Learnable Spatial-Spectral Transform-Based Tensor Nuclear Norm for Multi-Dimensional Visual Data Recovery
Recently, transform-based tensor nuclear norm (TNN) methods have received increasing attention as a powerful tool for multi-dimensional visual data (color images, videos, and multispectral images, etc.) recovery. Especially, the redundant transform-based TNN achieves satisfactory recovery results, w...
Saved in:
| Published in: | IEEE transactions on circuits and systems for video technology Vol. 34; no. 5; pp. 3633 - 3646 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1051-8215, 1558-2205 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recently, transform-based tensor nuclear norm (TNN) methods have received increasing attention as a powerful tool for multi-dimensional visual data (color images, videos, and multispectral images, etc.) recovery. Especially, the redundant transform-based TNN achieves satisfactory recovery results, where the redundant transform along spectral mode can remarkably enhance the low-rankness of tensors. However, it suffers from expensive computational cost induced by the redundant transform. In this paper, we propose a learnable spatial-spectral transform-based TNN model for multi-dimensional visual data recovery, which not only enjoys better low-rankness capability but also allows us to design fast algorithms accompanying it. More specifically, we first project the large-scale original tensor to the small-scale intrinsic tensor via the learnable semi-orthogonal transforms along the spatial modes. Here, the semi-orthogonal transforms, serving as the key building block, can boost the spatial low-rankness and lead to a small-scale problem, which paves the way for designing fast algorithms. Secondly, to further boost the low-rankness, we apply the learnable redundant transform along the spectral mode to the small-scale intrinsic tensor. To tackle the proposed model, we apply an efficient proximal alternating minimization-based algorithm, which enjoys a theoretical convergence guarantee. Extensive experimental results on real-world data (color images, videos, and multispectral images) demonstrate that the proposed method outperforms state-of-the-art competitors in terms of evaluation metrics and running time. |
|---|---|
| AbstractList | Recently, transform-based tensor nuclear norm (TNN) methods have received increasing attention as a powerful tool for multi-dimensional visual data (color images, videos, and multispectral images, etc.) recovery. Especially, the redundant transform-based TNN achieves satisfactory recovery results, where the redundant transform along spectral mode can remarkably enhance the low-rankness of tensors. However, it suffers from expensive computational cost induced by the redundant transform. In this paper, we propose a learnable spatial-spectral transform-based TNN model for multi-dimensional visual data recovery, which not only enjoys better low-rankness capability but also allows us to design fast algorithms accompanying it. More specifically, we first project the large-scale original tensor to the small-scale intrinsic tensor via the learnable semi-orthogonal transforms along the spatial modes. Here, the semi-orthogonal transforms, serving as the key building block, can boost the spatial low-rankness and lead to a small-scale problem, which paves the way for designing fast algorithms. Secondly, to further boost the low-rankness, we apply the learnable redundant transform along the spectral mode to the small-scale intrinsic tensor. To tackle the proposed model, we apply an efficient proximal alternating minimization-based algorithm, which enjoys a theoretical convergence guarantee. Extensive experimental results on real-world data (color images, videos, and multispectral images) demonstrate that the proposed method outperforms state-of-the-art competitors in terms of evaluation metrics and running time. |
| Author | Wang, Yao Zeng, Haijin Leng, Jinsong Liu, Sheng Zhao, Xi-Le Yang, Jing-Hua |
| Author_xml | – sequence: 1 givenname: Sheng orcidid: 0000-0002-0991-6328 surname: Liu fullname: Liu, Sheng email: liusheng16@163.com organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Jinsong surname: Leng fullname: Leng, Jinsong email: lengjs@uestc.edu.cn organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Xi-Le orcidid: 0000-0002-6540-946X surname: Zhao fullname: Zhao, Xi-Le email: xlzhao122003@163.com organization: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Haijin orcidid: 0000-0003-0398-3316 surname: Zeng fullname: Zeng, Haijin email: zeng_navy@163.com organization: Image Processing and Interpretation imec Research Group, Ghent University, Ghent, Belgium – sequence: 5 givenname: Yao orcidid: 0000-0003-4207-5273 surname: Wang fullname: Wang, Yao email: yao.s.wang@gmail.com organization: Center for Intelligent Decision-Making and Machine Learning, School of Management, Xi'an Jiaotong University, Xi'an, China – sequence: 6 givenname: Jing-Hua orcidid: 0000-0001-8207-094X surname: Yang fullname: Yang, Jing-Hua email: yangjinghua110@126.com organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China |
| BookMark | eNp9kEtLw0AUhQepYK3-AXERcJ06z2Rmqa0vqBVs7DZMJzcwJc3UmUTov3dquxAXrs6Fc74L55yjQetaQOiK4DEhWN0Wk8WyGFNM2ZgxktFcnaAhEUKmlGIxiDcWJJWUiDN0HsIaY8Ilz4fIzkD7Vq8aSBZb3VndpIstmM7rJim8bkPt_Ca91wGqpIA2OJ_Me9NEKJlHJ4l28to3nU2ndhN969pILm3oo0x1p5N3MO4L_O4Cnda6CXB51BH6eHwoJs_p7O3pZXI3Sw3juEt5nvF8RWMpkFmlIVPSYJxRqNVKyIrQqpIgmZamFpJkilc0r4TCEmfcqEqyEbo5_N1699lD6Mq162PFJpQMC0aVVDyPKXlIGe9C8FCXxnaxv2tjdduUBJf7YcufYcv9sOVx2IjSP-jW2432u_-h6wNkAeAXQAVnkrFv4dCGsA |
| CODEN | ITCTEM |
| CitedBy_id | crossref_primary_10_1109_TSP_2024_3454115 crossref_primary_10_1109_TCSVT_2024_3413992 crossref_primary_10_1109_TSP_2025_3589059 crossref_primary_10_1109_TCSVT_2025_3543977 crossref_primary_10_1016_j_sigpro_2025_109903 crossref_primary_10_1016_j_neunet_2025_107458 crossref_primary_10_1109_TCSVT_2024_3442295 crossref_primary_10_1088_1361_6420_addb69 crossref_primary_10_1109_TCSVT_2024_3514614 |
| Cites_doi | 10.1109/TIP.2003.819861 10.1109/TCSVT.2019.2946723 10.1016/j.laa.2015.07.021 10.1109/TSP.2016.2639466 10.1109/CVPR52688.2022.01870 10.1109/CVPR.2014.485 10.1002/nla.2444 10.1109/TIP.2020.3000349 10.1109/CVPR.2019.00615 10.1109/tmm.2022.3216746 10.1109/tcsvt.2023.3239376 10.1109/TIP.2021.3062995 10.1137/110837711 10.1007/s10107-013-0701-9 10.1137/080738970 10.1016/j.isprsjprs.2020.02.008 10.1109/TCSVT.2022.3181471 10.1016/j.laa.2010.09.020 10.1109/CVPR.2018.00984 10.1109/TNNLS.2021.3104837 10.1109/TGRS.2019.2940534 10.1007/s10915-022-01937-1 10.1109/TCSVT.2020.2975936 10.1109/tcsvt.2022.3233589 10.1002/sapm192761164 10.1109/IGARSS.2019.8899257 10.1090/S0002-9939-1955-0067841-7 10.1109/TPAMI.2012.39 10.1016/j.sigpro.2020.107805 10.1007/BF02289451 10.1609/aaai.v35i12.17321 10.1109/TGRS.2020.3045169 10.1109/TIP.2022.3176133 10.1049/el:20080522 10.1137/090752286 10.1109/tnnls.2022.3233243 10.1109/TIP.2004.823815 10.1109/CVPR.2018.00334 10.1137/07070111X 10.1145/3278607 10.1109/JSTARS.2014.2368173 10.1002/nla.2179 10.1109/TCSVT.2019.2901311 10.1007/BF02289464 10.1002/nla.2299 10.1109/TPAMI.2019.2891760 10.1109/34.120331 10.1137/030600862 10.1137/06066518X 10.1109/TCI.2021.3130977 10.1002/nla.2290 10.1109/tnnls.2021.3112577 10.1007/s10915-022-02009-0 10.1007/s10915-023-02172-y 10.1109/TCSVT.2021.3055625 10.1109/TCSVT.2022.3190818 10.1109/TPAMI.2015.2487966 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCSVT.2023.3316279 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2205 |
| EndPage | 3646 |
| ExternalDocumentID | 10_1109_TCSVT_2023_3316279 10254383 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2020YFA0714001 – fundername: NSFC grantid: 12371456; 12171072; 62131005 funderid: 10.13039/501100001809 – fundername: Open Research Fund Program of Data Recovery Key Laboratory of Sichuan Province grantid: DRN2302 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c340t-47647b2109e86dae698c0062ef9b58d12dd8e83a8cf581694d27d5908064c9d83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221132000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-8215 |
| IngestDate | Mon Jun 30 14:33:45 EDT 2025 Sat Nov 29 01:44:25 EST 2025 Tue Nov 18 20:45:16 EST 2025 Wed Aug 27 02:05:25 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c340t-47647b2109e86dae698c0062ef9b58d12dd8e83a8cf581694d27d5908064c9d83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4207-5273 0000-0001-8207-094X 0000-0002-6540-946X 0000-0002-0991-6328 0000-0003-0398-3316 |
| OpenAccessLink | https://biblio.ugent.be/publication/01HMEEX27JPVPX8P2A5BP65K42/file/01HMEEXRRGS4AQ4J7TNR5RKBMT.pdf |
| PQID | 3053298947 |
| PQPubID | 85433 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCSVT_2023_3316279 proquest_journals_3053298947 ieee_primary_10254383 crossref_primary_10_1109_TCSVT_2023_3316279 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems for video technology |
| PublicationTitleAbbrev | TCSVT |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref18 Qiu (ref30) ref51 ref50 Zhao (ref19) 2016 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 Xu (ref35) 2019 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 ref61 |
| References_xml | – ident: ref61 doi: 10.1109/TIP.2003.819861 – ident: ref3 doi: 10.1109/TCSVT.2019.2946723 – ident: ref36 doi: 10.1016/j.laa.2015.07.021 – ident: ref32 doi: 10.1109/TSP.2016.2639466 – ident: ref41 doi: 10.1109/CVPR52688.2022.01870 – ident: ref25 doi: 10.1109/CVPR.2014.485 – ident: ref46 doi: 10.1002/nla.2444 – ident: ref37 doi: 10.1109/TIP.2020.3000349 – ident: ref34 doi: 10.1109/CVPR.2019.00615 – ident: ref2 doi: 10.1109/tmm.2022.3216746 – ident: ref33 doi: 10.1109/tcsvt.2023.3239376 – ident: ref51 doi: 10.1109/TIP.2021.3062995 – ident: ref49 doi: 10.1137/110837711 – ident: ref55 doi: 10.1007/s10107-013-0701-9 – ident: ref57 doi: 10.1137/080738970 – ident: ref8 doi: 10.1016/j.isprsjprs.2020.02.008 – ident: ref12 doi: 10.1109/TCSVT.2022.3181471 – ident: ref23 doi: 10.1016/j.laa.2010.09.020 – ident: ref7 doi: 10.1109/CVPR.2018.00984 – ident: ref39 doi: 10.1109/TNNLS.2021.3104837 – year: 2016 ident: ref19 article-title: Tensor ring decomposition publication-title: arXiv:1606.05535 – ident: ref27 doi: 10.1109/TGRS.2019.2940534 – ident: ref40 doi: 10.1007/s10915-022-01937-1 – ident: ref4 doi: 10.1109/TCSVT.2020.2975936 – year: 2019 ident: ref35 article-title: A fast algorithm for cosine transform based tensor singular value decomposition publication-title: arXiv:1902.03070 – ident: ref1 doi: 10.1109/tcsvt.2022.3233589 – ident: ref15 doi: 10.1002/sapm192761164 – ident: ref44 doi: 10.1109/IGARSS.2019.8899257 – ident: ref24 doi: 10.1137/110837711 – ident: ref52 doi: 10.1090/S0002-9939-1955-0067841-7 – ident: ref17 doi: 10.1109/TPAMI.2012.39 – start-page: 18211 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref30 article-title: Fast and provable nonconvex tensor RPCA – ident: ref31 doi: 10.1016/j.sigpro.2020.107805 – ident: ref58 doi: 10.1007/BF02289451 – ident: ref21 doi: 10.1609/aaai.v35i12.17321 – ident: ref29 doi: 10.1109/TGRS.2020.3045169 – ident: ref5 doi: 10.1109/TIP.2022.3176133 – ident: ref60 doi: 10.1049/el:20080522 – ident: ref18 doi: 10.1137/090752286 – ident: ref45 doi: 10.1109/tnnls.2022.3233243 – ident: ref6 doi: 10.1109/TIP.2004.823815 – ident: ref59 doi: 10.1109/CVPR.2018.00334 – ident: ref48 doi: 10.1137/07070111X – ident: ref13 doi: 10.1145/3278607 – ident: ref10 doi: 10.1109/JSTARS.2014.2368173 – ident: ref43 doi: 10.1002/nla.2179 – ident: ref11 doi: 10.1109/TCSVT.2019.2901311 – ident: ref16 doi: 10.1007/BF02289464 – ident: ref38 doi: 10.1002/nla.2299 – ident: ref26 doi: 10.1109/TPAMI.2019.2891760 – ident: ref53 doi: 10.1109/34.120331 – ident: ref54 doi: 10.1137/030600862 – ident: ref50 doi: 10.1137/06066518X – ident: ref28 doi: 10.1109/TCI.2021.3130977 – ident: ref42 doi: 10.1002/nla.2290 – ident: ref14 doi: 10.1109/tnnls.2021.3112577 – ident: ref22 doi: 10.1007/s10915-022-02009-0 – ident: ref47 doi: 10.1007/s10915-023-02172-y – ident: ref9 doi: 10.1109/TCSVT.2021.3055625 – ident: ref20 doi: 10.1109/TCSVT.2022.3190818 – ident: ref56 doi: 10.1109/TPAMI.2015.2487966 |
| SSID | ssj0014847 |
| Score | 2.4945831 |
| Snippet | Recently, transform-based tensor nuclear norm (TNN) methods have received increasing attention as a powerful tool for multi-dimensional visual data (color... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3633 |
| SubjectTerms | Algorithms Color imagery Computational efficiency Costs Data recovery Decoding Encoding Multidimensional methods proximal alternating minimization algorithm Redundancy redundant transform semi-orthogonal transform Tensor completion tensor nuclear norm Tensors Transforms Video Videos Visualization |
| Title | Learnable Spatial-Spectral Transform-Based Tensor Nuclear Norm for Multi-Dimensional Visual Data Recovery |
| URI | https://ieeexplore.ieee.org/document/10254383 https://www.proquest.com/docview/3053298947 |
| Volume | 34 |
| WOSCitedRecordID | wos001221132000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014847 issn: 1051-8215 databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5ueNCDPydOp-TgTTLbJm2So24ODzIE69itpEkKA9lk6wT_e_PSdgxEwVMKSUrJS_reS_J9H0I3oZWgYK1IwWxBWMxzoqjIidVJKEwSU-PVGibPfDwW06l8qcHqHgtjrfWXz2wfHv1ZvlnoNWyVuRUO0G1BW6jFOa_AWpsjAya8mpiLF0IinCNrEDKBvEsHr5O0D0LhfUrDJIJ7W1teyMuq_PgXewczOvznpx2hgzqSxPeV6Y_Rjp2foP0tfsFTNPPsqQCOwiA97KYaAb152NzAaROxkgfnyAxOXT67WOIx8BsrV7oa7KqxR-iSIYgAVAQeeDJbrV0xVKXCkL26xfDVQW-jx3TwRGptBaIpC0rCeMJ47vI9aUVilE2k0ICntIXMY2HCyBhhBVVCF7EIE8lMxA3oo7sQRksj6Blqzxdze46wVqGLInSQMxUxGlgVFVHBXF6aGEmpLboobMY60zXxOOhfvGc-AQlk5u2TgX2y2j5ddLvp81HRbvzZugMW2WpZGaOLeo1Ns3pprjIKWhhAO88vful2ifbc21l1rbGH2uVyba_Qrv4sZ6vltZ913z831AA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL106WDrQ9ttKUu_poe9DWWWJdvSYz9pWWoG80LfjCzJEChJSZzB_n11ZbsExgp9kkESNrqS772SzjkAX5lTqGCtaS1cTUWSVVRzWVFnUiZtmnAb1BqmkyzP5f29-tmB1QMWxjkXLp-5MT6Gs3y7MGvcKvMrHKHbkr-B7USImLVwredDAyGDnpiPGBiV3pX1GJlIfS8ufk2LMUqFjzlnaYw3tzb8UBBW-edvHFzM9d4rP24fdrtYkpy1xv8AW27-EXY2GAY_wSzwpyI8iqD4sJ9sFBXncXuDFH3MSs-9K7Ok8BntYklyZDjWvvQ1xFeTgNGllygD0FJ4kOlstfbFpW40wfzVL4e_Q_h9fVVc3NBOXYEaLqKGiiwVWeUzPuVkarVLlTSIqHS1qhJpWWytdJJraepEslQJG2cWFdJ9EGOUlfwABvPF3H0GYjTzcYSJKqFjwSOn4zquhc9MU6s4d_UIWD_Wpemox1EB46EMKUikymCfEu1TdvYZwbfnPo8t8caLrYdokY2WrTFGcNzbtOwW56rkqIaBxPPZ4X-6fYF3N8XdpJzc5j-O4L1_k2gvOR7DoFmu3Qm8NX-a2Wp5GmbgE29410c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learnable+Spatial-Spectral+Transform-Based+Tensor+Nuclear+Norm+for+Multi-Dimensional+Visual+Data+Recovery&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Liu%2C+Sheng&rft.au=Leng%2C+Jinsong&rft.au=Zhao%2C+Xi-Le&rft.au=Zeng%2C+Haijin&rft.date=2024-05-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=34&rft.issue=5&rft.spage=3633&rft.epage=3646&rft_id=info:doi/10.1109%2FTCSVT.2023.3316279&rft.externalDocID=10254383 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |