
10.1109/EuroSP51992.2021.00028
10.1007/978-3-031-20083-0_6
10.1007/978-3-030-45724-2_13
10.1016/j.inffus.2019.12.012
10.1126/science.aaa8685
10.4324/9781003106715-8
10.1145/276675.276685
10.1145/3485447.3512222
10.1109/TIFS.2023.3265506
10.1126/science.aaa8415
10.1145/3319535.3354208
10.1145/3196494.3196517
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2024.3379240
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 2168
ExternalDocumentID 10_1109_TETCI_2024_3379240
10488864
Genre orig-research
GrantInformation_xml – fundername: Hong Kong Research Grants Council
  grantid: CityU 11211422; R1012-21; R6021-20F; RFS2122-1S04; C2004-21G; C1029-22G
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c340t-4f85e8bfd1ef9a2777dac20ffc1d43d7f8234c94eae149b344dfe5f587910d203
IEDL.DBID RIE
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001201941100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2471-285X
IngestDate Sun Nov 30 05:23:12 EST 2025
Sat Nov 29 05:12:10 EST 2025
Tue Nov 18 22:18:17 EST 2025
Wed Aug 27 02:05:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-4f85e8bfd1ef9a2777dac20ffc1d43d7f8234c94eae149b344dfe5f587910d203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6551-6177
0000-0002-9924-4157
0000-0003-0547-315X
0000-0001-8702-8302
OpenAccessLink https://scholars.cityu.edu.hk/en/publications/machine-unlearning-solutions-and-challenges
PQID 3059523172
PQPubID 4437216
PageCount 19
ParticipantIDs ieee_primary_10488864
crossref_primary_10_1109_TETCI_2024_3379240
proquest_journals_3059523172
crossref_citationtrail_10_1109_TETCI_2024_3379240
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref59
ref53
ref52
(ref10) 2023
Ngiam (ref105) 2011
Doshi-Velez (ref19) 2017
Mirzasoleiman (ref32) 2017
ref45
ref48
Biggio (ref13) 2012
ref47
ref41
ref44
Koh (ref21) 2017
ref8
ref7
Thudi (ref17) 2022
ref4
ref3
ref6
Shaik (ref57) 2023
ref100
Jia (ref39) 2021
ref101
ref35
ref34
ref36
ref30
Wang (ref84) 2023
ref38
Jagielski (ref108) 2020
Guo (ref43) 2020
Tishby (ref114) 2000
ref24
ref23
ref26
ref25
ref20
ref22
Shan (ref31) 2022
ref28
ref27
ref29
Merity (ref50) 2017
Izzo (ref90) 2021
Suriyakumar (ref65) 2022
Molnar (ref115) 2020
Voigt (ref9) 2017
Jayaraman (ref109) 2019
ref12
ref15
Cheng (ref82) 2022
Wu (ref40) 2020
ref97
Nguyen (ref55) 2022
ref96
ref11
ref98
Bojchevski (ref54) 2018
Ginart (ref61) 2019
ref16
ref18
Gokaslan (ref51) 2019
ref93
ref94
ref91
Serra (ref33) 2018
Carlini (ref37) 2022
ref89
ref86
ref85
ref88
ref87
Martens (ref71) 2020; 21
Neel (ref76) 2021
Nguyen (ref95) 2020
Maas (ref49) 2011
Mercuri (ref42) 2022
ref81
ref80
Sekhari (ref64) 2021
ref78
Lundberg (ref103) 2017
ref106
ref75
Chien (ref83) 2022
ref104
ref74
ref77
ref102
Steinhardt (ref14) 2017
Warnecke (ref70) 2023
ref2
Shumailov (ref99) 2021
ref1
Fu (ref5) 2021
Lu (ref92) 2022
ref111
ref73
ref72
ref110
Krizhevsky (ref46) 2009
Tanno (ref68) 2022
ref67
ref63
ref66
ref113
Gupta (ref107) 2021
McMahan (ref79) 2017
Brophy (ref58) 2021
ref60
Eisenhofer (ref112) 2022
ref62
Chaudhuri (ref69) 2011; 12
References_xml – start-page: 1092
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2021
  ident: ref58
  article-title: Machine unlearning for random forests
– year: 2022
  ident: ref42
  article-title: An introduction to machine unlearning
– start-page: 1
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2019
  ident: ref61
  article-title: Making AI forget you: Data deletion in machine learning
– ident: ref93
  doi: 10.1109/TDSC.2022.3194884
– start-page: 22205
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref108
  article-title: Auditing differentially private machine learning: How private is private SGD?
– ident: ref7
  doi: 10.1109/TPAMI.2022.3229593
– start-page: 3575
  volume-title: Proc. 31st USENIX Secur. Symp.
  year: 2022
  ident: ref31
  article-title: Poison forensics: Traceback of data poisoning attacks in neural networks
– ident: ref62
  doi: 10.1109/INFOCOM53939.2023.10229075
– start-page: 142
  volume-title: Proc. 49th Annu. Meeting Assoc. Comput. Linguistics: Hum. Lang. Technol.
  year: 2011
  ident: ref49
  article-title: Learning word vectors for sentiment analysis
– start-page: 1807
  volume-title: Proc. 29th Int. Conf. Mach. Learn.
  year: 2012
  ident: ref13
  article-title: Poisoning attacks against support vector machines
– start-page: 1
  volume-title: Proc. 30th Annu. Netw. Distrib. System Secur. Symp.
  year: 2023
  ident: ref70
  article-title: Machine unlearning of features and labels
– start-page: 931
  volume-title: Proc. Algorithmic Learn. Theory
  year: 2021
  ident: ref76
  article-title: Descent-to-delete: Gradient-based methods for machine unlearning
– ident: ref26
  doi: 10.1145/3460120.3484756
– ident: ref111
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– start-page: 1
  volume-title: Proc. 6th In. Conf. Learn. Representations
  year: 2018
  ident: ref54
  article-title: Deep gaussian embedding of graphs: Unsupervised inductive learning via ranking
– ident: ref88
  doi: 10.1016/j.tics.2013.01.001
– start-page: 4768
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  year: 2017
  ident: ref103
  article-title: A unified approach to interpreting model predictions
– ident: ref72
  doi: 10.1007/978-3-030-58526-6_23
– start-page: 1273
  volume-title: Proc. Artif. Intell. Statist.
  year: 2017
  ident: ref79
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref25
  doi: 10.1007/s10462-009-9124-7
– ident: ref75
  doi: 10.1109/SP46215.2023.10179336
– start-page: 3205
  volume-title: Proc. 32nd USENIX Conf. Secur. Symp.
  year: 2023
  ident: ref84
  article-title: Inductive graph unlearning
– year: 2023
  ident: ref57
  article-title: Exploring the landscape of machine unlearning: A survey and taxonomy
– ident: ref104
  doi: 10.1109/TMM.2017.2751969
– start-page: 1
  year: 2009
  ident: ref46
  article-title: Learning multiple layers of features from tiny images
– start-page: 2008
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  year: 2021
  ident: ref90
  article-title: Approximate data deletion from machine learning models
– ident: ref23
  doi: 10.1201/b12207
– start-page: 1895
  volume-title: Proc. 28th USENIX Secur. Symp.
  year: 2019
  ident: ref109
  article-title: Evaluating differentially private machine learning in practice
– ident: ref63
  doi: 10.1109/INFOCOM48880.2022.9796721
– ident: ref59
  doi: 10.1145/3548606.3559352
– ident: ref6
  doi: 10.1109/tnnls.2023.3266233
– ident: ref47
  doi: 10.2118/18761-MS
– ident: ref80
  doi: 10.1145/3374664.3375751
– volume: 21
  start-page: 5776
  issue: 1
  year: 2020
  ident: ref71
  article-title: New insights and perspectives on the natural gradient method
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2021
  ident: ref5
  article-title: Knowledge removal in sampling-based Bayesian inference
– start-page: 16025
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref95
  article-title: Variational Bayesian unlearning
– ident: ref52
  doi: 10.1609/aimag.v29i3.2157
– ident: ref1
  doi: 10.1109/CVPR42600.2020.01009
– start-page: 1
  volume-title: Proc. 11th Int. Conf. Learn. Representations
  year: 2022
  ident: ref82
  article-title: GNNDelete: A general strategy for unlearning in graph neural networks
– start-page: 18075
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2021
  ident: ref64
  article-title: Remember what you want to forget: Algorithms for machine unlearning
– ident: ref106
  doi: 10.5555/3045118.3045167
– start-page: 10355
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2020
  ident: ref40
  article-title: Deltagrad: Rapid retraining of machine learning models
– ident: ref66
  doi: 10.1109/CVPR52688.2022.01017
– ident: ref101
  doi: 10.56553/popets-2022-0072
– start-page: 16319
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2021
  ident: ref107
  article-title: Adaptive machine unlearning
– ident: ref67
  doi: 10.1609/aaai.v36i8.20846
– volume-title: The EU General Data Protection Regulation (GDPR). A Practical Guide
  year: 2017
  ident: ref9
  doi: 10.1007/978-3-319-57959-7
– year: 2022
  ident: ref112
  article-title: Verifiable and provably secure machine unlearning
– ident: ref3
  doi: 10.1145/3535101
– ident: ref100
  doi: 10.1109/tdsc.2024.3382321
– start-page: 18021
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2021
  ident: ref99
  article-title: Manipulating SGD with data ordering attacks
– year: 2017
  ident: ref19
  article-title: Towards a rigorous science of interpretable machine learning
– ident: ref24
  doi: 10.1023/A:1022859003006
– ident: ref11
  doi: 10.1109/BigData47090.2019.9006179
– ident: ref15
  doi: 10.1145/2523813
– ident: ref44
  doi: 10.1007/11787006_1
– ident: ref91
  doi: 10.1109/CVPR52729.2023.00750
– ident: ref60
  doi: 10.1145/3485447.3511997
– ident: ref94
  doi: 10.1145/3488932.3517406
– ident: ref8
  doi: 10.1145/3603620
– start-page: 2449
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  year: 2017
  ident: ref32
  article-title: Deletion-robust submodular maximization: Data summarization with the right to be forgotten
– ident: ref85
  doi: 10.1145/3543507.3583547
– ident: ref22
  doi: 10.1080/01621459.1974.10482962
– year: 2000
  ident: ref114
  article-title: The information bottleneck method
– year: 2019
  ident: ref51
  article-title: Openwebtext corpus
– ident: ref77
  doi: 10.1109/INFOCOM48880.2022.9796974
– start-page: 27591
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2022
  ident: ref92
  article-title: QUARK: Controllable text generation with reinforced unlearning
– start-page: 3520
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  year: 2017
  ident: ref14
  article-title: Certified defenses for data poisoning attacks
– start-page: 13263
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2022
  ident: ref37
  article-title: The privacy onion effect: Memorization is relative
– ident: ref98
  doi: 10.1109/SP46214.2022.9833596
– ident: ref96
  doi: 10.1016/j.clsr.2017.08.007
– ident: ref18
  doi: 10.24963/ijcai.2022/556
– start-page: 689
  volume-title: Proc. 28th Int. Conf. Mach. Learn.
  year: 2011
  ident: ref105
  article-title: Multimodal deep learning
– ident: ref113
  doi: 10.1109/EuroSP53844.2022.00027
– start-page: 4548
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2018
  ident: ref33
  article-title: Overcoming catastrophic forgetting with hard attention to the task
– ident: ref78
  doi: 10.1007/BF01582063
– year: 2023
  ident: ref10
  article-title: California consumer privacy act (CCPA)
– ident: ref45
  doi: 10.1109/5.726791
– start-page: 1
  volume-title: Proc. 11th Int. Conf. Learn. Representations
  year: 2022
  ident: ref83
  article-title: Efficient model updates for approximate unlearning of graph-structured data
– ident: ref35
  doi: 10.1109/CVPR52729.2023.01929
– start-page: 1
  volume-title: Proc. 5th Int. Conf. Learn. Representations
  year: 2017
  ident: ref50
  article-title: Pointer sentinel mixture models
– ident: ref73
  doi: 10.1109/CVPR46437.2021.00085
– ident: ref81
  doi: 10.1145/3543507.3583521
– ident: ref48
  doi: 10.1109/CVPR.2009.5206848
– ident: ref34
  doi: 10.1145/3448016.3457239
– ident: ref97
  doi: 10.1109/SP40001.2021.00106
– ident: ref110
  doi: 10.14778/2824032.2824067
– ident: ref102
  doi: 10.1109/TIFS.2024.3358993
– ident: ref36
  doi: 10.1109/SP40001.2021.00019
– ident: ref74
  doi: 10.24963/ijcai.2021/137
– ident: ref16
  doi: 10.1109/SP.2015.35
– ident: ref41
  doi: 10.1109/CVPR42600.2020.00932
– ident: ref56
  doi: 10.1109/mc.2023.3333319
– ident: ref86
  doi: 10.1145/3543507.3583305
– start-page: 3832
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2020
  ident: ref43
  article-title: Certified data removal from machine learning models
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2021
  ident: ref39
  article-title: A zest of LIME: Towards architecture-independent model distances
– ident: ref12
  doi: 10.1109/EuroSP51992.2021.00028
– start-page: 18892
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2022
  ident: ref65
  article-title: Algorithms that approximate data removal: New results and limitations
– start-page: 4007
  volume-title: Proc. 31st USENIX Secur. Symp.
  year: 2022
  ident: ref17
  article-title: On the necessity of auditable algorithmic definitions for machine unlearning
– ident: ref38
  doi: 10.1007/978-3-031-20083-0_6
– year: 2022
  ident: ref55
  article-title: A survey of machine unlearning
– ident: ref27
  doi: 10.1007/978-3-030-45724-2_13
– volume: 12
  start-page: 1069
  issue: 3
  year: 2011
  ident: ref69
  article-title: Differentially private empirical risk minimization
  publication-title: J. Mach. Learn. Res.
– ident: ref20
  doi: 10.1016/j.inffus.2019.12.012
– ident: ref2
  doi: 10.1126/science.aaa8685
– start-page: 1885
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2017
  ident: ref21
  article-title: Understanding black-box predictions via influence functions
– start-page: 13132
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2022
  ident: ref68
  article-title: Repairing neural networks by leaving the right past behind
– ident: ref87
  doi: 10.4324/9781003106715-8
– ident: ref53
  doi: 10.1145/276675.276685
– ident: ref89
  doi: 10.1145/3485447.3512222
– ident: ref29
  doi: 10.1109/TIFS.2023.3265506
– ident: ref4
  doi: 10.1126/science.aaa8415
– ident: ref28
  doi: 10.1145/3319535.3354208
– ident: ref30
  doi: 10.1145/3196494.3196517
– volume-title: Interpretable Machine Learning
  year: 2020
  ident: ref115
SSID ssj0002951354
Score 2.5497606
Snippet Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2150
SubjectTerms Adaptation models
Computational modeling
Data models
Data points
Machine learning
machine learning security
Machine unlearning
Performance degradation
Predictive models
Random forests
Taxonomy
the right to be forgotten
Training data
Title Machine Unlearning: Solutions and Challenges
URI https://ieeexplore.ieee.org/document/10488864
https://www.proquest.com/docview/3059523172
Volume 8
WOSCitedRecordID wos001201941100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore: IEL
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5s8eDFB1asVsnBm6amu5Ns1psURUGLh1Z6C8k-RJBU-vD3O7tJiiIK3nLYWZZvZ3YemQfAWaIlK6xiISKPQlR6EMrC5KEibcdzwXXqc3OeH8RolE6n8qkuVve1MMYYn3xm-u7T_8vXM7VyoTKScGK3NMEWtIRIqmKtdUCFka3AY2wKYyJ5Ob4ZD-_JBWTY51yQoxF9Uz5-msqPJ9jrldudf55oF7ZrAzK4rm58DzZMuQ8Xjz4n0gSTsh4D8XIVrCNeQV7qYNhMTVl0YHJLZ74L6zkIoeIYLUO0aWzSwuqBsTJnQgjtGitaqwYauRY2ZRyVRJMb8ncKjqitiW2cCrIFNIv4AbTLWWkOIShYQnJW5IIsHUw0zzEhVtKWNJR0pF0YNABlqm4S7mZVvGXeWYhk5kHNHKhZDWoXztc071WLjD9XdxyMX1ZWCHah11xEVovRIqPHSJKnTEbW0S9kx7Dldq-St3rQXs5X5gQ21cfydTE_9RzyCXnmuLo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60CnrxgRWrVXPwpqnp7iSb9SbF0mJbPLTSW0j2IYKk0oe_391NUhRR8JbDDrt8O7PzyDwAriLJSaYF8RFp4KOQbZ9nKvWF0XY0ZVTGLjfnecBGo3g65U9lsbqrhVFKueQz1bKf7l--nImVDZUZCTfsFke4CVshIgmKcq11SIUYa4GGWJXGBPx2_DDu9I0TSLBFKTOuRvBN_bh5Kj8eYadZuvv_PNMB7JUmpHdf3PkhbKj8CG6GLitSeZO8HATxcuetY15emkuvU81NWdRh0jVn7vnlJARfUAyWPuo4VHGmZVtpnhLGmLStFbUWbYlUMh0TioKjSpXxeDKKKLUKdRgzYw1IEtBjqOWzXJ2Al5HISFqWMmPrYCRpipFhJqmNjuKWtAHtCqBElG3C7bSKt8S5CwFPHKiJBTUpQW3A9ZrmvWiS8efquoXxy8oCwQY0q4tISkFaJOY54sZXNmbW6S9kl7DTGw8HyaA_ejyDXbtTkcrVhNpyvlLnsC0-lq-L-YXjlk9EOLwB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Unlearning%3A+Solutions+and+Challenges&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Xu%2C+Jie&rft.au=Wu%2C+Zihan&rft.au=Wang%2C+Cong&rft.au=Jia%2C+Xiaohua&rft.date=2024-06-01&rft.issn=2471-285X&rft.eissn=2471-285X&rft.volume=8&rft.issue=3&rft.spage=2150&rft.epage=2168&rft_id=info:doi/10.1109%2FTETCI.2024.3379240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TETCI_2024_3379240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon