A monolithic fluid–structure interaction approach using mixed LSFEM with high-order time integration
This contribution deals with the solution of a new monolithically coupled fluid–structure interaction approach using mixed least-squares (LS) stress–velocity (SV) formulations with implicit time discretization schemes and adaptive time stepping. The variational approach for the fluid is based on the...
Uloženo v:
| Vydáno v: | Computer methods in applied mechanics and engineering Ročník 423; s. 116783 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.04.2024
|
| Témata: | |
| ISSN: | 0045-7825 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This contribution deals with the solution of a new monolithically coupled fluid–structure interaction approach using mixed least-squares (LS) stress–velocity (SV) formulations with implicit time discretization schemes and adaptive time stepping. The variational approach for the fluid is based on the incompressible Navier–Stokes equations in Arbitrary-Lagrangian–Eulerian (ALE) description to consider a deforming fluid domain. For the deformation of the fluid background mesh, a pseudo-material with linear elastic behavior and local hardening using mesh-Jacobian-based stiffening is presented. The proposed LS solid formulations are based on linear and hyperelastic material behavior, and are likewise expressed in terms of stresses and velocities. In combination with conforming finite element spaces in H(div) and H1 for the spatial discretization of the unknowns, an inherent fulfillment of the coupling conditions in FSI problems is achieved. Time discretization is performed using SDIRK methods with different orders and the Houbolt method. Before solving the coupled problem, the accuracy of various high-order time discretizations is investigated when solving dynamic flow and solid problems with SV formulations. Two numerical examples with exact solution are used, i.e. an unsteady Taylor–Green vortex flow and a linear elastic vibrating plate, to evaluate the temporal convergence order of different schemes. The coupled LS FSI approach is tested by solving the benchmark problem, flow around a cylinder with attached flag, which is characterized by large deformations of the solid flag and hence the fluid domain. A major focus is on the investigation and comparison of embedded Runge–Kutta methods with adaptive time step control in terms of efficiency and performance.
•Least-squares formulations for monolithically coupled fluid–structure interaction problems.•Inherent fulfillment of coupling conditions through conforming discretization of fluid and solid formulation.•Investigation of high-order time integration methods for fluid, solid and FSI problems with adaptive time step control. |
|---|---|
| AbstractList | This contribution deals with the solution of a new monolithically coupled fluid–structure interaction approach using mixed least-squares (LS) stress–velocity (SV) formulations with implicit time discretization schemes and adaptive time stepping. The variational approach for the fluid is based on the incompressible Navier–Stokes equations in Arbitrary-Lagrangian–Eulerian (ALE) description to consider a deforming fluid domain. For the deformation of the fluid background mesh, a pseudo-material with linear elastic behavior and local hardening using mesh-Jacobian-based stiffening is presented. The proposed LS solid formulations are based on linear and hyperelastic material behavior, and are likewise expressed in terms of stresses and velocities. In combination with conforming finite element spaces in H(div) and H1 for the spatial discretization of the unknowns, an inherent fulfillment of the coupling conditions in FSI problems is achieved. Time discretization is performed using SDIRK methods with different orders and the Houbolt method. Before solving the coupled problem, the accuracy of various high-order time discretizations is investigated when solving dynamic flow and solid problems with SV formulations. Two numerical examples with exact solution are used, i.e. an unsteady Taylor–Green vortex flow and a linear elastic vibrating plate, to evaluate the temporal convergence order of different schemes. The coupled LS FSI approach is tested by solving the benchmark problem, flow around a cylinder with attached flag, which is characterized by large deformations of the solid flag and hence the fluid domain. A major focus is on the investigation and comparison of embedded Runge–Kutta methods with adaptive time step control in terms of efficiency and performance.
•Least-squares formulations for monolithically coupled fluid–structure interaction problems.•Inherent fulfillment of coupling conditions through conforming discretization of fluid and solid formulation.•Investigation of high-order time integration methods for fluid, solid and FSI problems with adaptive time step control. |
| ArticleNumber | 116783 |
| Author | Schwarz, Alexander Schwarz, Carina Schröder, Jörg Averweg, Solveigh |
| Author_xml | – sequence: 1 givenname: Solveigh orcidid: 0000-0002-1396-2343 surname: Averweg fullname: Averweg, Solveigh email: solveigh.averweg@uni-due.de – sequence: 2 givenname: Alexander orcidid: 0000-0003-2276-5947 surname: Schwarz fullname: Schwarz, Alexander email: alexander.schwarz@uni-due.de – sequence: 3 givenname: Carina surname: Schwarz fullname: Schwarz, Carina email: carina.schwarz@uni-due.de – sequence: 4 givenname: Jörg orcidid: 0000-0001-7960-9553 surname: Schröder fullname: Schröder, Jörg email: j.schroeder@uni-due.de |
| BookMark | eNp90D1OwzAUwHEPRaItHIDNF0iwEztJxVRVLSAVMQCz5Y-XxlUSV47Dx8YduCEnISVMDPXypt_T83-GJq1rAaErSmJKaHa9j3Uj44QkLKY0y4t0gqaEMB7lRcLP0azr9mR4BU2mqFzixrWutqGyGpd1b83351cXfK9D7wHbNoCXOljXYnk4eCd1hfvOtjvc2HcwePu0WT_gt8Hjyu6qyHkDHgfbjHbn5dFeoLNS1h1c_s05etmsn1d30fbx9n613EY6ZSREjBdFShnXSpXEJCrJuVqwsmDGMAULzRlfGAbASpplwBTPFCM5l5mRKgOZpHNEx73au67zUIqDt430H4IScYwj9mKII45xxBhnMPk_o234vTp4aeuT8maUMHzp1YIXnbbQajDWgw7COHtC_wBiNIXf |
| CitedBy_id | crossref_primary_10_1016_j_triboint_2024_110316 crossref_primary_10_1016_j_oceaneng_2025_122263 crossref_primary_10_1016_j_oceaneng_2024_119393 |
| Cites_doi | 10.1007/s00419-009-0379-x 10.1137/140953253 10.1115/1.1530635 10.1016/j.compstruc.2021.106718 10.1007/s00466-008-0299-6 10.1007/s00466-020-01835-z 10.1016/j.jcp.2011.02.002 10.1007/s00791-010-0150-4 10.1016/j.jcp.2018.04.021 10.1007/s00466-008-0270-6 10.1016/j.jcp.2013.10.046 10.1137/S0036144597321156 10.1002/nme.179 10.1016/j.medengphy.2005.10.002 10.1002/fld.2454 10.1007/s00466-017-1395-2 10.1016/j.cma.2018.01.043 10.1007/s00466-019-01813-0 10.1007/s00419-012-0638-0 10.1137/S1064827595282520 10.1137/S1064827594273948 10.1016/j.compstruc.2006.11.019 10.1016/j.matcom.2016.07.008 10.1016/0045-7949(89)90315-5 10.2514/6.2008-1896 10.1007/s00466-023-02321-y 10.1007/s002110100332 10.1007/s00466-009-0395-2 10.1016/j.cma.2020.113111 10.1007/s00466-014-1009-1 10.1098/rspa.1937.0036 10.1615/Int.J.UncertaintyQuantification.2018021021 10.1002/cnm.2756 10.1016/0045-7825(94)00077-8 10.1016/j.finel.2017.12.002 10.1002/nme.3001 10.1016/j.compstruc.2004.08.002 10.1016/j.jcp.2011.11.028 10.1007/978-3-319-70563-7_12 10.1016/0045-7825(95)92707-9 10.1007/s00466-019-01744-w 10.1016/0045-7825(80)90040-7 10.1016/j.medengphy.2020.01.008 10.2140/jomms.2017.12.57 10.1007/s003660200028 10.1007/s00466-006-0084-3 10.1016/j.cma.2015.05.002 10.2514/1.22847 10.1137/S0036142903422673 10.1016/S0168-9274(01)00133-7 10.1006/jcph.2002.7059 10.23967/wccm-eccomas.2020.109 10.1002/fld.2221 10.1137/0727027 10.1007/s10237-018-1009-8 10.1007/s00466-017-1394-3 10.2514/6.2008-5931 10.1002/nme.4943 10.1002/fld.1443 10.1002/gamm.202000009 10.1016/j.finel.2010.12.015 10.1002/fld.3831 10.1016/j.jcp.2003.09.034 10.1016/j.apnum.2008.04.001 10.25073/jaec.202041.278 10.2514/6.2008-5859 10.1137/18M1184047 10.1016/j.cma.2009.04.015 10.1016/j.cma.2021.114368 10.1007/s11831-014-9119-7 10.1137/0916072 10.1108/02644401211271645 10.1016/S0304-3975(97)00067-4 10.2514/8.1722 10.1016/j.compstruc.2020.106402 10.1016/j.cma.2004.01.024 10.1016/B978-008044046-0.50340-7 10.2514/6.2007-2407 10.1016/j.finel.2015.12.002 10.1137/S003614290139696X 10.1016/j.na.2005.01.054 10.1007/s10237-019-01119-3 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.cma.2024.116783 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_cma_2024_116783 S0045782524000392 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET VH1 VOH WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c340t-45883145cbbf0d2b275b94f84dd4be9c5459d4ee4f166e4b56b4075a6dab6ea23 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001199891800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Sat Nov 29 06:16:58 EST 2025 Tue Nov 18 21:32:53 EST 2025 Sat Oct 05 15:37:16 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fluid–structure interaction Monolithic coupling High-order time integration incompressible Navier–Stokes equations Mixed least-squares finite elements |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-45883145cbbf0d2b275b94f84dd4be9c5459d4ee4f166e4b56b4075a6dab6ea23 |
| ORCID | 0000-0003-2276-5947 0000-0002-1396-2343 0000-0001-7960-9553 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cma.2024.116783 |
| ParticipantIDs | crossref_primary_10_1016_j_cma_2024_116783 crossref_citationtrail_10_1016_j_cma_2024_116783 elsevier_sciencedirect_doi_10_1016_j_cma_2024_116783 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 2024-04-00 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wu, Cai (b10) 2014; 258 Takizawa, Tezduyar, Avsar (b86) 2020; 65 Hussain, Schieweck, Turek (b66) 2013; 73 Kayser-Herold, Matthies (b35) 2005; 83 von Hoegen, Marino, Schröder, Wriggers (b30) 2019; 18 Hübner, Walhorn, Dinkler (b56) 2004; 193 Butcher (b63) 1987 Brezzi, Fortin (b81) 1991 Bochev, Gunzburger (b53) 2009 Donea, Huerta, Ponthot, Rodríguez-Ferran (b72) 2004 Nisters, Schwarz, Averweg, Schröder (b38) 2018 Carstens, Kuhl (b65) 2012; 82 Kayser-Herold, Matthies (b52) 2005 Yang, Mavriplis (b68) 2007; 45 Tezduyar, Behr, Mittal, Johnson (b82) 1992; Vol. 246 S. Turek, C. Becker, S. Kilian, M. Möller, S. Buijssen, D. Göddecke, M. Köster, R. Münster, H. Wobker, M. Geveler, D. Ribbrock, P. Zajac, High performance finite elements. Felippa, Park, Deruntz (b3) 1977; 26 Hessenthaler, Falgout, Schroder, de Vecchi, Nordsletten, Röhrle (b14) 2022; 389 . Bazilevs, Moutsanidis, Bueno, Kamran, Kamensky, Hillman, Gomez, Chen (b19) 2017; 60 Stein, Tezduyar, Benney (b84) 2003; 70 Butcher (b89) 2016 Turek, Hron, Razzaq, Wobker, Schäfer (b113) 2010 O. Kayser-Herold, H. Matthies, Space-Time Adaptive Solution of Fluid-Structure Interaction Problems, in: 2nd MIT Conference on Computational Fluid and Solid Mechanics, Amsterdam, 2003, pp. 1000–1004. Bazilevs, Takizawa, Tezduyar, Hsu, Otoguro, Mochizuki, Wu (b20) 2020; 4 D. Wickert, R. Canfield, Least-Squares Continuous Sensitivity Analysis of an Example Fluid-Structure Interaction Problem, in: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2008. Korelc, Wriggers (b99) 2016 Mayr, Wall, Gee (b55) 2018; 141 Heil, Hazel, Boyle (b6) 2008; 43 Rothe, Erbts, Düster, Hartmann (b111) 2015; 293 Bazilevs, Takizawa, Tezduyar, Hsu, Otoguro, Mochizuki, Wu (b61) 2020 Hairer, Lubich, Roche (b104) 1989 Bazilevs, Hsu, Kiendl, Wüchner, Bletzinger (b16) 2011; 65 Gilbert, Grafenhorst, Hartmann, Yosibash (b95) 2019; 64 Jiang (b50) 1998 Bijl, Carpenter, Vatsa, Kennedy (b64) 2002; 179 Mayr, Klöppel, Wall, Gee (b54) 2015; 37 Sathe, Tezduyar (b59) 2008; 43 C. Rasmussen, R. Canfield, J. Reddy, The Least-Squares Finite Element Method Applied to Fluid-Structure Interaction Problems, in: 8th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007. Hughes, Takizawa, Bazilevs, Tezduyar, Hsu (b60) 2020 Neunteufel, Schöberl (b15) 2021; 243 Bochev, Gunzburger (b51) 1998; 40 Bazilevs, Kamran, Moutsanidis, Benson, Oñate (b18) 2017; 60 Marino, von Hoegen, Schröder, Wriggers (b29) 2018; 17 Rasmussen (b46) 2009 Burrage, Petzold (b105) 1990; 27 Piperno, Farhat, Larrouturou (b4) 1995; 124 Steindorf (b5) 2003 Wolfram Research Inc, Mathematica, Version 13.0.0, Champaign, IL, 2021, URL Korelc (b97) 2002; 18 Korelc (b96) 1997; 187 Turek, Hron (b114) 2010 D. Wickert, R. Canfield, J. Reddy, Continuous Sensitivity Analysis of Fluid-Structure Interaction Problems Using Least-Squares Finite Elements, in: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008. Failer, Wick (b71) 2018; 366 Richter (b85) 2017 Küttler, Gee, Förster, Comerford, Wall (b7) 2010; 26 Korelc (b98) 2009; 44 Lai, Huang, Chen (b112) 2009; 59 Bazilevs, Takizawa, Tezduyar, Hsu, Kostov, McIntyre (b17) 2014; 21 Averweg, Schwarz, Nisters, Schröder (b40) 2020; 368 Sanderse, Koren (b103) 2012; 231 Schwarz, Dwight (b76) 2018; 8 Kayser-Herold (b36) 2006 Tezduyar, Sathe, Cragin, Nanna, Conklin, Pausewang, Schwaab (b57) 2007; 54 Hairer, Nørsett, Wanner (b88) 2000 Birken, Quint, Hartmann, Meister (b69) 2010; 13 Hairer, Wanner (b87) 1996 Hsu, Bazilevs (b25) 2011; 47 Büttner, Simeon (b110) 2002; 41 Heinlein, Hochmuth, Klawonn (b13) 2019; 41 Bazilevs, Gohean, Hughes, Moser, Zhang (b31) 2009; 198 Heys, Manteuffel, McCormick, Ruge (b41) 2004; 195 Alonso-Mallo (b109) 2002; 91 Rang (b116) 2007 Schussnig, Pacheco, Fries (b27) 2022; 260 Johnson, Tezduyar (b83) 1994; 119 Cai, Starke (b77) 2003; 41 Schwarz, Steeger, Schröder (b78) 2014; 54 Tezduyar, Takizawa, Moorman, Wright, Christopher (b58) 2010; 64 Shampine, Watts (b93) 1979; 5 Balzani, Böse, Brands, Erbel, Klawonn, Rheinbach, Schröder (b11) 2012; 29 Terahara, Takizawa, Tezduyar, Bazilevs, Hsu (b26) 2020; 65 Nisters, Schwarz (b75) 2018; 341 Heys, DeGroff, Manteuffel, McCormick (b43) 2006; 28 Tezduyar, Takizawa, Kuraishi (b62) 2022 Subbaraj, Dokainish (b91) 1989; 32 Houbolt (b90) 1950; 17 Carpenter, Gottlieb, Abarbanel, Don (b106) 1995; 16 Ellsiepen, Hartmann (b92) 2001; 51 Zienkiewicz, Chan (b1) 1989 Taylor, Green (b102) 1937; 158 R. Schussnig, T. Fries, Coupled multiphysics modeling of aortic dissection, in: World Congress in Computational Mechanics and ECCOMAS Congress, Vol. 400, 2021. S.-H. Lee, S.-K. Youn, J.-H. Yeon, B.-N. Jiang, A Study on the Fluid-Structure Interaction Using LSFEM, in: Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, 2000, pp. 548–552. Balzani, Deparis, Fausten, Forti, Heinlein, Klawonn, Quarteroni, Rheinbach, Schröder (b23) 2016; 32 Balzani, Heinlein, Klawonn, Rheinbach, Schröder (b24) 2023 Bazilevs, Calo, Zhang, Hughes (b21) 2006; 38 Mayr (b94) 2016 Cai, Lee, Wang (b74) 2004; 42 Gee, Küttler, Wall (b9) 2011; 85 Heys, DeGroff, Manteuffel, McCormick, Tufo (b42) 2004; 40 Abarbanel, Gottlieb, Carpenter (b107) 1996; 17 Wickert (b49) 2009 Kayser-Herold, Matthies (b37) 2007; 85 Balzani, Brands, Klawonn, Rheinbach, Schröder (b22) 2010; 80 C. Rasmussen, R. Canfield, J. Reddy, Advantages and Disadvantages of a Simultaneously Coupled Least-Squares Finite Element Formulation for Fluid-Structure Interaction, in: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008. Grafenhorst, Rang, Hartmann (b70) 2017; 12 Langer, Yang (b8) 2018; 145 Richter (b12) 2015; 104 Hirschhorn, Tchantchaleishvili, Stevens, Rossano, Throckmorton (b28) 2020; 78 Felippa, Park (b2) 1980; 24 Igelbüscher, Schröder, Schwarz (b79) 2020; 43 Payette, Reddy (b73) 2011; 230 Raviart, Thomas (b80) 1977 Nisters (b39) 2018 Pathria (b108) 1997; 18 Hudobivnik, Korelc (b100) 2016; 111 van Zuijlen, Bijl (b67) 2005; 63 Küttler (10.1016/j.cma.2024.116783_b7) 2010; 26 Korelc (10.1016/j.cma.2024.116783_b96) 1997; 187 Kayser-Herold (10.1016/j.cma.2024.116783_b52) 2005 Bazilevs (10.1016/j.cma.2024.116783_b19) 2017; 60 Büttner (10.1016/j.cma.2024.116783_b110) 2002; 41 Hübner (10.1016/j.cma.2024.116783_b56) 2004; 193 Ellsiepen (10.1016/j.cma.2024.116783_b92) 2001; 51 Heys (10.1016/j.cma.2024.116783_b42) 2004; 40 Hairer (10.1016/j.cma.2024.116783_b104) 1989 Langer (10.1016/j.cma.2024.116783_b8) 2018; 145 Rasmussen (10.1016/j.cma.2024.116783_b46) 2009 Alonso-Mallo (10.1016/j.cma.2024.116783_b109) 2002; 91 Marino (10.1016/j.cma.2024.116783_b29) 2018; 17 Korelc (10.1016/j.cma.2024.116783_b98) 2009; 44 Gee (10.1016/j.cma.2024.116783_b9) 2011; 85 Wu (10.1016/j.cma.2024.116783_b10) 2014; 258 Bazilevs (10.1016/j.cma.2024.116783_b18) 2017; 60 Nisters (10.1016/j.cma.2024.116783_b38) 2018 Felippa (10.1016/j.cma.2024.116783_b3) 1977; 26 Terahara (10.1016/j.cma.2024.116783_b26) 2020; 65 Lai (10.1016/j.cma.2024.116783_b112) 2009; 59 Stein (10.1016/j.cma.2024.116783_b84) 2003; 70 Bazilevs (10.1016/j.cma.2024.116783_b61) 2020 Heil (10.1016/j.cma.2024.116783_b6) 2008; 43 Houbolt (10.1016/j.cma.2024.116783_b90) 1950; 17 Turek (10.1016/j.cma.2024.116783_b114) 2010 Schwarz (10.1016/j.cma.2024.116783_b78) 2014; 54 Felippa (10.1016/j.cma.2024.116783_b2) 1980; 24 Hughes (10.1016/j.cma.2024.116783_b60) 2020 Balzani (10.1016/j.cma.2024.116783_b23) 2016; 32 Heys (10.1016/j.cma.2024.116783_b41) 2004; 195 Kayser-Herold (10.1016/j.cma.2024.116783_b35) 2005; 83 Richter (10.1016/j.cma.2024.116783_b12) 2015; 104 Brezzi (10.1016/j.cma.2024.116783_b81) 1991 Gilbert (10.1016/j.cma.2024.116783_b95) 2019; 64 Neunteufel (10.1016/j.cma.2024.116783_b15) 2021; 243 Hussain (10.1016/j.cma.2024.116783_b66) 2013; 73 Balzani (10.1016/j.cma.2024.116783_b22) 2010; 80 Nisters (10.1016/j.cma.2024.116783_b39) 2018 Raviart (10.1016/j.cma.2024.116783_b80) 1977 Johnson (10.1016/j.cma.2024.116783_b83) 1994; 119 Bochev (10.1016/j.cma.2024.116783_b51) 1998; 40 Tezduyar (10.1016/j.cma.2024.116783_b58) 2010; 64 Taylor (10.1016/j.cma.2024.116783_b102) 1937; 158 Korelc (10.1016/j.cma.2024.116783_b99) 2016 Grafenhorst (10.1016/j.cma.2024.116783_b70) 2017; 12 Richter (10.1016/j.cma.2024.116783_b85) 2017 Takizawa (10.1016/j.cma.2024.116783_b86) 2020; 65 Jiang (10.1016/j.cma.2024.116783_b50) 1998 Hudobivnik (10.1016/j.cma.2024.116783_b100) 2016; 111 Bijl (10.1016/j.cma.2024.116783_b64) 2002; 179 Turek (10.1016/j.cma.2024.116783_b113) 2010 Korelc (10.1016/j.cma.2024.116783_b97) 2002; 18 Piperno (10.1016/j.cma.2024.116783_b4) 1995; 124 Cai (10.1016/j.cma.2024.116783_b77) 2003; 41 Bazilevs (10.1016/j.cma.2024.116783_b31) 2009; 198 10.1016/j.cma.2024.116783_b45 10.1016/j.cma.2024.116783_b44 10.1016/j.cma.2024.116783_b47 Heinlein (10.1016/j.cma.2024.116783_b13) 2019; 41 Burrage (10.1016/j.cma.2024.116783_b105) 1990; 27 10.1016/j.cma.2024.116783_b48 10.1016/j.cma.2024.116783_b115 Steindorf (10.1016/j.cma.2024.116783_b5) 2003 Hairer (10.1016/j.cma.2024.116783_b87) 1996 Shampine (10.1016/j.cma.2024.116783_b93) 1979; 5 Balzani (10.1016/j.cma.2024.116783_b11) 2012; 29 Donea (10.1016/j.cma.2024.116783_b72) 2004 Carpenter (10.1016/j.cma.2024.116783_b106) 1995; 16 Schussnig (10.1016/j.cma.2024.116783_b27) 2022; 260 10.1016/j.cma.2024.116783_b32 Hessenthaler (10.1016/j.cma.2024.116783_b14) 2022; 389 Failer (10.1016/j.cma.2024.116783_b71) 2018; 366 10.1016/j.cma.2024.116783_b34 10.1016/j.cma.2024.116783_b33 Kayser-Herold (10.1016/j.cma.2024.116783_b36) 2006 Heys (10.1016/j.cma.2024.116783_b43) 2006; 28 Bazilevs (10.1016/j.cma.2024.116783_b17) 2014; 21 Igelbüscher (10.1016/j.cma.2024.116783_b79) 2020; 43 Zienkiewicz (10.1016/j.cma.2024.116783_b1) 1989 Wickert (10.1016/j.cma.2024.116783_b49) 2009 Mayr (10.1016/j.cma.2024.116783_b55) 2018; 141 10.1016/j.cma.2024.116783_b101 Schwarz (10.1016/j.cma.2024.116783_b76) 2018; 8 Rang (10.1016/j.cma.2024.116783_b116) 2007 Tezduyar (10.1016/j.cma.2024.116783_b57) 2007; 54 Mayr (10.1016/j.cma.2024.116783_b54) 2015; 37 Rothe (10.1016/j.cma.2024.116783_b111) 2015; 293 Bazilevs (10.1016/j.cma.2024.116783_b20) 2020; 4 Averweg (10.1016/j.cma.2024.116783_b40) 2020; 368 Tezduyar (10.1016/j.cma.2024.116783_b82) 1992; Vol. 246 Butcher (10.1016/j.cma.2024.116783_b89) 2016 Sanderse (10.1016/j.cma.2024.116783_b103) 2012; 231 Pathria (10.1016/j.cma.2024.116783_b108) 1997; 18 von Hoegen (10.1016/j.cma.2024.116783_b30) 2019; 18 Bazilevs (10.1016/j.cma.2024.116783_b16) 2011; 65 Hirschhorn (10.1016/j.cma.2024.116783_b28) 2020; 78 Carstens (10.1016/j.cma.2024.116783_b65) 2012; 82 Hairer (10.1016/j.cma.2024.116783_b88) 2000 Cai (10.1016/j.cma.2024.116783_b74) 2004; 42 Subbaraj (10.1016/j.cma.2024.116783_b91) 1989; 32 Bochev (10.1016/j.cma.2024.116783_b53) 2009 Bazilevs (10.1016/j.cma.2024.116783_b21) 2006; 38 Tezduyar (10.1016/j.cma.2024.116783_b62) 2022 Payette (10.1016/j.cma.2024.116783_b73) 2011; 230 van Zuijlen (10.1016/j.cma.2024.116783_b67) 2005; 63 Yang (10.1016/j.cma.2024.116783_b68) 2007; 45 Mayr (10.1016/j.cma.2024.116783_b94) 2016 Balzani (10.1016/j.cma.2024.116783_b24) 2023 Sathe (10.1016/j.cma.2024.116783_b59) 2008; 43 Nisters (10.1016/j.cma.2024.116783_b75) 2018; 341 Abarbanel (10.1016/j.cma.2024.116783_b107) 1996; 17 Butcher (10.1016/j.cma.2024.116783_b63) 1987 Kayser-Herold (10.1016/j.cma.2024.116783_b37) 2007; 85 Birken (10.1016/j.cma.2024.116783_b69) 2010; 13 Hsu (10.1016/j.cma.2024.116783_b25) 2011; 47 |
| References_xml | – start-page: 371 year: 2010 end-page: 385 ident: b114 article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow publication-title: Fluid Structure Interaction II : Modelling, Simulation, Optimization – volume: 41 start-page: C291 year: 2019 end-page: C316 ident: b13 article-title: Monolithic overlapping Schwarz domain decomposition methods with GDSW coarse spaces for incompressible fluid flow problems publication-title: SIAM J. Sci. Comput. – volume: 17 start-page: 540 year: 1950 end-page: 550 ident: b90 article-title: A recurrence matrix solution for the dynamic response of elastic aircraft publication-title: J. Aeronaut. Sci. – year: 2023 ident: b24 article-title: Comparison of arterial wall models in fluid–structure interaction simulations publication-title: Comput. Mech. – volume: 26 start-page: 305 year: 2010 end-page: 321 ident: b7 article-title: Coupling strategies for biomedical fluid - structure interaction problems publication-title: Int. J. Biomed. Eng. – volume: 54 start-page: 603 year: 2014 end-page: 612 ident: b78 article-title: Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity publication-title: Comput. Mech. – volume: 45 start-page: 138 year: 2007 end-page: 150 ident: b68 article-title: Higher-order time integration schemes for aeroelastic applications on unstructured meshes publication-title: AIAA J. – volume: 28 start-page: 495 year: 2006 end-page: 503 ident: b43 article-title: First-order system least-squares (FOSLS) for modeling blood flow publication-title: Med. Eng. Phys. – volume: 65 start-page: 236 year: 2011 end-page: 253 ident: b16 article-title: 3D simulation of wind turbine rotors at full scale. Part II: Fluid - Structure interaction modeling with composite blades publication-title: Internat. J. Numer. Methods Fluids – year: 1987 ident: b63 article-title: The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods – start-page: 139 year: 1989 end-page: 176 ident: b1 article-title: Coupled problems and their numerical solution publication-title: Advances in Computational Nonlinear Mechanics – year: 2004 ident: b72 article-title: Arbitrary Lagrangian–Eulerian Methods – volume: Vol. 246 start-page: 7 year: 1992 end-page: 24 ident: b82 article-title: Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations publication-title: ASME pressure vessels piping div publ pvp., NY(USA) – volume: 38 start-page: 310 year: 2006 end-page: 322 ident: b21 article-title: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow publication-title: Comput. Mech. – volume: 32 start-page: 1387 year: 1989 end-page: 1401 ident: b91 article-title: A survey of direct time-integration methods in computational structural dynamics II. Implicit methods publication-title: Comput. Struct. – volume: 41 start-page: 443 year: 2002 end-page: 458 ident: b110 article-title: Runge–Kutta methods in elastoplasticity publication-title: Appl. Numer. Math. – reference: S. Turek, C. Becker, S. Kilian, M. Möller, S. Buijssen, D. Göddecke, M. Köster, R. Münster, H. Wobker, M. Geveler, D. Ribbrock, P. Zajac, High performance finite elements. – volume: 16 start-page: 1241 year: 1995 end-page: 1252 ident: b106 article-title: The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A study of the boundary error publication-title: SIAM J. Sci. Comput. – volume: 17 year: 1996 ident: b107 article-title: On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations publication-title: SIAM J. Sci. Comput. – volume: 195 start-page: 560 year: 2004 end-page: 575 ident: b41 article-title: First-Order System Least-Squares (FOSLS) for coupled fluid-elastic problems publication-title: J. Comput. Phys. – year: 2017 ident: b85 article-title: Fluid-Structure Interactions: Models, Analysis and Finite Elements – year: 2007 ident: b116 article-title: Design of DIRK Schemes for Solving the Navier-Stokes Equations – year: 2006 ident: b36 article-title: Least-Squares Methods for the Solution of Fluid-Structure Interaction Problems – volume: 4 start-page: 1 year: 2020 end-page: 32 ident: b20 article-title: Wind turbine and turbomachinery computational analysis with the ALE and space-time variational multiscale methods and isogeometric discretization publication-title: J. Adv. Eng. Comput. – volume: 40 start-page: 789 year: 1998 end-page: 837 ident: b51 article-title: Finite Element methods of least-squares type publication-title: SIAM Rev. – start-page: 261 year: 2018 end-page: 279 ident: b38 publication-title: Remarks on a Fluid-Structure Interaction Scheme Based on the Least-Squares Finite Element Method at Small Strains – start-page: 537 year: 2022 end-page: 544 ident: b62 article-title: Space–time computational FSI and flow analysis: 2004 and beyond publication-title: Current Trends and Open Problems in Computational Mechanics – reference: D. Wickert, R. Canfield, Least-Squares Continuous Sensitivity Analysis of an Example Fluid-Structure Interaction Problem, in: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2008. – volume: 37 start-page: B30 year: 2015 end-page: B59 ident: b54 article-title: A temporal consistent monolithic approach to fluid-structure interaction enabling single field predictors publication-title: SIAM J. Sci. Comput. – volume: 44 start-page: 631 year: 2009 end-page: 649 ident: b98 article-title: Automation of primal and sensitivity analysis of transient coupled problems publication-title: Comput. Mech. – volume: 18 start-page: 312 year: 2002 end-page: 327 ident: b97 article-title: Multi-language and multi-environment generation of nonlinear finite element codes publication-title: Eng. Comput. – reference: Wolfram Research Inc, Mathematica, Version 13.0.0, Champaign, IL, 2021, URL – volume: 32 year: 2016 ident: b23 article-title: Numerical modeling of fluid–structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 8 start-page: 383 year: 2018 end-page: 403 ident: b76 article-title: Data assimilation for Navier-Stokes using the least-squares Finite-Element method publication-title: Int. J. Uncertain. Quantif. – volume: 198 start-page: 3534 year: 2009 end-page: 3550 ident: b31 article-title: Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2003 ident: b5 article-title: Partitionierte Verfahren für Probleme der Fluid-Struktur-Wechselwirkung – year: 2018 ident: b39 article-title: Least-Squares Finite Element Methods with Applications in Fluid and Solid Mechanics – volume: 85 start-page: 987 year: 2011 end-page: 1016 ident: b9 article-title: Truly monolithic algebraic multigrid for fluid-structure interaction publication-title: Internat. J. Numer. Methods Engrg. – volume: 64 start-page: 1201 year: 2010 end-page: 1218 ident: b58 article-title: Space–time finite element computation of complex fluid–structure interactions publication-title: Internat. J. Numer. Methods Fluids – volume: 54 start-page: 901 year: 2007 end-page: 922 ident: b57 article-title: Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics publication-title: Internat. J. Numer. Methods Fluids – volume: 70 start-page: 58 year: 2003 end-page: 63 ident: b84 article-title: Mesh moving techniques for fluid-structure interactions with large displacements publication-title: J. Appl. Mech. – volume: 21 start-page: 359 year: 2014 end-page: 398 ident: b17 article-title: Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods publication-title: Arch. Comput. Methods Eng. – volume: 42 start-page: 843 year: 2004 end-page: 859 ident: b74 article-title: Least-squares methods for incompressible Newtonian fluid flow: Linear stationary problems publication-title: SIAM J. Numer. Anal. – volume: 65 start-page: 1167 year: 2020 end-page: 1187 ident: b26 article-title: Heart valve isogeometric sequentially-coupled FSI analysis with the space–time topology change method publication-title: Comput. Mech. – volume: 230 start-page: 3265 year: 2011 end-page: 3613 ident: b73 article-title: On the roles of minimization and linearization in least-squares finite element models of nonlinear boundary-value problem publication-title: J. Comput. Phys. – volume: 368 year: 2020 ident: b40 article-title: Implicit time discretization schemes for mixed least-squares finite element formulations publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 187 start-page: 231 year: 1997 end-page: 248 ident: b96 article-title: Automatic generation of finite-element code by simultaneous optimization of expressions publication-title: Theoret. Comput. Sci. – reference: C. Rasmussen, R. Canfield, J. Reddy, Advantages and Disadvantages of a Simultaneously Coupled Least-Squares Finite Element Formulation for Fluid-Structure Interaction, in: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008. – volume: 193 start-page: 2087 year: 2004 end-page: 2104 ident: b56 article-title: A monolithic approach to fluid–structure interaction using space–time finite elements publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 111 start-page: 19 year: 2016 end-page: 32 ident: b100 article-title: Closed-form representation of matrix functions in the formulation of nonlinear material models publication-title: Finite Elem. Anal. Des. – year: 2016 ident: b89 article-title: Numerical Methods for Ordinary Differential Equations – volume: 60 start-page: 101 year: 2017 end-page: 116 ident: b19 article-title: A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations publication-title: Comput. Mech. – volume: 47 start-page: 593 year: 2011 end-page: 599 ident: b25 article-title: Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulation publication-title: Finite Elem. Anal. Des. – volume: 104 start-page: 372 year: 2015 end-page: 390 ident: b12 article-title: A monolithic geometric multigrid solver for fluid-structure interactions in ALE formulation publication-title: Internat. J. Numer. Methods Engrg. – volume: 43 start-page: 51 year: 2008 end-page: 60 ident: b59 article-title: Modeling of fluid–structure interactions with the space–time finite elements: contact problems publication-title: Comput. Mech. – year: 2009 ident: b53 article-title: Least-Squares Finite Element Methods – volume: 40 start-page: 193 year: 2004 end-page: 199 ident: b42 article-title: Modeling 3-D compliant blood flow with FOSLS publication-title: Biomed. Sci. Instrum. – volume: 91 start-page: 577 year: 2002 end-page: 603 ident: b109 article-title: Runge-Kutta methods without order reduction for linear initial boundary value problems publication-title: Numer. Math. – volume: 59 start-page: 905 year: 2009 end-page: 919 ident: b112 article-title: Vibration analysis of plane elasticity problems by the C0-continuous time stepping Finite Element method publication-title: Appl. Numer. Math. – volume: 29 start-page: 888 year: 2012 end-page: 906 ident: b11 article-title: Parallel simulation of patient-specific atherosclerotic arteries for the enhancement of intravascular ultrasound diagnostics publication-title: Eng. Comput. – volume: 389 year: 2022 ident: b14 article-title: Time-periodic steady-state solution of fluid-structure interaction and cardiac flow problems through multigrid-reduction-in-time publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 73 start-page: 927 year: 2013 end-page: 952 ident: b66 article-title: An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow publication-title: Internat. J. Numer. Methods Fluids – volume: 341 start-page: 333 year: 2018 end-page: 359 ident: b75 article-title: Efficient stress-velocity least-squares finite element formulations for the incompressible Navier-Stokes equations publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 124 start-page: 79 year: 1995 end-page: 112 ident: b4 article-title: Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 12 start-page: 57 year: 2017 end-page: 91 ident: b70 article-title: Time-adaptive finite element simulations of dynamical problems for temperature-dependent materials publication-title: J. Mech. Mater. Struct. – year: 2016 ident: b94 article-title: A Monolithic Solver for Fluid-Structure Interaction with Adaptive Time Stepping and a Hybrid Preconditioner – reference: C. Rasmussen, R. Canfield, J. Reddy, The Least-Squares Finite Element Method Applied to Fluid-Structure Interaction Problems, in: 8th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007. – start-page: 413 year: 2010 end-page: 424 ident: b113 article-title: Numerical benchmarking of fluid-structure interaction: A comparison of different discretization and solution approaches publication-title: Fluid Structure Interaction II – volume: 17 start-page: 1011 year: 2018 end-page: 1036 ident: b29 article-title: Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 1: micro-and nanostructure of collagen fibers publication-title: Biomech. Model. Mechanobiol. – volume: 85 start-page: 998 year: 2007 end-page: 1011 ident: b37 article-title: A unified least-squares formulation for fluid-structure interaction problems publication-title: Comput. Struct. – year: 1991 ident: b81 article-title: Mixed and Hybrid Finite Element Methods – volume: 41 start-page: 715 year: 2003 end-page: 730 ident: b77 article-title: First-order system least squares for the stress-displacement formulation: Linear elasticity publication-title: SIAM J. Numer. Anal. – reference: O. Kayser-Herold, H. Matthies, Space-Time Adaptive Solution of Fluid-Structure Interaction Problems, in: 2nd MIT Conference on Computational Fluid and Solid Mechanics, Amsterdam, 2003, pp. 1000–1004. – start-page: 195 year: 2020 end-page: 233 ident: b61 article-title: ALE and space–time variational multiscale isogeometric analysis of wind turbines and turbomachinery publication-title: Parallel Algorithms in Computational Science and Engineering – volume: 260 year: 2022 ident: b27 article-title: Efficient split-step schemes for fluid–structure interaction involving incompressible generalised Newtonian flows publication-title: Comput. Struct. – volume: 43 year: 2020 ident: b79 article-title: A mixed least-squares finite element formulation with explicit consideration of the balance of moment of momentum, a numerical study publication-title: GAMM-Mitt. – volume: 145 start-page: 186 year: 2018 end-page: 208 ident: b8 article-title: Numerical simulation of fluid–structure interaction problems with hyperelastic models: A monolithic approach publication-title: Math. Comput. Simulation – volume: 141 start-page: 55 year: 2018 end-page: 69 ident: b55 article-title: Adaptive time stepping for fluid-structure interaction solvers publication-title: Finite Elem. Anal. Des. – year: 2016 ident: b99 article-title: Automation of Finite Element Methods – year: 2009 ident: b49 article-title: Least-Squares, Continuous Sensitivity Analysis for Nonlinear Fluid-Structure Interaction – year: 1998 ident: b50 article-title: The Least-Squares Finite Element Method, Scientific Computation – volume: 82 start-page: 1007 year: 2012 end-page: 1039 ident: b65 article-title: Higher-order accurate implicit time integration schemes for transport problems publication-title: Arch. Appl. Mech. – volume: 18 start-page: 1255 year: 1997 end-page: 1266 ident: b108 article-title: The correct formulation of intermediate boundary conditions for Runge–Kutta time integration of initial boundary value problems publication-title: SIAM J. Sci. Comput. – year: 2005 ident: b52 article-title: Least-Squares FEM, Literature Review – volume: 179 start-page: 313 year: 2002 end-page: 329 ident: b64 article-title: Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: Laminar flow publication-title: J. Comput. Phys. – volume: 27 start-page: 447 year: 1990 end-page: 456 ident: b105 article-title: On order reduction for Runge-Kutta methods applied to differential/algebraic systems and to stiff systems of ODEs publication-title: SIAM J. Numer. Anal. – reference: D. Wickert, R. Canfield, J. Reddy, Continuous Sensitivity Analysis of Fluid-Structure Interaction Problems Using Least-Squares Finite Elements, in: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008. – volume: 293 start-page: 375 year: 2015 end-page: 410 ident: b111 article-title: Monolithic and partitioned coupling schemes for thermo-viscoplasticity publication-title: Comput. Methods Appl. Mech. Engrg. – year: 1989 ident: b104 article-title: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods – start-page: 292 year: 1977 end-page: 315 ident: b80 article-title: A mixed Finite Element method for 2-nd order elliptic problems. mathematical aspects of Finite Element methods publication-title: Mathematical Aspects of Finite Element Methods – volume: 26 start-page: 95 year: 1977 end-page: 124 ident: b3 article-title: Stabilization of staggered solution procedures for fluid–structure interaction analysis publication-title: Comput. Methods Fluid-Struct. Interact. Probl. – volume: 51 start-page: 679 year: 2001 end-page: 707 ident: b92 article-title: Remarks on the interpretation of current non-linear finite element analyses as differential-algebraic equations publication-title: Internat. J. Numer. Methods Engrg. – volume: 243 year: 2021 ident: b15 article-title: Fluid-structure interaction with H(div)-conforming finite elements publication-title: Comput. Struct. – volume: 64 start-page: 1669 year: 2019 end-page: 1684 ident: b95 article-title: Simulating the temporal change of the active response of arteries by finite elements with high-order time-integrators publication-title: Comput. Mech. – volume: 24 start-page: 61 year: 1980 end-page: 111 ident: b2 article-title: Staggered transient analysis procedures for coupled mechanical systems: Formulation publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 258 start-page: 524 year: 2014 end-page: 537 ident: b10 article-title: A fully implicit domain decomposition based ALE framework for three-dimensional fluid-structure interaction with application in blood flow computation publication-title: J. Comput. Phys. – volume: 80 start-page: 479 year: 2010 end-page: 488 ident: b22 article-title: On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies publication-title: Arch. Appl. Mech. – volume: 119 start-page: 73 year: 1994 end-page: 94 ident: b83 article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 60 start-page: 83 year: 2017 end-page: 100 ident: b18 article-title: A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations publication-title: Comput. Mech. – year: 1996 ident: b87 article-title: Solving Ordinary Differential Equations II – volume: 366 start-page: 448 year: 2018 end-page: 477 ident: b71 article-title: Adaptive time-step control for nonlinear fluid–structure interaction publication-title: J. Comput. Phys. – start-page: 276 year: 2009 ident: b46 article-title: Least-Squares Finite Element Formulation for Fluid-Structure Interaction – volume: 65 year: 2020 ident: b86 article-title: A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state publication-title: Comput. Mech. – reference: R. Schussnig, T. Fries, Coupled multiphysics modeling of aortic dissection, in: World Congress in Computational Mechanics and ECCOMAS Congress, Vol. 400, 2021. – start-page: 151 year: 2020 end-page: 193 ident: b60 article-title: Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization publication-title: Parallel Algorithms in Computational Science and Engineering – year: 2000 ident: b88 article-title: Solving Ordinary Differential Equations I Nonstiff Problems – reference: . – volume: 83 start-page: 191 year: 2005 end-page: 207 ident: b35 article-title: Least squares finite element methods for fluid-structure interaction problems publication-title: Comput. Struct. – volume: 78 start-page: 1 year: 2020 end-page: 13 ident: b28 article-title: Fluid–structure interaction modeling in cardiovascular medicine – A systematic review 2017–2019 publication-title: Med. Eng. Phys. – volume: 5 start-page: 93 year: 1979 end-page: 121 ident: b93 article-title: The art of writing a Runge-Kutta code. II publication-title: Appl. Math. Comput. – volume: 158 start-page: 499 year: 1937 end-page: 521 ident: b102 article-title: Mechanism of the production of small eddies from large ones publication-title: Proc. R. Soc. Lond. Ser. A – reference: S.-H. Lee, S.-K. Youn, J.-H. Yeon, B.-N. Jiang, A Study on the Fluid-Structure Interaction Using LSFEM, in: Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, 2000, pp. 548–552. – volume: 18 start-page: 897 year: 2019 end-page: 920 ident: b30 article-title: Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 2: dispersed arrangement of collagen fibers publication-title: Biomech. Model. Mechanobiol. – volume: 63 start-page: e1597 year: 2005 end-page: e1605 ident: b67 article-title: A higher-order time integration algorithm for the simulation of nonlinear fluid-structure interaction publication-title: Nonlinear Anal. TMA – volume: 43 start-page: 91 year: 2008 end-page: 101 ident: b6 article-title: Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches publication-title: Comput. Mech. – volume: 231 start-page: 3041 year: 2012 end-page: 3063 ident: b103 article-title: Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations publication-title: J. Comput. Phys. – volume: 13 start-page: 331 year: 2010 end-page: 340 ident: b69 article-title: A time-adaptive fluid-structure interaction method for thermal coupling publication-title: Comput. Vis. Sci. – volume: 80 start-page: 479 year: 2010 ident: 10.1016/j.cma.2024.116783_b22 article-title: On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-009-0379-x – volume: 37 start-page: B30 issue: 1 year: 2015 ident: 10.1016/j.cma.2024.116783_b54 article-title: A temporal consistent monolithic approach to fluid-structure interaction enabling single field predictors publication-title: SIAM J. Sci. Comput. doi: 10.1137/140953253 – volume: 70 start-page: 58 year: 2003 ident: 10.1016/j.cma.2024.116783_b84 article-title: Mesh moving techniques for fluid-structure interactions with large displacements publication-title: J. Appl. Mech. doi: 10.1115/1.1530635 – volume: 260 year: 2022 ident: 10.1016/j.cma.2024.116783_b27 article-title: Efficient split-step schemes for fluid–structure interaction involving incompressible generalised Newtonian flows publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2021.106718 – volume: 43 start-page: 51 issue: 1 year: 2008 ident: 10.1016/j.cma.2024.116783_b59 article-title: Modeling of fluid–structure interactions with the space–time finite elements: contact problems publication-title: Comput. Mech. doi: 10.1007/s00466-008-0299-6 – volume: 65 issue: 6 year: 2020 ident: 10.1016/j.cma.2024.116783_b86 article-title: A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state publication-title: Comput. Mech. doi: 10.1007/s00466-020-01835-z – volume: 230 start-page: 3265 year: 2011 ident: 10.1016/j.cma.2024.116783_b73 article-title: On the roles of minimization and linearization in least-squares finite element models of nonlinear boundary-value problem publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.02.002 – volume: 13 start-page: 331 issue: 7 year: 2010 ident: 10.1016/j.cma.2024.116783_b69 article-title: A time-adaptive fluid-structure interaction method for thermal coupling publication-title: Comput. Vis. Sci. doi: 10.1007/s00791-010-0150-4 – volume: 366 start-page: 448 year: 2018 ident: 10.1016/j.cma.2024.116783_b71 article-title: Adaptive time-step control for nonlinear fluid–structure interaction publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.04.021 – volume: 43 start-page: 91 issue: 1 year: 2008 ident: 10.1016/j.cma.2024.116783_b6 article-title: Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches publication-title: Comput. Mech. doi: 10.1007/s00466-008-0270-6 – volume: 258 start-page: 524 year: 2014 ident: 10.1016/j.cma.2024.116783_b10 article-title: A fully implicit domain decomposition based ALE framework for three-dimensional fluid-structure interaction with application in blood flow computation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.10.046 – volume: 40 start-page: 789 year: 1998 ident: 10.1016/j.cma.2024.116783_b51 article-title: Finite Element methods of least-squares type publication-title: SIAM Rev. doi: 10.1137/S0036144597321156 – volume: 51 start-page: 679 issue: 6 year: 2001 ident: 10.1016/j.cma.2024.116783_b92 article-title: Remarks on the interpretation of current non-linear finite element analyses as differential-algebraic equations publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.179 – year: 2018 ident: 10.1016/j.cma.2024.116783_b39 – year: 1991 ident: 10.1016/j.cma.2024.116783_b81 – volume: 28 start-page: 495 issue: 6 year: 2006 ident: 10.1016/j.cma.2024.116783_b43 article-title: First-order system least-squares (FOSLS) for modeling blood flow publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2005.10.002 – volume: 65 start-page: 236 year: 2011 ident: 10.1016/j.cma.2024.116783_b16 article-title: 3D simulation of wind turbine rotors at full scale. Part II: Fluid - Structure interaction modeling with composite blades publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.2454 – volume: 60 start-page: 101 issue: 1 year: 2017 ident: 10.1016/j.cma.2024.116783_b19 article-title: A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations publication-title: Comput. Mech. doi: 10.1007/s00466-017-1395-2 – volume: 341 start-page: 333 year: 2018 ident: 10.1016/j.cma.2024.116783_b75 article-title: Efficient stress-velocity least-squares finite element formulations for the incompressible Navier-Stokes equations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.01.043 – volume: 65 start-page: 1167 issue: 4 year: 2020 ident: 10.1016/j.cma.2024.116783_b26 article-title: Heart valve isogeometric sequentially-coupled FSI analysis with the space–time topology change method publication-title: Comput. Mech. doi: 10.1007/s00466-019-01813-0 – volume: 82 start-page: 1007 issue: 8 year: 2012 ident: 10.1016/j.cma.2024.116783_b65 article-title: Higher-order accurate implicit time integration schemes for transport problems publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-012-0638-0 – year: 1987 ident: 10.1016/j.cma.2024.116783_b63 – volume: 17 year: 1996 ident: 10.1016/j.cma.2024.116783_b107 article-title: On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827595282520 – volume: 18 start-page: 1255 issn: 1064-8275 issue: 5 year: 1997 ident: 10.1016/j.cma.2024.116783_b108 article-title: The correct formulation of intermediate boundary conditions for Runge–Kutta time integration of initial boundary value problems publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827594273948 – volume: 85 start-page: 998 year: 2007 ident: 10.1016/j.cma.2024.116783_b37 article-title: A unified least-squares formulation for fluid-structure interaction problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2006.11.019 – ident: 10.1016/j.cma.2024.116783_b101 – ident: 10.1016/j.cma.2024.116783_b33 – volume: 145 start-page: 186 year: 2018 ident: 10.1016/j.cma.2024.116783_b8 article-title: Numerical simulation of fluid–structure interaction problems with hyperelastic models: A monolithic approach publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2016.07.008 – volume: 32 start-page: 1387 issue: 6 year: 1989 ident: 10.1016/j.cma.2024.116783_b91 article-title: A survey of direct time-integration methods in computational structural dynamics II. Implicit methods publication-title: Comput. Struct. doi: 10.1016/0045-7949(89)90315-5 – year: 2016 ident: 10.1016/j.cma.2024.116783_b94 – start-page: 413 year: 2010 ident: 10.1016/j.cma.2024.116783_b113 article-title: Numerical benchmarking of fluid-structure interaction: A comparison of different discretization and solution approaches – ident: 10.1016/j.cma.2024.116783_b48 doi: 10.2514/6.2008-1896 – ident: 10.1016/j.cma.2024.116783_b115 – year: 2023 ident: 10.1016/j.cma.2024.116783_b24 article-title: Comparison of arterial wall models in fluid–structure interaction simulations publication-title: Comput. Mech. doi: 10.1007/s00466-023-02321-y – volume: 91 start-page: 577 year: 2002 ident: 10.1016/j.cma.2024.116783_b109 article-title: Runge-Kutta methods without order reduction for linear initial boundary value problems publication-title: Numer. Math. doi: 10.1007/s002110100332 – start-page: 537 year: 2022 ident: 10.1016/j.cma.2024.116783_b62 article-title: Space–time computational FSI and flow analysis: 2004 and beyond – volume: 44 start-page: 631 year: 2009 ident: 10.1016/j.cma.2024.116783_b98 article-title: Automation of primal and sensitivity analysis of transient coupled problems publication-title: Comput. Mech. doi: 10.1007/s00466-009-0395-2 – year: 2016 ident: 10.1016/j.cma.2024.116783_b89 – volume: 368 year: 2020 ident: 10.1016/j.cma.2024.116783_b40 article-title: Implicit time discretization schemes for mixed least-squares finite element formulations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113111 – volume: 54 start-page: 603 issue: 3 year: 2014 ident: 10.1016/j.cma.2024.116783_b78 article-title: Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity publication-title: Comput. Mech. doi: 10.1007/s00466-014-1009-1 – volume: 158 start-page: 499 issue: 895 year: 1937 ident: 10.1016/j.cma.2024.116783_b102 article-title: Mechanism of the production of small eddies from large ones publication-title: Proc. R. Soc. Lond. Ser. A doi: 10.1098/rspa.1937.0036 – volume: 8 start-page: 383 issue: 5 year: 2018 ident: 10.1016/j.cma.2024.116783_b76 article-title: Data assimilation for Navier-Stokes using the least-squares Finite-Element method publication-title: Int. J. Uncertain. Quantif. doi: 10.1615/Int.J.UncertaintyQuantification.2018021021 – year: 2006 ident: 10.1016/j.cma.2024.116783_b36 – year: 2009 ident: 10.1016/j.cma.2024.116783_b53 – volume: 32 issue: 10 year: 2016 ident: 10.1016/j.cma.2024.116783_b23 article-title: Numerical modeling of fluid–structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2756 – start-page: 292 year: 1977 ident: 10.1016/j.cma.2024.116783_b80 article-title: A mixed Finite Element method for 2-nd order elliptic problems. mathematical aspects of Finite Element methods – volume: 119 start-page: 73 issue: 1–2 year: 1994 ident: 10.1016/j.cma.2024.116783_b83 article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(94)00077-8 – volume: 141 start-page: 55 year: 2018 ident: 10.1016/j.cma.2024.116783_b55 article-title: Adaptive time stepping for fluid-structure interaction solvers publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2017.12.002 – volume: 85 start-page: 987 year: 2011 ident: 10.1016/j.cma.2024.116783_b9 article-title: Truly monolithic algebraic multigrid for fluid-structure interaction publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.3001 – volume: 5 start-page: 93 issue: 2 year: 1979 ident: 10.1016/j.cma.2024.116783_b93 article-title: The art of writing a Runge-Kutta code. II publication-title: Appl. Math. Comput. – volume: 83 start-page: 191 year: 2005 ident: 10.1016/j.cma.2024.116783_b35 article-title: Least squares finite element methods for fluid-structure interaction problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2004.08.002 – year: 2016 ident: 10.1016/j.cma.2024.116783_b99 – volume: 231 start-page: 3041 year: 2012 ident: 10.1016/j.cma.2024.116783_b103 article-title: Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.11.028 – start-page: 261 year: 2018 ident: 10.1016/j.cma.2024.116783_b38 doi: 10.1007/978-3-319-70563-7_12 – year: 2003 ident: 10.1016/j.cma.2024.116783_b5 – volume: 124 start-page: 79 issue: 1 year: 1995 ident: 10.1016/j.cma.2024.116783_b4 article-title: Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(95)92707-9 – volume: 64 start-page: 1669 issue: 6 year: 2019 ident: 10.1016/j.cma.2024.116783_b95 article-title: Simulating the temporal change of the active response of arteries by finite elements with high-order time-integrators publication-title: Comput. Mech. doi: 10.1007/s00466-019-01744-w – year: 2005 ident: 10.1016/j.cma.2024.116783_b52 – volume: 24 start-page: 61 issue: 1 year: 1980 ident: 10.1016/j.cma.2024.116783_b2 article-title: Staggered transient analysis procedures for coupled mechanical systems: Formulation publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(80)90040-7 – year: 2009 ident: 10.1016/j.cma.2024.116783_b49 – start-page: 151 year: 2020 ident: 10.1016/j.cma.2024.116783_b60 article-title: Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization – volume: 78 start-page: 1 year: 2020 ident: 10.1016/j.cma.2024.116783_b28 article-title: Fluid–structure interaction modeling in cardiovascular medicine – A systematic review 2017–2019 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2020.01.008 – volume: 12 start-page: 57 year: 2017 ident: 10.1016/j.cma.2024.116783_b70 article-title: Time-adaptive finite element simulations of dynamical problems for temperature-dependent materials publication-title: J. Mech. Mater. Struct. doi: 10.2140/jomms.2017.12.57 – volume: 18 start-page: 312 issue: 4 year: 2002 ident: 10.1016/j.cma.2024.116783_b97 article-title: Multi-language and multi-environment generation of nonlinear finite element codes publication-title: Eng. Comput. doi: 10.1007/s003660200028 – volume: 38 start-page: 310 issue: 4 year: 2006 ident: 10.1016/j.cma.2024.116783_b21 article-title: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow publication-title: Comput. Mech. doi: 10.1007/s00466-006-0084-3 – volume: 293 start-page: 375 year: 2015 ident: 10.1016/j.cma.2024.116783_b111 article-title: Monolithic and partitioned coupling schemes for thermo-viscoplasticity publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2015.05.002 – year: 1998 ident: 10.1016/j.cma.2024.116783_b50 – volume: 45 start-page: 138 issue: 1 year: 2007 ident: 10.1016/j.cma.2024.116783_b68 article-title: Higher-order time integration schemes for aeroelastic applications on unstructured meshes publication-title: AIAA J. doi: 10.2514/1.22847 – volume: 42 start-page: 843 issue: 2 year: 2004 ident: 10.1016/j.cma.2024.116783_b74 article-title: Least-squares methods for incompressible Newtonian fluid flow: Linear stationary problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142903422673 – volume: 41 start-page: 443 issue: 4 year: 2002 ident: 10.1016/j.cma.2024.116783_b110 article-title: Runge–Kutta methods in elastoplasticity publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(01)00133-7 – volume: 179 start-page: 313 issue: 1 year: 2002 ident: 10.1016/j.cma.2024.116783_b64 article-title: Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: Laminar flow publication-title: J. Comput. Phys. doi: 10.1006/jcph.2002.7059 – start-page: 276 year: 2009 ident: 10.1016/j.cma.2024.116783_b46 – ident: 10.1016/j.cma.2024.116783_b32 doi: 10.23967/wccm-eccomas.2020.109 – volume: 64 start-page: 1201 issue: 10–12 year: 2010 ident: 10.1016/j.cma.2024.116783_b58 article-title: Space–time finite element computation of complex fluid–structure interactions publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.2221 – year: 2004 ident: 10.1016/j.cma.2024.116783_b72 – volume: Vol. 246 start-page: 7 year: 1992 ident: 10.1016/j.cma.2024.116783_b82 article-title: Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations – volume: 27 start-page: 447 year: 1990 ident: 10.1016/j.cma.2024.116783_b105 article-title: On order reduction for Runge-Kutta methods applied to differential/algebraic systems and to stiff systems of ODEs publication-title: SIAM J. Numer. Anal. doi: 10.1137/0727027 – volume: 17 start-page: 1011 year: 2018 ident: 10.1016/j.cma.2024.116783_b29 article-title: Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 1: micro-and nanostructure of collagen fibers publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-018-1009-8 – volume: 60 start-page: 83 issue: 1 year: 2017 ident: 10.1016/j.cma.2024.116783_b18 article-title: A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations publication-title: Comput. Mech. doi: 10.1007/s00466-017-1394-3 – ident: 10.1016/j.cma.2024.116783_b47 doi: 10.2514/6.2008-5931 – volume: 104 start-page: 372 issue: 5 year: 2015 ident: 10.1016/j.cma.2024.116783_b12 article-title: A monolithic geometric multigrid solver for fluid-structure interactions in ALE formulation publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.4943 – volume: 54 start-page: 901 issue: 6–8 year: 2007 ident: 10.1016/j.cma.2024.116783_b57 article-title: Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.1443 – start-page: 139 year: 1989 ident: 10.1016/j.cma.2024.116783_b1 article-title: Coupled problems and their numerical solution – volume: 43 issue: 2 year: 2020 ident: 10.1016/j.cma.2024.116783_b79 article-title: A mixed least-squares finite element formulation with explicit consideration of the balance of moment of momentum, a numerical study publication-title: GAMM-Mitt. doi: 10.1002/gamm.202000009 – volume: 47 start-page: 593 issue: 6 year: 2011 ident: 10.1016/j.cma.2024.116783_b25 article-title: Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulation publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2010.12.015 – year: 1996 ident: 10.1016/j.cma.2024.116783_b87 – volume: 73 start-page: 927 issue: 11 year: 2013 ident: 10.1016/j.cma.2024.116783_b66 article-title: An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/fld.3831 – start-page: 195 year: 2020 ident: 10.1016/j.cma.2024.116783_b61 article-title: ALE and space–time variational multiscale isogeometric analysis of wind turbines and turbomachinery – year: 1989 ident: 10.1016/j.cma.2024.116783_b104 – volume: 195 start-page: 560 year: 2004 ident: 10.1016/j.cma.2024.116783_b41 article-title: First-Order System Least-Squares (FOSLS) for coupled fluid-elastic problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.09.034 – volume: 59 start-page: 905 issue: 5 year: 2009 ident: 10.1016/j.cma.2024.116783_b112 article-title: Vibration analysis of plane elasticity problems by the C0-continuous time stepping Finite Element method publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2008.04.001 – volume: 4 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.cma.2024.116783_b20 article-title: Wind turbine and turbomachinery computational analysis with the ALE and space-time variational multiscale methods and isogeometric discretization publication-title: J. Adv. Eng. Comput. doi: 10.25073/jaec.202041.278 – year: 2007 ident: 10.1016/j.cma.2024.116783_b116 – volume: 26 start-page: 95 year: 1977 ident: 10.1016/j.cma.2024.116783_b3 article-title: Stabilization of staggered solution procedures for fluid–structure interaction analysis publication-title: Comput. Methods Fluid-Struct. Interact. Probl. – ident: 10.1016/j.cma.2024.116783_b45 doi: 10.2514/6.2008-5859 – volume: 41 start-page: C291 issue: 4 year: 2019 ident: 10.1016/j.cma.2024.116783_b13 article-title: Monolithic overlapping Schwarz domain decomposition methods with GDSW coarse spaces for incompressible fluid flow problems publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1184047 – year: 2000 ident: 10.1016/j.cma.2024.116783_b88 – start-page: 371 year: 2010 ident: 10.1016/j.cma.2024.116783_b114 article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow – volume: 198 start-page: 3534 issue: 45–46 year: 2009 ident: 10.1016/j.cma.2024.116783_b31 article-title: Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2009.04.015 – volume: 389 year: 2022 ident: 10.1016/j.cma.2024.116783_b14 article-title: Time-periodic steady-state solution of fluid-structure interaction and cardiac flow problems through multigrid-reduction-in-time publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.114368 – volume: 40 start-page: 193 year: 2004 ident: 10.1016/j.cma.2024.116783_b42 article-title: Modeling 3-D compliant blood flow with FOSLS publication-title: Biomed. Sci. Instrum. – volume: 21 start-page: 359 issue: 4 year: 2014 ident: 10.1016/j.cma.2024.116783_b17 article-title: Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-014-9119-7 – volume: 16 start-page: 1241 year: 1995 ident: 10.1016/j.cma.2024.116783_b106 article-title: The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A study of the boundary error publication-title: SIAM J. Sci. Comput. doi: 10.1137/0916072 – volume: 29 start-page: 888 issue: 8 year: 2012 ident: 10.1016/j.cma.2024.116783_b11 article-title: Parallel simulation of patient-specific atherosclerotic arteries for the enhancement of intravascular ultrasound diagnostics publication-title: Eng. Comput. doi: 10.1108/02644401211271645 – volume: 187 start-page: 231 issue: 1 year: 1997 ident: 10.1016/j.cma.2024.116783_b96 article-title: Automatic generation of finite-element code by simultaneous optimization of expressions publication-title: Theoret. Comput. Sci. doi: 10.1016/S0304-3975(97)00067-4 – year: 2017 ident: 10.1016/j.cma.2024.116783_b85 – volume: 17 start-page: 540 issue: 9 year: 1950 ident: 10.1016/j.cma.2024.116783_b90 article-title: A recurrence matrix solution for the dynamic response of elastic aircraft publication-title: J. Aeronaut. Sci. doi: 10.2514/8.1722 – volume: 243 year: 2021 ident: 10.1016/j.cma.2024.116783_b15 article-title: Fluid-structure interaction with H(div)-conforming finite elements publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2020.106402 – volume: 193 start-page: 2087 issue: 23 year: 2004 ident: 10.1016/j.cma.2024.116783_b56 article-title: A monolithic approach to fluid–structure interaction using space–time finite elements publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.01.024 – ident: 10.1016/j.cma.2024.116783_b34 doi: 10.1016/B978-008044046-0.50340-7 – ident: 10.1016/j.cma.2024.116783_b44 doi: 10.2514/6.2007-2407 – volume: 111 start-page: 19 year: 2016 ident: 10.1016/j.cma.2024.116783_b100 article-title: Closed-form representation of matrix functions in the formulation of nonlinear material models publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2015.12.002 – volume: 41 start-page: 715 year: 2003 ident: 10.1016/j.cma.2024.116783_b77 article-title: First-order system least squares for the stress-displacement formulation: Linear elasticity publication-title: SIAM J. Numer. Anal. doi: 10.1137/S003614290139696X – volume: 63 start-page: e1597 issue: 5–7 year: 2005 ident: 10.1016/j.cma.2024.116783_b67 article-title: A higher-order time integration algorithm for the simulation of nonlinear fluid-structure interaction publication-title: Nonlinear Anal. TMA doi: 10.1016/j.na.2005.01.054 – volume: 18 start-page: 897 year: 2019 ident: 10.1016/j.cma.2024.116783_b30 article-title: Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 2: dispersed arrangement of collagen fibers publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-019-01119-3 – volume: 26 start-page: 305 year: 2010 ident: 10.1016/j.cma.2024.116783_b7 article-title: Coupling strategies for biomedical fluid - structure interaction problems publication-title: Int. J. Biomed. Eng. |
| SSID | ssj0000812 |
| Score | 2.454768 |
| Snippet | This contribution deals with the solution of a new monolithically coupled fluid–structure interaction approach using mixed least-squares (LS) stress–velocity... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 116783 |
| SubjectTerms | Fluid–structure interaction High-order time integration incompressible Navier–Stokes equations Mixed least-squares finite elements Monolithic coupling |
| Title | A monolithic fluid–structure interaction approach using mixed LSFEM with high-order time integration |
| URI | https://dx.doi.org/10.1016/j.cma.2024.116783 |
| Volume | 423 |
| WOSCitedRecordID | wos001199891800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000812 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc48Cggyks-cGKVKg_HSY5LtRVUUCG1SHuLbMdRt9qm1bZdVj31P3Dnx_FLmPEjCW1BgMQlyiZrJ_J8cj6PZ74h5HUSAyjgsx1kSscB42kd5FHCAx2FEhMbI1ULU2wi293Np9Pi02DwzefCLOdZ0-SrVXHyX00N18DYmDr7F-ZuO4ULcA5GhyOYHY5_ZPjxCB6FUW0HMzWq5-fwAi6gIbFisbhlgCoRC18m3MmKj86N3-BotgIS-mFve_LRemlR0TgwEp2mEn2rMOEt6nUOXH0IV5TaxNkKx3GPNCYYe0Fo3Wkgtngz8dnWc308X6K_ttsiOvgiFhc_ZePccG8LFv2N6N0wMQBveWUxuWN_OTkv5-aI-9Exxvd2Lf_GzucsDYDjpP35nNkE5mvfBuumONxURm8qZpu4BWWr6FyR3N7DfrFbDLANgUHeImtxlhb5kKyN30-mO923Po-sHr17D79vbiIIrzzoZubTYzP7D8g9twyhYwufh2Sgm3Vy3y1JqJvwT9fJ3Z5e5SNSj2mHLWqw9f3ya4sq2kMV9aiiBlXUoIoaVFFEFe1QRRFVtIeqx-Tz9mR_613gCnUEKmHhWYDZzknEUiVlHVaxhLGSBatzVlVM6kIBSy8qpjWrI841kymXDKiq4JWQXIs4eUKGzXGjnxJa6FiFQmfYkBU8lwnPmYgyDesUYKpsg4R-EEvlVOyxmMq89OGKhyWMe4njXtpx3yBv2iYnVsLld39m3jKl46CWW5YAo183e_ZvzZ6TOx3WX5Ah2Eu_JLfV8mx2unjlwPYDUpqtFg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+monolithic+fluid%E2%80%93structure+interaction+approach+using+mixed+LSFEM+with+high-order+time+integration&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Averweg%2C+Solveigh&rft.au=Schwarz%2C+Alexander&rft.au=Schwarz%2C+Carina&rft.au=Schr%C3%B6der%2C+J%C3%B6rg&rft.date=2024-04-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.volume=423&rft_id=info:doi/10.1016%2Fj.cma.2024.116783&rft.externalDocID=S0045782524000392 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |