A monolithic fluid–structure interaction approach using mixed LSFEM with high-order time integration

This contribution deals with the solution of a new monolithically coupled fluid–structure interaction approach using mixed least-squares (LS) stress–velocity (SV) formulations with implicit time discretization schemes and adaptive time stepping. The variational approach for the fluid is based on the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods in applied mechanics and engineering Ročník 423; s. 116783
Hlavní autori: Averweg, Solveigh, Schwarz, Alexander, Schwarz, Carina, Schröder, Jörg
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.04.2024
Predmet:
ISSN:0045-7825
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This contribution deals with the solution of a new monolithically coupled fluid–structure interaction approach using mixed least-squares (LS) stress–velocity (SV) formulations with implicit time discretization schemes and adaptive time stepping. The variational approach for the fluid is based on the incompressible Navier–Stokes equations in Arbitrary-Lagrangian–Eulerian (ALE) description to consider a deforming fluid domain. For the deformation of the fluid background mesh, a pseudo-material with linear elastic behavior and local hardening using mesh-Jacobian-based stiffening is presented. The proposed LS solid formulations are based on linear and hyperelastic material behavior, and are likewise expressed in terms of stresses and velocities. In combination with conforming finite element spaces in H(div) and H1 for the spatial discretization of the unknowns, an inherent fulfillment of the coupling conditions in FSI problems is achieved. Time discretization is performed using SDIRK methods with different orders and the Houbolt method. Before solving the coupled problem, the accuracy of various high-order time discretizations is investigated when solving dynamic flow and solid problems with SV formulations. Two numerical examples with exact solution are used, i.e. an unsteady Taylor–Green vortex flow and a linear elastic vibrating plate, to evaluate the temporal convergence order of different schemes. The coupled LS FSI approach is tested by solving the benchmark problem, flow around a cylinder with attached flag, which is characterized by large deformations of the solid flag and hence the fluid domain. A major focus is on the investigation and comparison of embedded Runge–Kutta methods with adaptive time step control in terms of efficiency and performance. •Least-squares formulations for monolithically coupled fluid–structure interaction problems.•Inherent fulfillment of coupling conditions through conforming discretization of fluid and solid formulation.•Investigation of high-order time integration methods for fluid, solid and FSI problems with adaptive time step control.
AbstractList This contribution deals with the solution of a new monolithically coupled fluid–structure interaction approach using mixed least-squares (LS) stress–velocity (SV) formulations with implicit time discretization schemes and adaptive time stepping. The variational approach for the fluid is based on the incompressible Navier–Stokes equations in Arbitrary-Lagrangian–Eulerian (ALE) description to consider a deforming fluid domain. For the deformation of the fluid background mesh, a pseudo-material with linear elastic behavior and local hardening using mesh-Jacobian-based stiffening is presented. The proposed LS solid formulations are based on linear and hyperelastic material behavior, and are likewise expressed in terms of stresses and velocities. In combination with conforming finite element spaces in H(div) and H1 for the spatial discretization of the unknowns, an inherent fulfillment of the coupling conditions in FSI problems is achieved. Time discretization is performed using SDIRK methods with different orders and the Houbolt method. Before solving the coupled problem, the accuracy of various high-order time discretizations is investigated when solving dynamic flow and solid problems with SV formulations. Two numerical examples with exact solution are used, i.e. an unsteady Taylor–Green vortex flow and a linear elastic vibrating plate, to evaluate the temporal convergence order of different schemes. The coupled LS FSI approach is tested by solving the benchmark problem, flow around a cylinder with attached flag, which is characterized by large deformations of the solid flag and hence the fluid domain. A major focus is on the investigation and comparison of embedded Runge–Kutta methods with adaptive time step control in terms of efficiency and performance. •Least-squares formulations for monolithically coupled fluid–structure interaction problems.•Inherent fulfillment of coupling conditions through conforming discretization of fluid and solid formulation.•Investigation of high-order time integration methods for fluid, solid and FSI problems with adaptive time step control.
ArticleNumber 116783
Author Schwarz, Alexander
Schwarz, Carina
Schröder, Jörg
Averweg, Solveigh
Author_xml – sequence: 1
  givenname: Solveigh
  orcidid: 0000-0002-1396-2343
  surname: Averweg
  fullname: Averweg, Solveigh
  email: solveigh.averweg@uni-due.de
– sequence: 2
  givenname: Alexander
  orcidid: 0000-0003-2276-5947
  surname: Schwarz
  fullname: Schwarz, Alexander
  email: alexander.schwarz@uni-due.de
– sequence: 3
  givenname: Carina
  surname: Schwarz
  fullname: Schwarz, Carina
  email: carina.schwarz@uni-due.de
– sequence: 4
  givenname: Jörg
  orcidid: 0000-0001-7960-9553
  surname: Schröder
  fullname: Schröder, Jörg
  email: j.schroeder@uni-due.de
BookMark eNp90D1OwzAUwHEPRaItHIDNF0iwEztJxVRVLSAVMQCz5Y-XxlUSV47Dx8YduCEnISVMDPXypt_T83-GJq1rAaErSmJKaHa9j3Uj44QkLKY0y4t0gqaEMB7lRcLP0azr9mR4BU2mqFzixrWutqGyGpd1b83351cXfK9D7wHbNoCXOljXYnk4eCd1hfvOtjvc2HcwePu0WT_gt8Hjyu6qyHkDHgfbjHbn5dFeoLNS1h1c_s05etmsn1d30fbx9n613EY6ZSREjBdFShnXSpXEJCrJuVqwsmDGMAULzRlfGAbASpplwBTPFCM5l5mRKgOZpHNEx73au67zUIqDt430H4IScYwj9mKII45xxBhnMPk_o234vTp4aeuT8maUMHzp1YIXnbbQajDWgw7COHtC_wBiNIXf
CitedBy_id crossref_primary_10_1016_j_triboint_2024_110316
crossref_primary_10_1016_j_oceaneng_2025_122263
crossref_primary_10_1016_j_oceaneng_2024_119393
Cites_doi 10.1007/s00419-009-0379-x
10.1137/140953253
10.1115/1.1530635
10.1016/j.compstruc.2021.106718
10.1007/s00466-008-0299-6
10.1007/s00466-020-01835-z
10.1016/j.jcp.2011.02.002
10.1007/s00791-010-0150-4
10.1016/j.jcp.2018.04.021
10.1007/s00466-008-0270-6
10.1016/j.jcp.2013.10.046
10.1137/S0036144597321156
10.1002/nme.179
10.1016/j.medengphy.2005.10.002
10.1002/fld.2454
10.1007/s00466-017-1395-2
10.1016/j.cma.2018.01.043
10.1007/s00466-019-01813-0
10.1007/s00419-012-0638-0
10.1137/S1064827595282520
10.1137/S1064827594273948
10.1016/j.compstruc.2006.11.019
10.1016/j.matcom.2016.07.008
10.1016/0045-7949(89)90315-5
10.2514/6.2008-1896
10.1007/s00466-023-02321-y
10.1007/s002110100332
10.1007/s00466-009-0395-2
10.1016/j.cma.2020.113111
10.1007/s00466-014-1009-1
10.1098/rspa.1937.0036
10.1615/Int.J.UncertaintyQuantification.2018021021
10.1002/cnm.2756
10.1016/0045-7825(94)00077-8
10.1016/j.finel.2017.12.002
10.1002/nme.3001
10.1016/j.compstruc.2004.08.002
10.1016/j.jcp.2011.11.028
10.1007/978-3-319-70563-7_12
10.1016/0045-7825(95)92707-9
10.1007/s00466-019-01744-w
10.1016/0045-7825(80)90040-7
10.1016/j.medengphy.2020.01.008
10.2140/jomms.2017.12.57
10.1007/s003660200028
10.1007/s00466-006-0084-3
10.1016/j.cma.2015.05.002
10.2514/1.22847
10.1137/S0036142903422673
10.1016/S0168-9274(01)00133-7
10.1006/jcph.2002.7059
10.23967/wccm-eccomas.2020.109
10.1002/fld.2221
10.1137/0727027
10.1007/s10237-018-1009-8
10.1007/s00466-017-1394-3
10.2514/6.2008-5931
10.1002/nme.4943
10.1002/fld.1443
10.1002/gamm.202000009
10.1016/j.finel.2010.12.015
10.1002/fld.3831
10.1016/j.jcp.2003.09.034
10.1016/j.apnum.2008.04.001
10.25073/jaec.202041.278
10.2514/6.2008-5859
10.1137/18M1184047
10.1016/j.cma.2009.04.015
10.1016/j.cma.2021.114368
10.1007/s11831-014-9119-7
10.1137/0916072
10.1108/02644401211271645
10.1016/S0304-3975(97)00067-4
10.2514/8.1722
10.1016/j.compstruc.2020.106402
10.1016/j.cma.2004.01.024
10.1016/B978-008044046-0.50340-7
10.2514/6.2007-2407
10.1016/j.finel.2015.12.002
10.1137/S003614290139696X
10.1016/j.na.2005.01.054
10.1007/s10237-019-01119-3
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cma.2024.116783
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cma_2024_116783
S0045782524000392
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
VH1
VOH
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c340t-45883145cbbf0d2b275b94f84dd4be9c5459d4ee4f166e4b56b4075a6dab6ea23
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001199891800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sat Nov 29 06:16:58 EST 2025
Tue Nov 18 21:32:53 EST 2025
Sat Oct 05 15:37:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fluid–structure interaction
Monolithic coupling
High-order time integration incompressible Navier–Stokes equations
Mixed least-squares finite elements
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-45883145cbbf0d2b275b94f84dd4be9c5459d4ee4f166e4b56b4075a6dab6ea23
ORCID 0000-0003-2276-5947
0000-0002-1396-2343
0000-0001-7960-9553
OpenAccessLink https://dx.doi.org/10.1016/j.cma.2024.116783
ParticipantIDs crossref_primary_10_1016_j_cma_2024_116783
crossref_citationtrail_10_1016_j_cma_2024_116783
elsevier_sciencedirect_doi_10_1016_j_cma_2024_116783
PublicationCentury 2000
PublicationDate 2024-04-01
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wu, Cai (b10) 2014; 258
Takizawa, Tezduyar, Avsar (b86) 2020; 65
Hussain, Schieweck, Turek (b66) 2013; 73
Kayser-Herold, Matthies (b35) 2005; 83
von Hoegen, Marino, Schröder, Wriggers (b30) 2019; 18
Hübner, Walhorn, Dinkler (b56) 2004; 193
Butcher (b63) 1987
Brezzi, Fortin (b81) 1991
Bochev, Gunzburger (b53) 2009
Donea, Huerta, Ponthot, Rodríguez-Ferran (b72) 2004
Nisters, Schwarz, Averweg, Schröder (b38) 2018
Carstens, Kuhl (b65) 2012; 82
Kayser-Herold, Matthies (b52) 2005
Yang, Mavriplis (b68) 2007; 45
Tezduyar, Behr, Mittal, Johnson (b82) 1992; Vol. 246
S. Turek, C. Becker, S. Kilian, M. Möller, S. Buijssen, D. Göddecke, M. Köster, R. Münster, H. Wobker, M. Geveler, D. Ribbrock, P. Zajac, High performance finite elements.
Felippa, Park, Deruntz (b3) 1977; 26
Hessenthaler, Falgout, Schroder, de Vecchi, Nordsletten, Röhrle (b14) 2022; 389
.
Bazilevs, Moutsanidis, Bueno, Kamran, Kamensky, Hillman, Gomez, Chen (b19) 2017; 60
Stein, Tezduyar, Benney (b84) 2003; 70
Butcher (b89) 2016
Turek, Hron, Razzaq, Wobker, Schäfer (b113) 2010
O. Kayser-Herold, H. Matthies, Space-Time Adaptive Solution of Fluid-Structure Interaction Problems, in: 2nd MIT Conference on Computational Fluid and Solid Mechanics, Amsterdam, 2003, pp. 1000–1004.
Bazilevs, Takizawa, Tezduyar, Hsu, Otoguro, Mochizuki, Wu (b20) 2020; 4
D. Wickert, R. Canfield, Least-Squares Continuous Sensitivity Analysis of an Example Fluid-Structure Interaction Problem, in: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2008.
Korelc, Wriggers (b99) 2016
Mayr, Wall, Gee (b55) 2018; 141
Heil, Hazel, Boyle (b6) 2008; 43
Rothe, Erbts, Düster, Hartmann (b111) 2015; 293
Bazilevs, Takizawa, Tezduyar, Hsu, Otoguro, Mochizuki, Wu (b61) 2020
Hairer, Lubich, Roche (b104) 1989
Bazilevs, Hsu, Kiendl, Wüchner, Bletzinger (b16) 2011; 65
Gilbert, Grafenhorst, Hartmann, Yosibash (b95) 2019; 64
Jiang (b50) 1998
Bijl, Carpenter, Vatsa, Kennedy (b64) 2002; 179
Mayr, Klöppel, Wall, Gee (b54) 2015; 37
Sathe, Tezduyar (b59) 2008; 43
C. Rasmussen, R. Canfield, J. Reddy, The Least-Squares Finite Element Method Applied to Fluid-Structure Interaction Problems, in: 8th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007.
Hughes, Takizawa, Bazilevs, Tezduyar, Hsu (b60) 2020
Neunteufel, Schöberl (b15) 2021; 243
Bochev, Gunzburger (b51) 1998; 40
Bazilevs, Kamran, Moutsanidis, Benson, Oñate (b18) 2017; 60
Marino, von Hoegen, Schröder, Wriggers (b29) 2018; 17
Rasmussen (b46) 2009
Burrage, Petzold (b105) 1990; 27
Piperno, Farhat, Larrouturou (b4) 1995; 124
Steindorf (b5) 2003
Wolfram Research Inc, Mathematica, Version 13.0.0, Champaign, IL, 2021, URL
Korelc (b97) 2002; 18
Korelc (b96) 1997; 187
Turek, Hron (b114) 2010
D. Wickert, R. Canfield, J. Reddy, Continuous Sensitivity Analysis of Fluid-Structure Interaction Problems Using Least-Squares Finite Elements, in: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008.
Failer, Wick (b71) 2018; 366
Richter (b85) 2017
Küttler, Gee, Förster, Comerford, Wall (b7) 2010; 26
Korelc (b98) 2009; 44
Lai, Huang, Chen (b112) 2009; 59
Bazilevs, Takizawa, Tezduyar, Hsu, Kostov, McIntyre (b17) 2014; 21
Averweg, Schwarz, Nisters, Schröder (b40) 2020; 368
Sanderse, Koren (b103) 2012; 231
Schwarz, Dwight (b76) 2018; 8
Kayser-Herold (b36) 2006
Tezduyar, Sathe, Cragin, Nanna, Conklin, Pausewang, Schwaab (b57) 2007; 54
Hairer, Nørsett, Wanner (b88) 2000
Birken, Quint, Hartmann, Meister (b69) 2010; 13
Hairer, Wanner (b87) 1996
Hsu, Bazilevs (b25) 2011; 47
Büttner, Simeon (b110) 2002; 41
Heinlein, Hochmuth, Klawonn (b13) 2019; 41
Bazilevs, Gohean, Hughes, Moser, Zhang (b31) 2009; 198
Heys, Manteuffel, McCormick, Ruge (b41) 2004; 195
Alonso-Mallo (b109) 2002; 91
Rang (b116) 2007
Schussnig, Pacheco, Fries (b27) 2022; 260
Johnson, Tezduyar (b83) 1994; 119
Cai, Starke (b77) 2003; 41
Schwarz, Steeger, Schröder (b78) 2014; 54
Tezduyar, Takizawa, Moorman, Wright, Christopher (b58) 2010; 64
Shampine, Watts (b93) 1979; 5
Balzani, Böse, Brands, Erbel, Klawonn, Rheinbach, Schröder (b11) 2012; 29
Terahara, Takizawa, Tezduyar, Bazilevs, Hsu (b26) 2020; 65
Nisters, Schwarz (b75) 2018; 341
Heys, DeGroff, Manteuffel, McCormick (b43) 2006; 28
Tezduyar, Takizawa, Kuraishi (b62) 2022
Subbaraj, Dokainish (b91) 1989; 32
Houbolt (b90) 1950; 17
Carpenter, Gottlieb, Abarbanel, Don (b106) 1995; 16
Ellsiepen, Hartmann (b92) 2001; 51
Zienkiewicz, Chan (b1) 1989
Taylor, Green (b102) 1937; 158
R. Schussnig, T. Fries, Coupled multiphysics modeling of aortic dissection, in: World Congress in Computational Mechanics and ECCOMAS Congress, Vol. 400, 2021.
S.-H. Lee, S.-K. Youn, J.-H. Yeon, B.-N. Jiang, A Study on the Fluid-Structure Interaction Using LSFEM, in: Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, 2000, pp. 548–552.
Balzani, Deparis, Fausten, Forti, Heinlein, Klawonn, Quarteroni, Rheinbach, Schröder (b23) 2016; 32
Balzani, Heinlein, Klawonn, Rheinbach, Schröder (b24) 2023
Bazilevs, Calo, Zhang, Hughes (b21) 2006; 38
Mayr (b94) 2016
Cai, Lee, Wang (b74) 2004; 42
Gee, Küttler, Wall (b9) 2011; 85
Heys, DeGroff, Manteuffel, McCormick, Tufo (b42) 2004; 40
Abarbanel, Gottlieb, Carpenter (b107) 1996; 17
Wickert (b49) 2009
Kayser-Herold, Matthies (b37) 2007; 85
Balzani, Brands, Klawonn, Rheinbach, Schröder (b22) 2010; 80
C. Rasmussen, R. Canfield, J. Reddy, Advantages and Disadvantages of a Simultaneously Coupled Least-Squares Finite Element Formulation for Fluid-Structure Interaction, in: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008.
Grafenhorst, Rang, Hartmann (b70) 2017; 12
Langer, Yang (b8) 2018; 145
Richter (b12) 2015; 104
Hirschhorn, Tchantchaleishvili, Stevens, Rossano, Throckmorton (b28) 2020; 78
Felippa, Park (b2) 1980; 24
Igelbüscher, Schröder, Schwarz (b79) 2020; 43
Payette, Reddy (b73) 2011; 230
Raviart, Thomas (b80) 1977
Nisters (b39) 2018
Pathria (b108) 1997; 18
Hudobivnik, Korelc (b100) 2016; 111
van Zuijlen, Bijl (b67) 2005; 63
Küttler (10.1016/j.cma.2024.116783_b7) 2010; 26
Korelc (10.1016/j.cma.2024.116783_b96) 1997; 187
Kayser-Herold (10.1016/j.cma.2024.116783_b52) 2005
Bazilevs (10.1016/j.cma.2024.116783_b19) 2017; 60
Büttner (10.1016/j.cma.2024.116783_b110) 2002; 41
Hübner (10.1016/j.cma.2024.116783_b56) 2004; 193
Ellsiepen (10.1016/j.cma.2024.116783_b92) 2001; 51
Heys (10.1016/j.cma.2024.116783_b42) 2004; 40
Hairer (10.1016/j.cma.2024.116783_b104) 1989
Langer (10.1016/j.cma.2024.116783_b8) 2018; 145
Rasmussen (10.1016/j.cma.2024.116783_b46) 2009
Alonso-Mallo (10.1016/j.cma.2024.116783_b109) 2002; 91
Marino (10.1016/j.cma.2024.116783_b29) 2018; 17
Korelc (10.1016/j.cma.2024.116783_b98) 2009; 44
Gee (10.1016/j.cma.2024.116783_b9) 2011; 85
Wu (10.1016/j.cma.2024.116783_b10) 2014; 258
Bazilevs (10.1016/j.cma.2024.116783_b18) 2017; 60
Nisters (10.1016/j.cma.2024.116783_b38) 2018
Felippa (10.1016/j.cma.2024.116783_b3) 1977; 26
Terahara (10.1016/j.cma.2024.116783_b26) 2020; 65
Lai (10.1016/j.cma.2024.116783_b112) 2009; 59
Stein (10.1016/j.cma.2024.116783_b84) 2003; 70
Bazilevs (10.1016/j.cma.2024.116783_b61) 2020
Heil (10.1016/j.cma.2024.116783_b6) 2008; 43
Houbolt (10.1016/j.cma.2024.116783_b90) 1950; 17
Turek (10.1016/j.cma.2024.116783_b114) 2010
Schwarz (10.1016/j.cma.2024.116783_b78) 2014; 54
Felippa (10.1016/j.cma.2024.116783_b2) 1980; 24
Hughes (10.1016/j.cma.2024.116783_b60) 2020
Balzani (10.1016/j.cma.2024.116783_b23) 2016; 32
Heys (10.1016/j.cma.2024.116783_b41) 2004; 195
Kayser-Herold (10.1016/j.cma.2024.116783_b35) 2005; 83
Richter (10.1016/j.cma.2024.116783_b12) 2015; 104
Brezzi (10.1016/j.cma.2024.116783_b81) 1991
Gilbert (10.1016/j.cma.2024.116783_b95) 2019; 64
Neunteufel (10.1016/j.cma.2024.116783_b15) 2021; 243
Hussain (10.1016/j.cma.2024.116783_b66) 2013; 73
Balzani (10.1016/j.cma.2024.116783_b22) 2010; 80
Nisters (10.1016/j.cma.2024.116783_b39) 2018
Raviart (10.1016/j.cma.2024.116783_b80) 1977
Johnson (10.1016/j.cma.2024.116783_b83) 1994; 119
Bochev (10.1016/j.cma.2024.116783_b51) 1998; 40
Tezduyar (10.1016/j.cma.2024.116783_b58) 2010; 64
Taylor (10.1016/j.cma.2024.116783_b102) 1937; 158
Korelc (10.1016/j.cma.2024.116783_b99) 2016
Grafenhorst (10.1016/j.cma.2024.116783_b70) 2017; 12
Richter (10.1016/j.cma.2024.116783_b85) 2017
Takizawa (10.1016/j.cma.2024.116783_b86) 2020; 65
Jiang (10.1016/j.cma.2024.116783_b50) 1998
Hudobivnik (10.1016/j.cma.2024.116783_b100) 2016; 111
Bijl (10.1016/j.cma.2024.116783_b64) 2002; 179
Turek (10.1016/j.cma.2024.116783_b113) 2010
Korelc (10.1016/j.cma.2024.116783_b97) 2002; 18
Piperno (10.1016/j.cma.2024.116783_b4) 1995; 124
Cai (10.1016/j.cma.2024.116783_b77) 2003; 41
Bazilevs (10.1016/j.cma.2024.116783_b31) 2009; 198
10.1016/j.cma.2024.116783_b45
10.1016/j.cma.2024.116783_b44
10.1016/j.cma.2024.116783_b47
Heinlein (10.1016/j.cma.2024.116783_b13) 2019; 41
Burrage (10.1016/j.cma.2024.116783_b105) 1990; 27
10.1016/j.cma.2024.116783_b48
10.1016/j.cma.2024.116783_b115
Steindorf (10.1016/j.cma.2024.116783_b5) 2003
Hairer (10.1016/j.cma.2024.116783_b87) 1996
Shampine (10.1016/j.cma.2024.116783_b93) 1979; 5
Balzani (10.1016/j.cma.2024.116783_b11) 2012; 29
Donea (10.1016/j.cma.2024.116783_b72) 2004
Carpenter (10.1016/j.cma.2024.116783_b106) 1995; 16
Schussnig (10.1016/j.cma.2024.116783_b27) 2022; 260
10.1016/j.cma.2024.116783_b32
Hessenthaler (10.1016/j.cma.2024.116783_b14) 2022; 389
Failer (10.1016/j.cma.2024.116783_b71) 2018; 366
10.1016/j.cma.2024.116783_b34
10.1016/j.cma.2024.116783_b33
Kayser-Herold (10.1016/j.cma.2024.116783_b36) 2006
Heys (10.1016/j.cma.2024.116783_b43) 2006; 28
Bazilevs (10.1016/j.cma.2024.116783_b17) 2014; 21
Igelbüscher (10.1016/j.cma.2024.116783_b79) 2020; 43
Zienkiewicz (10.1016/j.cma.2024.116783_b1) 1989
Wickert (10.1016/j.cma.2024.116783_b49) 2009
Mayr (10.1016/j.cma.2024.116783_b55) 2018; 141
10.1016/j.cma.2024.116783_b101
Schwarz (10.1016/j.cma.2024.116783_b76) 2018; 8
Rang (10.1016/j.cma.2024.116783_b116) 2007
Tezduyar (10.1016/j.cma.2024.116783_b57) 2007; 54
Mayr (10.1016/j.cma.2024.116783_b54) 2015; 37
Rothe (10.1016/j.cma.2024.116783_b111) 2015; 293
Bazilevs (10.1016/j.cma.2024.116783_b20) 2020; 4
Averweg (10.1016/j.cma.2024.116783_b40) 2020; 368
Tezduyar (10.1016/j.cma.2024.116783_b82) 1992; Vol. 246
Butcher (10.1016/j.cma.2024.116783_b89) 2016
Sanderse (10.1016/j.cma.2024.116783_b103) 2012; 231
Pathria (10.1016/j.cma.2024.116783_b108) 1997; 18
von Hoegen (10.1016/j.cma.2024.116783_b30) 2019; 18
Bazilevs (10.1016/j.cma.2024.116783_b16) 2011; 65
Hirschhorn (10.1016/j.cma.2024.116783_b28) 2020; 78
Carstens (10.1016/j.cma.2024.116783_b65) 2012; 82
Hairer (10.1016/j.cma.2024.116783_b88) 2000
Cai (10.1016/j.cma.2024.116783_b74) 2004; 42
Subbaraj (10.1016/j.cma.2024.116783_b91) 1989; 32
Bochev (10.1016/j.cma.2024.116783_b53) 2009
Bazilevs (10.1016/j.cma.2024.116783_b21) 2006; 38
Tezduyar (10.1016/j.cma.2024.116783_b62) 2022
Payette (10.1016/j.cma.2024.116783_b73) 2011; 230
van Zuijlen (10.1016/j.cma.2024.116783_b67) 2005; 63
Yang (10.1016/j.cma.2024.116783_b68) 2007; 45
Mayr (10.1016/j.cma.2024.116783_b94) 2016
Balzani (10.1016/j.cma.2024.116783_b24) 2023
Sathe (10.1016/j.cma.2024.116783_b59) 2008; 43
Nisters (10.1016/j.cma.2024.116783_b75) 2018; 341
Abarbanel (10.1016/j.cma.2024.116783_b107) 1996; 17
Butcher (10.1016/j.cma.2024.116783_b63) 1987
Kayser-Herold (10.1016/j.cma.2024.116783_b37) 2007; 85
Birken (10.1016/j.cma.2024.116783_b69) 2010; 13
Hsu (10.1016/j.cma.2024.116783_b25) 2011; 47
References_xml – start-page: 371
  year: 2010
  end-page: 385
  ident: b114
  article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow
  publication-title: Fluid Structure Interaction II : Modelling, Simulation, Optimization
– volume: 41
  start-page: C291
  year: 2019
  end-page: C316
  ident: b13
  article-title: Monolithic overlapping Schwarz domain decomposition methods with GDSW coarse spaces for incompressible fluid flow problems
  publication-title: SIAM J. Sci. Comput.
– volume: 17
  start-page: 540
  year: 1950
  end-page: 550
  ident: b90
  article-title: A recurrence matrix solution for the dynamic response of elastic aircraft
  publication-title: J. Aeronaut. Sci.
– year: 2023
  ident: b24
  article-title: Comparison of arterial wall models in fluid–structure interaction simulations
  publication-title: Comput. Mech.
– volume: 26
  start-page: 305
  year: 2010
  end-page: 321
  ident: b7
  article-title: Coupling strategies for biomedical fluid - structure interaction problems
  publication-title: Int. J. Biomed. Eng.
– volume: 54
  start-page: 603
  year: 2014
  end-page: 612
  ident: b78
  article-title: Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity
  publication-title: Comput. Mech.
– volume: 45
  start-page: 138
  year: 2007
  end-page: 150
  ident: b68
  article-title: Higher-order time integration schemes for aeroelastic applications on unstructured meshes
  publication-title: AIAA J.
– volume: 28
  start-page: 495
  year: 2006
  end-page: 503
  ident: b43
  article-title: First-order system least-squares (FOSLS) for modeling blood flow
  publication-title: Med. Eng. Phys.
– volume: 65
  start-page: 236
  year: 2011
  end-page: 253
  ident: b16
  article-title: 3D simulation of wind turbine rotors at full scale. Part II: Fluid - Structure interaction modeling with composite blades
  publication-title: Internat. J. Numer. Methods Fluids
– year: 1987
  ident: b63
  article-title: The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
– start-page: 139
  year: 1989
  end-page: 176
  ident: b1
  article-title: Coupled problems and their numerical solution
  publication-title: Advances in Computational Nonlinear Mechanics
– year: 2004
  ident: b72
  article-title: Arbitrary Lagrangian–Eulerian Methods
– volume: Vol. 246
  start-page: 7
  year: 1992
  end-page: 24
  ident: b82
  article-title: Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations
  publication-title: ASME pressure vessels piping div publ pvp., NY(USA)
– volume: 38
  start-page: 310
  year: 2006
  end-page: 322
  ident: b21
  article-title: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow
  publication-title: Comput. Mech.
– volume: 32
  start-page: 1387
  year: 1989
  end-page: 1401
  ident: b91
  article-title: A survey of direct time-integration methods in computational structural dynamics II. Implicit methods
  publication-title: Comput. Struct.
– volume: 41
  start-page: 443
  year: 2002
  end-page: 458
  ident: b110
  article-title: Runge–Kutta methods in elastoplasticity
  publication-title: Appl. Numer. Math.
– reference: S. Turek, C. Becker, S. Kilian, M. Möller, S. Buijssen, D. Göddecke, M. Köster, R. Münster, H. Wobker, M. Geveler, D. Ribbrock, P. Zajac, High performance finite elements.
– volume: 16
  start-page: 1241
  year: 1995
  end-page: 1252
  ident: b106
  article-title: The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A study of the boundary error
  publication-title: SIAM J. Sci. Comput.
– volume: 17
  year: 1996
  ident: b107
  article-title: On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 195
  start-page: 560
  year: 2004
  end-page: 575
  ident: b41
  article-title: First-Order System Least-Squares (FOSLS) for coupled fluid-elastic problems
  publication-title: J. Comput. Phys.
– year: 2017
  ident: b85
  article-title: Fluid-Structure Interactions: Models, Analysis and Finite Elements
– year: 2007
  ident: b116
  article-title: Design of DIRK Schemes for Solving the Navier-Stokes Equations
– year: 2006
  ident: b36
  article-title: Least-Squares Methods for the Solution of Fluid-Structure Interaction Problems
– volume: 4
  start-page: 1
  year: 2020
  end-page: 32
  ident: b20
  article-title: Wind turbine and turbomachinery computational analysis with the ALE and space-time variational multiscale methods and isogeometric discretization
  publication-title: J. Adv. Eng. Comput.
– volume: 40
  start-page: 789
  year: 1998
  end-page: 837
  ident: b51
  article-title: Finite Element methods of least-squares type
  publication-title: SIAM Rev.
– start-page: 261
  year: 2018
  end-page: 279
  ident: b38
  publication-title: Remarks on a Fluid-Structure Interaction Scheme Based on the Least-Squares Finite Element Method at Small Strains
– start-page: 537
  year: 2022
  end-page: 544
  ident: b62
  article-title: Space–time computational FSI and flow analysis: 2004 and beyond
  publication-title: Current Trends and Open Problems in Computational Mechanics
– reference: D. Wickert, R. Canfield, Least-Squares Continuous Sensitivity Analysis of an Example Fluid-Structure Interaction Problem, in: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2008.
– volume: 37
  start-page: B30
  year: 2015
  end-page: B59
  ident: b54
  article-title: A temporal consistent monolithic approach to fluid-structure interaction enabling single field predictors
  publication-title: SIAM J. Sci. Comput.
– volume: 44
  start-page: 631
  year: 2009
  end-page: 649
  ident: b98
  article-title: Automation of primal and sensitivity analysis of transient coupled problems
  publication-title: Comput. Mech.
– volume: 18
  start-page: 312
  year: 2002
  end-page: 327
  ident: b97
  article-title: Multi-language and multi-environment generation of nonlinear finite element codes
  publication-title: Eng. Comput.
– reference: Wolfram Research Inc, Mathematica, Version 13.0.0, Champaign, IL, 2021, URL
– volume: 32
  year: 2016
  ident: b23
  article-title: Numerical modeling of fluid–structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 8
  start-page: 383
  year: 2018
  end-page: 403
  ident: b76
  article-title: Data assimilation for Navier-Stokes using the least-squares Finite-Element method
  publication-title: Int. J. Uncertain. Quantif.
– volume: 198
  start-page: 3534
  year: 2009
  end-page: 3550
  ident: b31
  article-title: Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2003
  ident: b5
  article-title: Partitionierte Verfahren für Probleme der Fluid-Struktur-Wechselwirkung
– year: 2018
  ident: b39
  article-title: Least-Squares Finite Element Methods with Applications in Fluid and Solid Mechanics
– volume: 85
  start-page: 987
  year: 2011
  end-page: 1016
  ident: b9
  article-title: Truly monolithic algebraic multigrid for fluid-structure interaction
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 64
  start-page: 1201
  year: 2010
  end-page: 1218
  ident: b58
  article-title: Space–time finite element computation of complex fluid–structure interactions
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 54
  start-page: 901
  year: 2007
  end-page: 922
  ident: b57
  article-title: Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 70
  start-page: 58
  year: 2003
  end-page: 63
  ident: b84
  article-title: Mesh moving techniques for fluid-structure interactions with large displacements
  publication-title: J. Appl. Mech.
– volume: 21
  start-page: 359
  year: 2014
  end-page: 398
  ident: b17
  article-title: Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods
  publication-title: Arch. Comput. Methods Eng.
– volume: 42
  start-page: 843
  year: 2004
  end-page: 859
  ident: b74
  article-title: Least-squares methods for incompressible Newtonian fluid flow: Linear stationary problems
  publication-title: SIAM J. Numer. Anal.
– volume: 65
  start-page: 1167
  year: 2020
  end-page: 1187
  ident: b26
  article-title: Heart valve isogeometric sequentially-coupled FSI analysis with the space–time topology change method
  publication-title: Comput. Mech.
– volume: 230
  start-page: 3265
  year: 2011
  end-page: 3613
  ident: b73
  article-title: On the roles of minimization and linearization in least-squares finite element models of nonlinear boundary-value problem
  publication-title: J. Comput. Phys.
– volume: 368
  year: 2020
  ident: b40
  article-title: Implicit time discretization schemes for mixed least-squares finite element formulations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 187
  start-page: 231
  year: 1997
  end-page: 248
  ident: b96
  article-title: Automatic generation of finite-element code by simultaneous optimization of expressions
  publication-title: Theoret. Comput. Sci.
– reference: C. Rasmussen, R. Canfield, J. Reddy, Advantages and Disadvantages of a Simultaneously Coupled Least-Squares Finite Element Formulation for Fluid-Structure Interaction, in: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008.
– volume: 193
  start-page: 2087
  year: 2004
  end-page: 2104
  ident: b56
  article-title: A monolithic approach to fluid–structure interaction using space–time finite elements
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 111
  start-page: 19
  year: 2016
  end-page: 32
  ident: b100
  article-title: Closed-form representation of matrix functions in the formulation of nonlinear material models
  publication-title: Finite Elem. Anal. Des.
– year: 2016
  ident: b89
  article-title: Numerical Methods for Ordinary Differential Equations
– volume: 60
  start-page: 101
  year: 2017
  end-page: 116
  ident: b19
  article-title: A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations
  publication-title: Comput. Mech.
– volume: 47
  start-page: 593
  year: 2011
  end-page: 599
  ident: b25
  article-title: Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulation
  publication-title: Finite Elem. Anal. Des.
– volume: 104
  start-page: 372
  year: 2015
  end-page: 390
  ident: b12
  article-title: A monolithic geometric multigrid solver for fluid-structure interactions in ALE formulation
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 43
  start-page: 51
  year: 2008
  end-page: 60
  ident: b59
  article-title: Modeling of fluid–structure interactions with the space–time finite elements: contact problems
  publication-title: Comput. Mech.
– year: 2009
  ident: b53
  article-title: Least-Squares Finite Element Methods
– volume: 40
  start-page: 193
  year: 2004
  end-page: 199
  ident: b42
  article-title: Modeling 3-D compliant blood flow with FOSLS
  publication-title: Biomed. Sci. Instrum.
– volume: 91
  start-page: 577
  year: 2002
  end-page: 603
  ident: b109
  article-title: Runge-Kutta methods without order reduction for linear initial boundary value problems
  publication-title: Numer. Math.
– volume: 59
  start-page: 905
  year: 2009
  end-page: 919
  ident: b112
  article-title: Vibration analysis of plane elasticity problems by the C0-continuous time stepping Finite Element method
  publication-title: Appl. Numer. Math.
– volume: 29
  start-page: 888
  year: 2012
  end-page: 906
  ident: b11
  article-title: Parallel simulation of patient-specific atherosclerotic arteries for the enhancement of intravascular ultrasound diagnostics
  publication-title: Eng. Comput.
– volume: 389
  year: 2022
  ident: b14
  article-title: Time-periodic steady-state solution of fluid-structure interaction and cardiac flow problems through multigrid-reduction-in-time
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 73
  start-page: 927
  year: 2013
  end-page: 952
  ident: b66
  article-title: An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 341
  start-page: 333
  year: 2018
  end-page: 359
  ident: b75
  article-title: Efficient stress-velocity least-squares finite element formulations for the incompressible Navier-Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 124
  start-page: 79
  year: 1995
  end-page: 112
  ident: b4
  article-title: Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 12
  start-page: 57
  year: 2017
  end-page: 91
  ident: b70
  article-title: Time-adaptive finite element simulations of dynamical problems for temperature-dependent materials
  publication-title: J. Mech. Mater. Struct.
– year: 2016
  ident: b94
  article-title: A Monolithic Solver for Fluid-Structure Interaction with Adaptive Time Stepping and a Hybrid Preconditioner
– reference: C. Rasmussen, R. Canfield, J. Reddy, The Least-Squares Finite Element Method Applied to Fluid-Structure Interaction Problems, in: 8th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007.
– start-page: 413
  year: 2010
  end-page: 424
  ident: b113
  article-title: Numerical benchmarking of fluid-structure interaction: A comparison of different discretization and solution approaches
  publication-title: Fluid Structure Interaction II
– volume: 17
  start-page: 1011
  year: 2018
  end-page: 1036
  ident: b29
  article-title: Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 1: micro-and nanostructure of collagen fibers
  publication-title: Biomech. Model. Mechanobiol.
– volume: 85
  start-page: 998
  year: 2007
  end-page: 1011
  ident: b37
  article-title: A unified least-squares formulation for fluid-structure interaction problems
  publication-title: Comput. Struct.
– year: 1991
  ident: b81
  article-title: Mixed and Hybrid Finite Element Methods
– volume: 41
  start-page: 715
  year: 2003
  end-page: 730
  ident: b77
  article-title: First-order system least squares for the stress-displacement formulation: Linear elasticity
  publication-title: SIAM J. Numer. Anal.
– reference: O. Kayser-Herold, H. Matthies, Space-Time Adaptive Solution of Fluid-Structure Interaction Problems, in: 2nd MIT Conference on Computational Fluid and Solid Mechanics, Amsterdam, 2003, pp. 1000–1004.
– start-page: 195
  year: 2020
  end-page: 233
  ident: b61
  article-title: ALE and space–time variational multiscale isogeometric analysis of wind turbines and turbomachinery
  publication-title: Parallel Algorithms in Computational Science and Engineering
– volume: 260
  year: 2022
  ident: b27
  article-title: Efficient split-step schemes for fluid–structure interaction involving incompressible generalised Newtonian flows
  publication-title: Comput. Struct.
– volume: 43
  year: 2020
  ident: b79
  article-title: A mixed least-squares finite element formulation with explicit consideration of the balance of moment of momentum, a numerical study
  publication-title: GAMM-Mitt.
– volume: 145
  start-page: 186
  year: 2018
  end-page: 208
  ident: b8
  article-title: Numerical simulation of fluid–structure interaction problems with hyperelastic models: A monolithic approach
  publication-title: Math. Comput. Simulation
– volume: 141
  start-page: 55
  year: 2018
  end-page: 69
  ident: b55
  article-title: Adaptive time stepping for fluid-structure interaction solvers
  publication-title: Finite Elem. Anal. Des.
– year: 2016
  ident: b99
  article-title: Automation of Finite Element Methods
– year: 2009
  ident: b49
  article-title: Least-Squares, Continuous Sensitivity Analysis for Nonlinear Fluid-Structure Interaction
– year: 1998
  ident: b50
  article-title: The Least-Squares Finite Element Method, Scientific Computation
– volume: 82
  start-page: 1007
  year: 2012
  end-page: 1039
  ident: b65
  article-title: Higher-order accurate implicit time integration schemes for transport problems
  publication-title: Arch. Appl. Mech.
– volume: 18
  start-page: 1255
  year: 1997
  end-page: 1266
  ident: b108
  article-title: The correct formulation of intermediate boundary conditions for Runge–Kutta time integration of initial boundary value problems
  publication-title: SIAM J. Sci. Comput.
– year: 2005
  ident: b52
  article-title: Least-Squares FEM, Literature Review
– volume: 179
  start-page: 313
  year: 2002
  end-page: 329
  ident: b64
  article-title: Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: Laminar flow
  publication-title: J. Comput. Phys.
– volume: 27
  start-page: 447
  year: 1990
  end-page: 456
  ident: b105
  article-title: On order reduction for Runge-Kutta methods applied to differential/algebraic systems and to stiff systems of ODEs
  publication-title: SIAM J. Numer. Anal.
– reference: D. Wickert, R. Canfield, J. Reddy, Continuous Sensitivity Analysis of Fluid-Structure Interaction Problems Using Least-Squares Finite Elements, in: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008.
– volume: 293
  start-page: 375
  year: 2015
  end-page: 410
  ident: b111
  article-title: Monolithic and partitioned coupling schemes for thermo-viscoplasticity
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 1989
  ident: b104
  article-title: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods
– start-page: 292
  year: 1977
  end-page: 315
  ident: b80
  article-title: A mixed Finite Element method for 2-nd order elliptic problems. mathematical aspects of Finite Element methods
  publication-title: Mathematical Aspects of Finite Element Methods
– volume: 26
  start-page: 95
  year: 1977
  end-page: 124
  ident: b3
  article-title: Stabilization of staggered solution procedures for fluid–structure interaction analysis
  publication-title: Comput. Methods Fluid-Struct. Interact. Probl.
– volume: 51
  start-page: 679
  year: 2001
  end-page: 707
  ident: b92
  article-title: Remarks on the interpretation of current non-linear finite element analyses as differential-algebraic equations
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 243
  year: 2021
  ident: b15
  article-title: Fluid-structure interaction with H(div)-conforming finite elements
  publication-title: Comput. Struct.
– volume: 64
  start-page: 1669
  year: 2019
  end-page: 1684
  ident: b95
  article-title: Simulating the temporal change of the active response of arteries by finite elements with high-order time-integrators
  publication-title: Comput. Mech.
– volume: 24
  start-page: 61
  year: 1980
  end-page: 111
  ident: b2
  article-title: Staggered transient analysis procedures for coupled mechanical systems: Formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 258
  start-page: 524
  year: 2014
  end-page: 537
  ident: b10
  article-title: A fully implicit domain decomposition based ALE framework for three-dimensional fluid-structure interaction with application in blood flow computation
  publication-title: J. Comput. Phys.
– volume: 80
  start-page: 479
  year: 2010
  end-page: 488
  ident: b22
  article-title: On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies
  publication-title: Arch. Appl. Mech.
– volume: 119
  start-page: 73
  year: 1994
  end-page: 94
  ident: b83
  article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 60
  start-page: 83
  year: 2017
  end-page: 100
  ident: b18
  article-title: A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations
  publication-title: Comput. Mech.
– year: 1996
  ident: b87
  article-title: Solving Ordinary Differential Equations II
– volume: 366
  start-page: 448
  year: 2018
  end-page: 477
  ident: b71
  article-title: Adaptive time-step control for nonlinear fluid–structure interaction
  publication-title: J. Comput. Phys.
– start-page: 276
  year: 2009
  ident: b46
  article-title: Least-Squares Finite Element Formulation for Fluid-Structure Interaction
– volume: 65
  year: 2020
  ident: b86
  article-title: A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state
  publication-title: Comput. Mech.
– reference: R. Schussnig, T. Fries, Coupled multiphysics modeling of aortic dissection, in: World Congress in Computational Mechanics and ECCOMAS Congress, Vol. 400, 2021.
– start-page: 151
  year: 2020
  end-page: 193
  ident: b60
  article-title: Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization
  publication-title: Parallel Algorithms in Computational Science and Engineering
– year: 2000
  ident: b88
  article-title: Solving Ordinary Differential Equations I Nonstiff Problems
– reference: .
– volume: 83
  start-page: 191
  year: 2005
  end-page: 207
  ident: b35
  article-title: Least squares finite element methods for fluid-structure interaction problems
  publication-title: Comput. Struct.
– volume: 78
  start-page: 1
  year: 2020
  end-page: 13
  ident: b28
  article-title: Fluid–structure interaction modeling in cardiovascular medicine – A systematic review 2017–2019
  publication-title: Med. Eng. Phys.
– volume: 5
  start-page: 93
  year: 1979
  end-page: 121
  ident: b93
  article-title: The art of writing a Runge-Kutta code. II
  publication-title: Appl. Math. Comput.
– volume: 158
  start-page: 499
  year: 1937
  end-page: 521
  ident: b102
  article-title: Mechanism of the production of small eddies from large ones
  publication-title: Proc. R. Soc. Lond. Ser. A
– reference: S.-H. Lee, S.-K. Youn, J.-H. Yeon, B.-N. Jiang, A Study on the Fluid-Structure Interaction Using LSFEM, in: Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, 2000, pp. 548–552.
– volume: 18
  start-page: 897
  year: 2019
  end-page: 920
  ident: b30
  article-title: Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 2: dispersed arrangement of collagen fibers
  publication-title: Biomech. Model. Mechanobiol.
– volume: 63
  start-page: e1597
  year: 2005
  end-page: e1605
  ident: b67
  article-title: A higher-order time integration algorithm for the simulation of nonlinear fluid-structure interaction
  publication-title: Nonlinear Anal. TMA
– volume: 43
  start-page: 91
  year: 2008
  end-page: 101
  ident: b6
  article-title: Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches
  publication-title: Comput. Mech.
– volume: 231
  start-page: 3041
  year: 2012
  end-page: 3063
  ident: b103
  article-title: Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations
  publication-title: J. Comput. Phys.
– volume: 13
  start-page: 331
  year: 2010
  end-page: 340
  ident: b69
  article-title: A time-adaptive fluid-structure interaction method for thermal coupling
  publication-title: Comput. Vis. Sci.
– volume: 80
  start-page: 479
  year: 2010
  ident: 10.1016/j.cma.2024.116783_b22
  article-title: On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-009-0379-x
– volume: 37
  start-page: B30
  issue: 1
  year: 2015
  ident: 10.1016/j.cma.2024.116783_b54
  article-title: A temporal consistent monolithic approach to fluid-structure interaction enabling single field predictors
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140953253
– volume: 70
  start-page: 58
  year: 2003
  ident: 10.1016/j.cma.2024.116783_b84
  article-title: Mesh moving techniques for fluid-structure interactions with large displacements
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.1530635
– volume: 260
  year: 2022
  ident: 10.1016/j.cma.2024.116783_b27
  article-title: Efficient split-step schemes for fluid–structure interaction involving incompressible generalised Newtonian flows
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2021.106718
– volume: 43
  start-page: 51
  issue: 1
  year: 2008
  ident: 10.1016/j.cma.2024.116783_b59
  article-title: Modeling of fluid–structure interactions with the space–time finite elements: contact problems
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0299-6
– volume: 65
  issue: 6
  year: 2020
  ident: 10.1016/j.cma.2024.116783_b86
  article-title: A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-020-01835-z
– volume: 230
  start-page: 3265
  year: 2011
  ident: 10.1016/j.cma.2024.116783_b73
  article-title: On the roles of minimization and linearization in least-squares finite element models of nonlinear boundary-value problem
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.02.002
– volume: 13
  start-page: 331
  issue: 7
  year: 2010
  ident: 10.1016/j.cma.2024.116783_b69
  article-title: A time-adaptive fluid-structure interaction method for thermal coupling
  publication-title: Comput. Vis. Sci.
  doi: 10.1007/s00791-010-0150-4
– volume: 366
  start-page: 448
  year: 2018
  ident: 10.1016/j.cma.2024.116783_b71
  article-title: Adaptive time-step control for nonlinear fluid–structure interaction
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.04.021
– volume: 43
  start-page: 91
  issue: 1
  year: 2008
  ident: 10.1016/j.cma.2024.116783_b6
  article-title: Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0270-6
– volume: 258
  start-page: 524
  year: 2014
  ident: 10.1016/j.cma.2024.116783_b10
  article-title: A fully implicit domain decomposition based ALE framework for three-dimensional fluid-structure interaction with application in blood flow computation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.10.046
– volume: 40
  start-page: 789
  year: 1998
  ident: 10.1016/j.cma.2024.116783_b51
  article-title: Finite Element methods of least-squares type
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144597321156
– volume: 51
  start-page: 679
  issue: 6
  year: 2001
  ident: 10.1016/j.cma.2024.116783_b92
  article-title: Remarks on the interpretation of current non-linear finite element analyses as differential-algebraic equations
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.179
– year: 2018
  ident: 10.1016/j.cma.2024.116783_b39
– year: 1991
  ident: 10.1016/j.cma.2024.116783_b81
– volume: 28
  start-page: 495
  issue: 6
  year: 2006
  ident: 10.1016/j.cma.2024.116783_b43
  article-title: First-order system least-squares (FOSLS) for modeling blood flow
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2005.10.002
– volume: 65
  start-page: 236
  year: 2011
  ident: 10.1016/j.cma.2024.116783_b16
  article-title: 3D simulation of wind turbine rotors at full scale. Part II: Fluid - Structure interaction modeling with composite blades
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.2454
– volume: 60
  start-page: 101
  issue: 1
  year: 2017
  ident: 10.1016/j.cma.2024.116783_b19
  article-title: A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-017-1395-2
– volume: 341
  start-page: 333
  year: 2018
  ident: 10.1016/j.cma.2024.116783_b75
  article-title: Efficient stress-velocity least-squares finite element formulations for the incompressible Navier-Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.01.043
– volume: 65
  start-page: 1167
  issue: 4
  year: 2020
  ident: 10.1016/j.cma.2024.116783_b26
  article-title: Heart valve isogeometric sequentially-coupled FSI analysis with the space–time topology change method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01813-0
– volume: 82
  start-page: 1007
  issue: 8
  year: 2012
  ident: 10.1016/j.cma.2024.116783_b65
  article-title: Higher-order accurate implicit time integration schemes for transport problems
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-012-0638-0
– year: 1987
  ident: 10.1016/j.cma.2024.116783_b63
– volume: 17
  year: 1996
  ident: 10.1016/j.cma.2024.116783_b107
  article-title: On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827595282520
– volume: 18
  start-page: 1255
  issn: 1064-8275
  issue: 5
  year: 1997
  ident: 10.1016/j.cma.2024.116783_b108
  article-title: The correct formulation of intermediate boundary conditions for Runge–Kutta time integration of initial boundary value problems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827594273948
– volume: 85
  start-page: 998
  year: 2007
  ident: 10.1016/j.cma.2024.116783_b37
  article-title: A unified least-squares formulation for fluid-structure interaction problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.11.019
– ident: 10.1016/j.cma.2024.116783_b101
– ident: 10.1016/j.cma.2024.116783_b33
– volume: 145
  start-page: 186
  year: 2018
  ident: 10.1016/j.cma.2024.116783_b8
  article-title: Numerical simulation of fluid–structure interaction problems with hyperelastic models: A monolithic approach
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2016.07.008
– volume: 32
  start-page: 1387
  issue: 6
  year: 1989
  ident: 10.1016/j.cma.2024.116783_b91
  article-title: A survey of direct time-integration methods in computational structural dynamics II. Implicit methods
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(89)90315-5
– year: 2016
  ident: 10.1016/j.cma.2024.116783_b94
– start-page: 413
  year: 2010
  ident: 10.1016/j.cma.2024.116783_b113
  article-title: Numerical benchmarking of fluid-structure interaction: A comparison of different discretization and solution approaches
– ident: 10.1016/j.cma.2024.116783_b48
  doi: 10.2514/6.2008-1896
– ident: 10.1016/j.cma.2024.116783_b115
– year: 2023
  ident: 10.1016/j.cma.2024.116783_b24
  article-title: Comparison of arterial wall models in fluid–structure interaction simulations
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-023-02321-y
– volume: 91
  start-page: 577
  year: 2002
  ident: 10.1016/j.cma.2024.116783_b109
  article-title: Runge-Kutta methods without order reduction for linear initial boundary value problems
  publication-title: Numer. Math.
  doi: 10.1007/s002110100332
– start-page: 537
  year: 2022
  ident: 10.1016/j.cma.2024.116783_b62
  article-title: Space–time computational FSI and flow analysis: 2004 and beyond
– volume: 44
  start-page: 631
  year: 2009
  ident: 10.1016/j.cma.2024.116783_b98
  article-title: Automation of primal and sensitivity analysis of transient coupled problems
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-009-0395-2
– year: 2016
  ident: 10.1016/j.cma.2024.116783_b89
– volume: 368
  year: 2020
  ident: 10.1016/j.cma.2024.116783_b40
  article-title: Implicit time discretization schemes for mixed least-squares finite element formulations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113111
– volume: 54
  start-page: 603
  issue: 3
  year: 2014
  ident: 10.1016/j.cma.2024.116783_b78
  article-title: Weighted overconstrained least-squares mixed finite elements for static and dynamic problems in quasi-incompressible elasticity
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-014-1009-1
– volume: 158
  start-page: 499
  issue: 895
  year: 1937
  ident: 10.1016/j.cma.2024.116783_b102
  article-title: Mechanism of the production of small eddies from large ones
  publication-title: Proc. R. Soc. Lond. Ser. A
  doi: 10.1098/rspa.1937.0036
– volume: 8
  start-page: 383
  issue: 5
  year: 2018
  ident: 10.1016/j.cma.2024.116783_b76
  article-title: Data assimilation for Navier-Stokes using the least-squares Finite-Element method
  publication-title: Int. J. Uncertain. Quantif.
  doi: 10.1615/Int.J.UncertaintyQuantification.2018021021
– year: 2006
  ident: 10.1016/j.cma.2024.116783_b36
– year: 2009
  ident: 10.1016/j.cma.2024.116783_b53
– volume: 32
  issue: 10
  year: 2016
  ident: 10.1016/j.cma.2024.116783_b23
  article-title: Numerical modeling of fluid–structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2756
– start-page: 292
  year: 1977
  ident: 10.1016/j.cma.2024.116783_b80
  article-title: A mixed Finite Element method for 2-nd order elliptic problems. mathematical aspects of Finite Element methods
– volume: 119
  start-page: 73
  issue: 1–2
  year: 1994
  ident: 10.1016/j.cma.2024.116783_b83
  article-title: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(94)00077-8
– volume: 141
  start-page: 55
  year: 2018
  ident: 10.1016/j.cma.2024.116783_b55
  article-title: Adaptive time stepping for fluid-structure interaction solvers
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2017.12.002
– volume: 85
  start-page: 987
  year: 2011
  ident: 10.1016/j.cma.2024.116783_b9
  article-title: Truly monolithic algebraic multigrid for fluid-structure interaction
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.3001
– volume: 5
  start-page: 93
  issue: 2
  year: 1979
  ident: 10.1016/j.cma.2024.116783_b93
  article-title: The art of writing a Runge-Kutta code. II
  publication-title: Appl. Math. Comput.
– volume: 83
  start-page: 191
  year: 2005
  ident: 10.1016/j.cma.2024.116783_b35
  article-title: Least squares finite element methods for fluid-structure interaction problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.08.002
– year: 2016
  ident: 10.1016/j.cma.2024.116783_b99
– volume: 231
  start-page: 3041
  year: 2012
  ident: 10.1016/j.cma.2024.116783_b103
  article-title: Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.11.028
– start-page: 261
  year: 2018
  ident: 10.1016/j.cma.2024.116783_b38
  doi: 10.1007/978-3-319-70563-7_12
– year: 2003
  ident: 10.1016/j.cma.2024.116783_b5
– volume: 124
  start-page: 79
  issue: 1
  year: 1995
  ident: 10.1016/j.cma.2024.116783_b4
  article-title: Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(95)92707-9
– volume: 64
  start-page: 1669
  issue: 6
  year: 2019
  ident: 10.1016/j.cma.2024.116783_b95
  article-title: Simulating the temporal change of the active response of arteries by finite elements with high-order time-integrators
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01744-w
– year: 2005
  ident: 10.1016/j.cma.2024.116783_b52
– volume: 24
  start-page: 61
  issue: 1
  year: 1980
  ident: 10.1016/j.cma.2024.116783_b2
  article-title: Staggered transient analysis procedures for coupled mechanical systems: Formulation
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(80)90040-7
– year: 2009
  ident: 10.1016/j.cma.2024.116783_b49
– start-page: 151
  year: 2020
  ident: 10.1016/j.cma.2024.116783_b60
  article-title: Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization
– volume: 78
  start-page: 1
  year: 2020
  ident: 10.1016/j.cma.2024.116783_b28
  article-title: Fluid–structure interaction modeling in cardiovascular medicine – A systematic review 2017–2019
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2020.01.008
– volume: 12
  start-page: 57
  year: 2017
  ident: 10.1016/j.cma.2024.116783_b70
  article-title: Time-adaptive finite element simulations of dynamical problems for temperature-dependent materials
  publication-title: J. Mech. Mater. Struct.
  doi: 10.2140/jomms.2017.12.57
– volume: 18
  start-page: 312
  issue: 4
  year: 2002
  ident: 10.1016/j.cma.2024.116783_b97
  article-title: Multi-language and multi-environment generation of nonlinear finite element codes
  publication-title: Eng. Comput.
  doi: 10.1007/s003660200028
– volume: 38
  start-page: 310
  issue: 4
  year: 2006
  ident: 10.1016/j.cma.2024.116783_b21
  article-title: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-006-0084-3
– volume: 293
  start-page: 375
  year: 2015
  ident: 10.1016/j.cma.2024.116783_b111
  article-title: Monolithic and partitioned coupling schemes for thermo-viscoplasticity
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2015.05.002
– year: 1998
  ident: 10.1016/j.cma.2024.116783_b50
– volume: 45
  start-page: 138
  issue: 1
  year: 2007
  ident: 10.1016/j.cma.2024.116783_b68
  article-title: Higher-order time integration schemes for aeroelastic applications on unstructured meshes
  publication-title: AIAA J.
  doi: 10.2514/1.22847
– volume: 42
  start-page: 843
  issue: 2
  year: 2004
  ident: 10.1016/j.cma.2024.116783_b74
  article-title: Least-squares methods for incompressible Newtonian fluid flow: Linear stationary problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142903422673
– volume: 41
  start-page: 443
  issue: 4
  year: 2002
  ident: 10.1016/j.cma.2024.116783_b110
  article-title: Runge–Kutta methods in elastoplasticity
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(01)00133-7
– volume: 179
  start-page: 313
  issue: 1
  year: 2002
  ident: 10.1016/j.cma.2024.116783_b64
  article-title: Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: Laminar flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7059
– start-page: 276
  year: 2009
  ident: 10.1016/j.cma.2024.116783_b46
– ident: 10.1016/j.cma.2024.116783_b32
  doi: 10.23967/wccm-eccomas.2020.109
– volume: 64
  start-page: 1201
  issue: 10–12
  year: 2010
  ident: 10.1016/j.cma.2024.116783_b58
  article-title: Space–time finite element computation of complex fluid–structure interactions
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.2221
– year: 2004
  ident: 10.1016/j.cma.2024.116783_b72
– volume: Vol. 246
  start-page: 7
  year: 1992
  ident: 10.1016/j.cma.2024.116783_b82
  article-title: Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations
– volume: 27
  start-page: 447
  year: 1990
  ident: 10.1016/j.cma.2024.116783_b105
  article-title: On order reduction for Runge-Kutta methods applied to differential/algebraic systems and to stiff systems of ODEs
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0727027
– volume: 17
  start-page: 1011
  year: 2018
  ident: 10.1016/j.cma.2024.116783_b29
  article-title: Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 1: micro-and nanostructure of collagen fibers
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-018-1009-8
– volume: 60
  start-page: 83
  issue: 1
  year: 2017
  ident: 10.1016/j.cma.2024.116783_b18
  article-title: A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-017-1394-3
– ident: 10.1016/j.cma.2024.116783_b47
  doi: 10.2514/6.2008-5931
– volume: 104
  start-page: 372
  issue: 5
  year: 2015
  ident: 10.1016/j.cma.2024.116783_b12
  article-title: A monolithic geometric multigrid solver for fluid-structure interactions in ALE formulation
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4943
– volume: 54
  start-page: 901
  issue: 6–8
  year: 2007
  ident: 10.1016/j.cma.2024.116783_b57
  article-title: Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.1443
– start-page: 139
  year: 1989
  ident: 10.1016/j.cma.2024.116783_b1
  article-title: Coupled problems and their numerical solution
– volume: 43
  issue: 2
  year: 2020
  ident: 10.1016/j.cma.2024.116783_b79
  article-title: A mixed least-squares finite element formulation with explicit consideration of the balance of moment of momentum, a numerical study
  publication-title: GAMM-Mitt.
  doi: 10.1002/gamm.202000009
– volume: 47
  start-page: 593
  issue: 6
  year: 2011
  ident: 10.1016/j.cma.2024.116783_b25
  article-title: Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulation
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2010.12.015
– year: 1996
  ident: 10.1016/j.cma.2024.116783_b87
– volume: 73
  start-page: 927
  issue: 11
  year: 2013
  ident: 10.1016/j.cma.2024.116783_b66
  article-title: An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.3831
– start-page: 195
  year: 2020
  ident: 10.1016/j.cma.2024.116783_b61
  article-title: ALE and space–time variational multiscale isogeometric analysis of wind turbines and turbomachinery
– year: 1989
  ident: 10.1016/j.cma.2024.116783_b104
– volume: 195
  start-page: 560
  year: 2004
  ident: 10.1016/j.cma.2024.116783_b41
  article-title: First-Order System Least-Squares (FOSLS) for coupled fluid-elastic problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.09.034
– volume: 59
  start-page: 905
  issue: 5
  year: 2009
  ident: 10.1016/j.cma.2024.116783_b112
  article-title: Vibration analysis of plane elasticity problems by the C0-continuous time stepping Finite Element method
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2008.04.001
– volume: 4
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.cma.2024.116783_b20
  article-title: Wind turbine and turbomachinery computational analysis with the ALE and space-time variational multiscale methods and isogeometric discretization
  publication-title: J. Adv. Eng. Comput.
  doi: 10.25073/jaec.202041.278
– year: 2007
  ident: 10.1016/j.cma.2024.116783_b116
– volume: 26
  start-page: 95
  year: 1977
  ident: 10.1016/j.cma.2024.116783_b3
  article-title: Stabilization of staggered solution procedures for fluid–structure interaction analysis
  publication-title: Comput. Methods Fluid-Struct. Interact. Probl.
– ident: 10.1016/j.cma.2024.116783_b45
  doi: 10.2514/6.2008-5859
– volume: 41
  start-page: C291
  issue: 4
  year: 2019
  ident: 10.1016/j.cma.2024.116783_b13
  article-title: Monolithic overlapping Schwarz domain decomposition methods with GDSW coarse spaces for incompressible fluid flow problems
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1184047
– year: 2000
  ident: 10.1016/j.cma.2024.116783_b88
– start-page: 371
  year: 2010
  ident: 10.1016/j.cma.2024.116783_b114
  article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow
– volume: 198
  start-page: 3534
  issue: 45–46
  year: 2009
  ident: 10.1016/j.cma.2024.116783_b31
  article-title: Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2009.04.015
– volume: 389
  year: 2022
  ident: 10.1016/j.cma.2024.116783_b14
  article-title: Time-periodic steady-state solution of fluid-structure interaction and cardiac flow problems through multigrid-reduction-in-time
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114368
– volume: 40
  start-page: 193
  year: 2004
  ident: 10.1016/j.cma.2024.116783_b42
  article-title: Modeling 3-D compliant blood flow with FOSLS
  publication-title: Biomed. Sci. Instrum.
– volume: 21
  start-page: 359
  issue: 4
  year: 2014
  ident: 10.1016/j.cma.2024.116783_b17
  article-title: Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-014-9119-7
– volume: 16
  start-page: 1241
  year: 1995
  ident: 10.1016/j.cma.2024.116783_b106
  article-title: The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: A study of the boundary error
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0916072
– volume: 29
  start-page: 888
  issue: 8
  year: 2012
  ident: 10.1016/j.cma.2024.116783_b11
  article-title: Parallel simulation of patient-specific atherosclerotic arteries for the enhancement of intravascular ultrasound diagnostics
  publication-title: Eng. Comput.
  doi: 10.1108/02644401211271645
– volume: 187
  start-page: 231
  issue: 1
  year: 1997
  ident: 10.1016/j.cma.2024.116783_b96
  article-title: Automatic generation of finite-element code by simultaneous optimization of expressions
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(97)00067-4
– year: 2017
  ident: 10.1016/j.cma.2024.116783_b85
– volume: 17
  start-page: 540
  issue: 9
  year: 1950
  ident: 10.1016/j.cma.2024.116783_b90
  article-title: A recurrence matrix solution for the dynamic response of elastic aircraft
  publication-title: J. Aeronaut. Sci.
  doi: 10.2514/8.1722
– volume: 243
  year: 2021
  ident: 10.1016/j.cma.2024.116783_b15
  article-title: Fluid-structure interaction with H(div)-conforming finite elements
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2020.106402
– volume: 193
  start-page: 2087
  issue: 23
  year: 2004
  ident: 10.1016/j.cma.2024.116783_b56
  article-title: A monolithic approach to fluid–structure interaction using space–time finite elements
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.01.024
– ident: 10.1016/j.cma.2024.116783_b34
  doi: 10.1016/B978-008044046-0.50340-7
– ident: 10.1016/j.cma.2024.116783_b44
  doi: 10.2514/6.2007-2407
– volume: 111
  start-page: 19
  year: 2016
  ident: 10.1016/j.cma.2024.116783_b100
  article-title: Closed-form representation of matrix functions in the formulation of nonlinear material models
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2015.12.002
– volume: 41
  start-page: 715
  year: 2003
  ident: 10.1016/j.cma.2024.116783_b77
  article-title: First-order system least squares for the stress-displacement formulation: Linear elasticity
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S003614290139696X
– volume: 63
  start-page: e1597
  issue: 5–7
  year: 2005
  ident: 10.1016/j.cma.2024.116783_b67
  article-title: A higher-order time integration algorithm for the simulation of nonlinear fluid-structure interaction
  publication-title: Nonlinear Anal. TMA
  doi: 10.1016/j.na.2005.01.054
– volume: 18
  start-page: 897
  year: 2019
  ident: 10.1016/j.cma.2024.116783_b30
  article-title: Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 2: dispersed arrangement of collagen fibers
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-019-01119-3
– volume: 26
  start-page: 305
  year: 2010
  ident: 10.1016/j.cma.2024.116783_b7
  article-title: Coupling strategies for biomedical fluid - structure interaction problems
  publication-title: Int. J. Biomed. Eng.
SSID ssj0000812
Score 2.454768
Snippet This contribution deals with the solution of a new monolithically coupled fluid–structure interaction approach using mixed least-squares (LS) stress–velocity...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116783
SubjectTerms Fluid–structure interaction
High-order time integration incompressible Navier–Stokes equations
Mixed least-squares finite elements
Monolithic coupling
Title A monolithic fluid–structure interaction approach using mixed LSFEM with high-order time integration
URI https://dx.doi.org/10.1016/j.cma.2024.116783
Volume 423
WOSCitedRecordID wos001199891800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000812
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMceBQQLQ_tgRORq9j7iH0MVSqoSoXUgnKz9mU1VepWaRuinvgP3Plx_BJmX7ZpCwIkLlZsZ9fWzOfd2dmZbxB6BTMiUYqniRbwkVNVZYnIWZFIwkSaZVJqR1b9aXe4t5dPJsWHXu9bzIVZzIZ1nS-Xxel_VTVcA2Xb1Nm_UHfTKVyA36B0OILa4fhHih_14VE2qu1wqvrV7AJeIAQ0EE8Wa7cMLEvEPJYJD7Ti_QvnNzieLsEI3d3fHr_3XlrLaJw4ik5Xib5hmIgajTwHoT5EKErt4mxFsHGPjU0wjoTQpuVAbPDm4rO95_pktrD-2naL6PCzmF_-lI1zw70tWPTXonPDxQC84dpjcsefBTqv4ObIutExzvd2Lf_Gj-eUJWDjsO54Tn0C87W5wbspjjaV45vK6KbdgvJVdK5Qbu_bfm23NsB2ABbkLbSaDVkBo-bq6N14stPO9Xnq-ejDe8R9cxdBeOVBN1s-HWvm4AG6F5YheOTh8xD1TL2G7oclCQ4D_tkautvhq3yEqhFusYUdtr5_-dqgCndQhSOqsEMVdqjCDlXYogq3qMIWVbiDqsfo4_b4YOttEgp1JIrQwXlis51JSpmSshroTIKsZEGrnGpNpSkUWOmFpsbQKuXcUMm4pGCqCq6F5EZk5AlaqU9q8xRhyz1UcM0yISi0MrkQhGiRV4oYSTlbR4MoxFIFFntbTGVWxnDFoxLkXlq5l17u6-h10-TUU7j87s80aqYMNqi3LUuA0a-bbfxbs2foTov152gF9GVeoNtqcT49m78MYPsBLcauHw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+monolithic+fluid%E2%80%93structure+interaction+approach+using+mixed+LSFEM+with+high-order+time+integration&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Averweg%2C+Solveigh&rft.au=Schwarz%2C+Alexander&rft.au=Schwarz%2C+Carina&rft.au=Schr%C3%B6der%2C+J%C3%B6rg&rft.date=2024-04-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.volume=423&rft_id=info:doi/10.1016%2Fj.cma.2024.116783&rft.externalDocID=S0045782524000392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon