Learnable Spatial-Spectral Transform-Based Tensor Nuclear Norm for Multi-Dimensional Visual Data Recovery

Recently, transform-based tensor nuclear norm (TNN) methods have received increasing attention as a powerful tool for multi-dimensional visual data (color images, videos, and multispectral images, etc.) recovery. Especially, the redundant transform-based TNN achieves satisfactory recovery results, w...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology Vol. 34; no. 5; pp. 3633 - 3646
Main Authors: Liu, Sheng, Leng, Jinsong, Zhao, Xi-Le, Zeng, Haijin, Wang, Yao, Yang, Jing-Hua
Format: Journal Article
Language:English
Published: New York IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1051-8215, 1558-2205
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, transform-based tensor nuclear norm (TNN) methods have received increasing attention as a powerful tool for multi-dimensional visual data (color images, videos, and multispectral images, etc.) recovery. Especially, the redundant transform-based TNN achieves satisfactory recovery results, where the redundant transform along spectral mode can remarkably enhance the low-rankness of tensors. However, it suffers from expensive computational cost induced by the redundant transform. In this paper, we propose a learnable spatial-spectral transform-based TNN model for multi-dimensional visual data recovery, which not only enjoys better low-rankness capability but also allows us to design fast algorithms accompanying it. More specifically, we first project the large-scale original tensor to the small-scale intrinsic tensor via the learnable semi-orthogonal transforms along the spatial modes. Here, the semi-orthogonal transforms, serving as the key building block, can boost the spatial low-rankness and lead to a small-scale problem, which paves the way for designing fast algorithms. Secondly, to further boost the low-rankness, we apply the learnable redundant transform along the spectral mode to the small-scale intrinsic tensor. To tackle the proposed model, we apply an efficient proximal alternating minimization-based algorithm, which enjoys a theoretical convergence guarantee. Extensive experimental results on real-world data (color images, videos, and multispectral images) demonstrate that the proposed method outperforms state-of-the-art competitors in terms of evaluation metrics and running time.
AbstractList Recently, transform-based tensor nuclear norm (TNN) methods have received increasing attention as a powerful tool for multi-dimensional visual data (color images, videos, and multispectral images, etc.) recovery. Especially, the redundant transform-based TNN achieves satisfactory recovery results, where the redundant transform along spectral mode can remarkably enhance the low-rankness of tensors. However, it suffers from expensive computational cost induced by the redundant transform. In this paper, we propose a learnable spatial-spectral transform-based TNN model for multi-dimensional visual data recovery, which not only enjoys better low-rankness capability but also allows us to design fast algorithms accompanying it. More specifically, we first project the large-scale original tensor to the small-scale intrinsic tensor via the learnable semi-orthogonal transforms along the spatial modes. Here, the semi-orthogonal transforms, serving as the key building block, can boost the spatial low-rankness and lead to a small-scale problem, which paves the way for designing fast algorithms. Secondly, to further boost the low-rankness, we apply the learnable redundant transform along the spectral mode to the small-scale intrinsic tensor. To tackle the proposed model, we apply an efficient proximal alternating minimization-based algorithm, which enjoys a theoretical convergence guarantee. Extensive experimental results on real-world data (color images, videos, and multispectral images) demonstrate that the proposed method outperforms state-of-the-art competitors in terms of evaluation metrics and running time.
Author Wang, Yao
Zeng, Haijin
Leng, Jinsong
Liu, Sheng
Zhao, Xi-Le
Yang, Jing-Hua
Author_xml – sequence: 1
  givenname: Sheng
  orcidid: 0000-0002-0991-6328
  surname: Liu
  fullname: Liu, Sheng
  email: liusheng16@163.com
  organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Jinsong
  surname: Leng
  fullname: Leng, Jinsong
  email: lengjs@uestc.edu.cn
  organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Xi-Le
  orcidid: 0000-0002-6540-946X
  surname: Zhao
  fullname: Zhao, Xi-Le
  email: xlzhao122003@163.com
  organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Haijin
  orcidid: 0000-0003-0398-3316
  surname: Zeng
  fullname: Zeng, Haijin
  email: zeng_navy@163.com
  organization: Image Processing and Interpretation imec Research Group, Ghent University, Ghent, Belgium
– sequence: 5
  givenname: Yao
  orcidid: 0000-0003-4207-5273
  surname: Wang
  fullname: Wang, Yao
  email: yao.s.wang@gmail.com
  organization: Center for Intelligent Decision-Making and Machine Learning, School of Management, Xi'an Jiaotong University, Xi'an, China
– sequence: 6
  givenname: Jing-Hua
  orcidid: 0000-0001-8207-094X
  surname: Yang
  fullname: Yang, Jing-Hua
  email: yangjinghua110@126.com
  organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
BookMark eNp9kEtLw0AUhQepYK3-AXERcJ06z2Rmqa0vqBVs7DZMJzcwJc3UmUTov3dquxAXrs6Fc74L55yjQetaQOiK4DEhWN0Wk8WyGFNM2ZgxktFcnaAhEUKmlGIxiDcWJJWUiDN0HsIaY8Ilz4fIzkD7Vq8aSBZb3VndpIstmM7rJim8bkPt_Ca91wGqpIA2OJ_Me9NEKJlHJ4l28to3nU2ndhN969pILm3oo0x1p5N3MO4L_O4Cnda6CXB51BH6eHwoJs_p7O3pZXI3Sw3juEt5nvF8RWMpkFmlIVPSYJxRqNVKyIrQqpIgmZamFpJkilc0r4TCEmfcqEqyEbo5_N1699lD6Mq162PFJpQMC0aVVDyPKXlIGe9C8FCXxnaxv2tjdduUBJf7YcufYcv9sOVx2IjSP-jW2432u_-h6wNkAeAXQAVnkrFv4dCGsA
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TSP_2024_3454115
crossref_primary_10_1109_TCSVT_2024_3413992
crossref_primary_10_1109_TSP_2025_3589059
crossref_primary_10_1109_TCSVT_2025_3543977
crossref_primary_10_1016_j_sigpro_2025_109903
crossref_primary_10_1016_j_neunet_2025_107458
crossref_primary_10_1109_TCSVT_2024_3442295
crossref_primary_10_1088_1361_6420_addb69
crossref_primary_10_1109_TCSVT_2024_3514614
Cites_doi 10.1109/TIP.2003.819861
10.1109/TCSVT.2019.2946723
10.1016/j.laa.2015.07.021
10.1109/TSP.2016.2639466
10.1109/CVPR52688.2022.01870
10.1109/CVPR.2014.485
10.1002/nla.2444
10.1109/TIP.2020.3000349
10.1109/CVPR.2019.00615
10.1109/tmm.2022.3216746
10.1109/tcsvt.2023.3239376
10.1109/TIP.2021.3062995
10.1137/110837711
10.1007/s10107-013-0701-9
10.1137/080738970
10.1016/j.isprsjprs.2020.02.008
10.1109/TCSVT.2022.3181471
10.1016/j.laa.2010.09.020
10.1109/CVPR.2018.00984
10.1109/TNNLS.2021.3104837
10.1109/TGRS.2019.2940534
10.1007/s10915-022-01937-1
10.1109/TCSVT.2020.2975936
10.1109/tcsvt.2022.3233589
10.1002/sapm192761164
10.1109/IGARSS.2019.8899257
10.1090/S0002-9939-1955-0067841-7
10.1109/TPAMI.2012.39
10.1016/j.sigpro.2020.107805
10.1007/BF02289451
10.1609/aaai.v35i12.17321
10.1109/TGRS.2020.3045169
10.1109/TIP.2022.3176133
10.1049/el:20080522
10.1137/090752286
10.1109/tnnls.2022.3233243
10.1109/TIP.2004.823815
10.1109/CVPR.2018.00334
10.1137/07070111X
10.1145/3278607
10.1109/JSTARS.2014.2368173
10.1002/nla.2179
10.1109/TCSVT.2019.2901311
10.1007/BF02289464
10.1002/nla.2299
10.1109/TPAMI.2019.2891760
10.1109/34.120331
10.1137/030600862
10.1137/06066518X
10.1109/TCI.2021.3130977
10.1002/nla.2290
10.1109/tnnls.2021.3112577
10.1007/s10915-022-02009-0
10.1007/s10915-023-02172-y
10.1109/TCSVT.2021.3055625
10.1109/TCSVT.2022.3190818
10.1109/TPAMI.2015.2487966
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2023.3316279
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 3646
ExternalDocumentID 10_1109_TCSVT_2023_3316279
10254383
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2020YFA0714001
– fundername: NSFC
  grantid: 12371456; 12171072; 62131005
  funderid: 10.13039/501100001809
– fundername: Open Research Fund Program of Data Recovery Key Laboratory of Sichuan Province
  grantid: DRN2302
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c340t-47647b2109e86dae698c0062ef9b58d12dd8e83a8cf581694d27d5908064c9d83
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221132000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Mon Jun 30 14:33:45 EDT 2025
Sat Nov 29 01:44:25 EST 2025
Tue Nov 18 20:45:16 EST 2025
Wed Aug 27 02:05:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-47647b2109e86dae698c0062ef9b58d12dd8e83a8cf581694d27d5908064c9d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4207-5273
0000-0001-8207-094X
0000-0002-6540-946X
0000-0002-0991-6328
0000-0003-0398-3316
OpenAccessLink https://biblio.ugent.be/publication/01HMEEX27JPVPX8P2A5BP65K42/file/01HMEEXRRGS4AQ4J7TNR5RKBMT.pdf
PQID 3053298947
PQPubID 85433
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2023_3316279
proquest_journals_3053298947
ieee_primary_10254383
crossref_primary_10_1109_TCSVT_2023_3316279
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref18
Qiu (ref30)
ref51
ref50
Zhao (ref19) 2016
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
Xu (ref35) 2019
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref61
  doi: 10.1109/TIP.2003.819861
– ident: ref3
  doi: 10.1109/TCSVT.2019.2946723
– ident: ref36
  doi: 10.1016/j.laa.2015.07.021
– ident: ref32
  doi: 10.1109/TSP.2016.2639466
– ident: ref41
  doi: 10.1109/CVPR52688.2022.01870
– ident: ref25
  doi: 10.1109/CVPR.2014.485
– ident: ref46
  doi: 10.1002/nla.2444
– ident: ref37
  doi: 10.1109/TIP.2020.3000349
– ident: ref34
  doi: 10.1109/CVPR.2019.00615
– ident: ref2
  doi: 10.1109/tmm.2022.3216746
– ident: ref33
  doi: 10.1109/tcsvt.2023.3239376
– ident: ref51
  doi: 10.1109/TIP.2021.3062995
– ident: ref49
  doi: 10.1137/110837711
– ident: ref55
  doi: 10.1007/s10107-013-0701-9
– ident: ref57
  doi: 10.1137/080738970
– ident: ref8
  doi: 10.1016/j.isprsjprs.2020.02.008
– ident: ref12
  doi: 10.1109/TCSVT.2022.3181471
– ident: ref23
  doi: 10.1016/j.laa.2010.09.020
– ident: ref7
  doi: 10.1109/CVPR.2018.00984
– ident: ref39
  doi: 10.1109/TNNLS.2021.3104837
– year: 2016
  ident: ref19
  article-title: Tensor ring decomposition
  publication-title: arXiv:1606.05535
– ident: ref27
  doi: 10.1109/TGRS.2019.2940534
– ident: ref40
  doi: 10.1007/s10915-022-01937-1
– ident: ref4
  doi: 10.1109/TCSVT.2020.2975936
– year: 2019
  ident: ref35
  article-title: A fast algorithm for cosine transform based tensor singular value decomposition
  publication-title: arXiv:1902.03070
– ident: ref1
  doi: 10.1109/tcsvt.2022.3233589
– ident: ref15
  doi: 10.1002/sapm192761164
– ident: ref44
  doi: 10.1109/IGARSS.2019.8899257
– ident: ref24
  doi: 10.1137/110837711
– ident: ref52
  doi: 10.1090/S0002-9939-1955-0067841-7
– ident: ref17
  doi: 10.1109/TPAMI.2012.39
– start-page: 18211
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref30
  article-title: Fast and provable nonconvex tensor RPCA
– ident: ref31
  doi: 10.1016/j.sigpro.2020.107805
– ident: ref58
  doi: 10.1007/BF02289451
– ident: ref21
  doi: 10.1609/aaai.v35i12.17321
– ident: ref29
  doi: 10.1109/TGRS.2020.3045169
– ident: ref5
  doi: 10.1109/TIP.2022.3176133
– ident: ref60
  doi: 10.1049/el:20080522
– ident: ref18
  doi: 10.1137/090752286
– ident: ref45
  doi: 10.1109/tnnls.2022.3233243
– ident: ref6
  doi: 10.1109/TIP.2004.823815
– ident: ref59
  doi: 10.1109/CVPR.2018.00334
– ident: ref48
  doi: 10.1137/07070111X
– ident: ref13
  doi: 10.1145/3278607
– ident: ref10
  doi: 10.1109/JSTARS.2014.2368173
– ident: ref43
  doi: 10.1002/nla.2179
– ident: ref11
  doi: 10.1109/TCSVT.2019.2901311
– ident: ref16
  doi: 10.1007/BF02289464
– ident: ref38
  doi: 10.1002/nla.2299
– ident: ref26
  doi: 10.1109/TPAMI.2019.2891760
– ident: ref53
  doi: 10.1109/34.120331
– ident: ref54
  doi: 10.1137/030600862
– ident: ref50
  doi: 10.1137/06066518X
– ident: ref28
  doi: 10.1109/TCI.2021.3130977
– ident: ref42
  doi: 10.1002/nla.2290
– ident: ref14
  doi: 10.1109/tnnls.2021.3112577
– ident: ref22
  doi: 10.1007/s10915-022-02009-0
– ident: ref47
  doi: 10.1007/s10915-023-02172-y
– ident: ref9
  doi: 10.1109/TCSVT.2021.3055625
– ident: ref20
  doi: 10.1109/TCSVT.2022.3190818
– ident: ref56
  doi: 10.1109/TPAMI.2015.2487966
SSID ssj0014847
Score 2.4945831
Snippet Recently, transform-based tensor nuclear norm (TNN) methods have received increasing attention as a powerful tool for multi-dimensional visual data (color...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3633
SubjectTerms Algorithms
Color imagery
Computational efficiency
Costs
Data recovery
Decoding
Encoding
Multidimensional methods
proximal alternating minimization algorithm
Redundancy
redundant transform
semi-orthogonal transform
Tensor completion
tensor nuclear norm
Tensors
Transforms
Video
Videos
Visualization
Title Learnable Spatial-Spectral Transform-Based Tensor Nuclear Norm for Multi-Dimensional Visual Data Recovery
URI https://ieeexplore.ieee.org/document/10254383
https://www.proquest.com/docview/3053298947
Volume 34
WOSCitedRecordID wos001221132000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5ueNCDPydOp-TgTTLbJm2So24ODzIE69itpEkKA9lk6wT_e_PSdgxEwVMKSUrJS_reS_J9H0I3oZWgYK1IwWxBWMxzoqjIidVJKEwSU-PVGibPfDwW06l8qcHqHgtjrfWXz2wfHv1ZvlnoNWyVuRUO0G1BW6jFOa_AWpsjAya8mpiLF0IinCNrEDKBvEsHr5O0D0LhfUrDJIJ7W1teyMuq_PgXewczOvznpx2hgzqSxPeV6Y_Rjp2foP0tfsFTNPPsqQCOwiA97KYaAb152NzAaROxkgfnyAxOXT67WOIx8BsrV7oa7KqxR-iSIYgAVAQeeDJbrV0xVKXCkL26xfDVQW-jx3TwRGptBaIpC0rCeMJ47vI9aUVilE2k0ICntIXMY2HCyBhhBVVCF7EIE8lMxA3oo7sQRksj6Blqzxdze46wVqGLInSQMxUxGlgVFVHBXF6aGEmpLboobMY60zXxOOhfvGc-AQlk5u2TgX2y2j5ddLvp81HRbvzZugMW2WpZGaOLeo1Ns3pprjIKWhhAO88vful2ifbc21l1rbGH2uVyba_Qrv4sZ6vltZ913z831AA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL106WDrQ9ttKUu_poe9DWWWJdvSYz9pWWoG80LfjCzJEChJSZzB_n11ZbsExgp9kkESNrqS772SzjkAX5lTqGCtaS1cTUWSVVRzWVFnUiZtmnAb1BqmkyzP5f29-tmB1QMWxjkXLp-5MT6Gs3y7MGvcKvMrHKHbkr-B7USImLVwredDAyGDnpiPGBiV3pX1GJlIfS8ufk2LMUqFjzlnaYw3tzb8UBBW-edvHFzM9d4rP24fdrtYkpy1xv8AW27-EXY2GAY_wSzwpyI8iqD4sJ9sFBXncXuDFH3MSs-9K7Ok8BntYklyZDjWvvQ1xFeTgNGllygD0FJ4kOlstfbFpW40wfzVL4e_Q_h9fVVc3NBOXYEaLqKGiiwVWeUzPuVkarVLlTSIqHS1qhJpWWytdJJraepEslQJG2cWFdJ9EGOUlfwABvPF3H0GYjTzcYSJKqFjwSOn4zquhc9MU6s4d_UIWD_Wpemox1EB46EMKUikymCfEu1TdvYZwbfnPo8t8caLrYdokY2WrTFGcNzbtOwW56rkqIaBxPPZ4X-6fYF3N8XdpJzc5j-O4L1_k2gvOR7DoFmu3Qm8NX-a2Wp5GmbgE29410c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learnable+Spatial-Spectral+Transform-Based+Tensor+Nuclear+Norm+for+Multi-Dimensional+Visual+Data+Recovery&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Liu%2C+Sheng&rft.au=Leng%2C+Jinsong&rft.au=Zhao%2C+Xi-Le&rft.au=Zeng%2C+Haijin&rft.date=2024-05-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=34&rft.issue=5&rft.spage=3633&rft.epage=3646&rft_id=info:doi/10.1109%2FTCSVT.2023.3316279&rft.externalDocID=10254383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon