DScribe: Library of descriptors for machine learning in materials science

DScribe is a software package for machine learning that provides popular feature transformations (“descriptors”) for atomistic materials simulations. DScribe accelerates the application of machine learning for atomistic property prediction by providing user-friendly, off-the-shelf descriptor impleme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications Jg. 247; S. 106949
Hauptverfasser: Himanen, Lauri, Jäger, Marc O.J., Morooka, Eiaki V., Federici Canova, Filippo, Ranawat, Yashasvi S., Gao, David Z., Rinke, Patrick, Foster, Adam S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.02.2020
Schlagworte:
ISSN:0010-4655, 1879-2944
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract DScribe is a software package for machine learning that provides popular feature transformations (“descriptors”) for atomistic materials simulations. DScribe accelerates the application of machine learning for atomistic property prediction by providing user-friendly, off-the-shelf descriptor implementations. The package currently contains implementations for Coulomb matrix, Ewald sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-centered Symmetry Function (ACSF) and Smooth Overlap of Atomic Positions (SOAP). Usage of the package is illustrated for two different applications: formation energy prediction for solids and ionic charge prediction for atoms in organic molecules. The package is freely available under the open-source Apache License 2.0. Program Title: DScribe Program Files doi:http://dx.doi.org/10.17632/vzrs8n8pk6.1 Licensing provisions: Apache-2.0 Programming language: Python/C/C++ Supplementary material: Supplementary Information as PDF Nature of problem: The application of machine learning for materials science is hindered by the lack of consistent software implementations for feature transformations. These feature transformations, also called descriptors, are a key step in building machine learning models for property prediction in materials science. Solution method: We have developed a library for creating common descriptors used in machine learning applied to materials science. We provide an implementation the following descriptors: Coulomb matrix, Ewald sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-centered Symmetry Functions (ACSF) and Smooth Overlap of Atomic Positions (SOAP). The library has a python interface with computationally intensive routines written in C or C++. The source code, tutorials and documentation are provided online. A continuous integration mechanism is set up to automatically run a series of regression tests and check code coverage when the codebase is updated.
AbstractList DScribe is a software package for machine learning that provides popular feature transformations (“descriptors”) for atomistic materials simulations. DScribe accelerates the application of machine learning for atomistic property prediction by providing user-friendly, off-the-shelf descriptor implementations. The package currently contains implementations for Coulomb matrix, Ewald sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-centered Symmetry Function (ACSF) and Smooth Overlap of Atomic Positions (SOAP). Usage of the package is illustrated for two different applications: formation energy prediction for solids and ionic charge prediction for atoms in organic molecules. The package is freely available under the open-source Apache License 2.0. Program Title: DScribe Program Files doi:http://dx.doi.org/10.17632/vzrs8n8pk6.1 Licensing provisions: Apache-2.0 Programming language: Python/C/C++ Supplementary material: Supplementary Information as PDF Nature of problem: The application of machine learning for materials science is hindered by the lack of consistent software implementations for feature transformations. These feature transformations, also called descriptors, are a key step in building machine learning models for property prediction in materials science. Solution method: We have developed a library for creating common descriptors used in machine learning applied to materials science. We provide an implementation the following descriptors: Coulomb matrix, Ewald sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-centered Symmetry Functions (ACSF) and Smooth Overlap of Atomic Positions (SOAP). The library has a python interface with computationally intensive routines written in C or C++. The source code, tutorials and documentation are provided online. A continuous integration mechanism is set up to automatically run a series of regression tests and check code coverage when the codebase is updated.
ArticleNumber 106949
Author Jäger, Marc O.J.
Federici Canova, Filippo
Himanen, Lauri
Morooka, Eiaki V.
Gao, David Z.
Rinke, Patrick
Ranawat, Yashasvi S.
Foster, Adam S.
Author_xml – sequence: 1
  givenname: Lauri
  surname: Himanen
  fullname: Himanen, Lauri
  email: lauri.himanen@aalto.fi
  organization: Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
– sequence: 2
  givenname: Marc O.J.
  surname: Jäger
  fullname: Jäger, Marc O.J.
  organization: Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
– sequence: 3
  givenname: Eiaki V.
  surname: Morooka
  fullname: Morooka, Eiaki V.
  organization: Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
– sequence: 4
  givenname: Filippo
  surname: Federici Canova
  fullname: Federici Canova, Filippo
  organization: Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
– sequence: 5
  givenname: Yashasvi S.
  orcidid: 0000-0001-7799-4267
  surname: Ranawat
  fullname: Ranawat, Yashasvi S.
  organization: Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
– sequence: 6
  givenname: David Z.
  surname: Gao
  fullname: Gao, David Z.
  organization: Nanolayers Research Computing Ltd., 1 Granville Court, Granville Road, London, N12 0HL, United Kingdom
– sequence: 7
  givenname: Patrick
  surname: Rinke
  fullname: Rinke, Patrick
  organization: Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
– sequence: 8
  givenname: Adam S.
  orcidid: 0000-0001-5371-5905
  surname: Foster
  fullname: Foster, Adam S.
  organization: Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
BookMark eNp9kM1KAzEUhYNUsK0-gLu8wNT8zaTRlVSrhYILdR3yc0dT2qQkg-Dbm9KuXHR1OQe-yzlngkYxRUDolpIZJbS728zc3s0YoarqTgl1gcZ0LlXDlBAjNCaEkkZ0bXuFJqVsCCFSKj5Gq6d3l4OFe7wONpv8i1OPPZRq7oeUC-5TxjvjvkMEvAWTY4hfOMTqDZCD2RZcXIDo4Bpd9lXCzelO0efy-WPx2qzfXlaLx3XjuCBDw71l1jtlRE8UdNRRz2xfg0MrmCJza51gHjhTVooqOJFtW9NzyXtoveJTRI9_XU6lZOj1PoddTa4p0Yct9EbXLfRhC33cojLyH-PCYIaQ4pBN2J4lH44k1Eo_AbI-1fUhgxu0T-EM_QeUU3tO
CitedBy_id crossref_primary_10_1016_j_cplett_2022_139359
crossref_primary_10_1038_s41597_020_0385_y
crossref_primary_10_1016_j_mtla_2022_101620
crossref_primary_10_1088_1361_651X_ac59d8
crossref_primary_10_1007_s00214_021_02820_2
crossref_primary_10_1016_j_jaerosci_2020_105621
crossref_primary_10_1038_s41524_021_00638_x
crossref_primary_10_1002_jcc_27346
crossref_primary_10_1039_D4SC06467D
crossref_primary_10_1021_acs_jctc_5c00449
crossref_primary_10_1080_08927022_2021_1916014
crossref_primary_10_1016_j_commatsci_2022_111612
crossref_primary_10_1016_j_jmps_2024_105927
crossref_primary_10_1021_jacs_2c02653
crossref_primary_10_1038_s41467_021_22611_4
crossref_primary_10_1021_acs_jcim_5c00665
crossref_primary_10_1063_5_0012407
crossref_primary_10_1002_adfm_202401764
crossref_primary_10_1021_acs_chemmater_5c01315
crossref_primary_10_1039_D3SC00841J
crossref_primary_10_1088_2515_7639_ac10a9
crossref_primary_10_1088_2632_2153_ad0fa5
crossref_primary_10_1038_s41467_020_19606_y
crossref_primary_10_1146_annurev_physchem_082720_034254
crossref_primary_10_1038_s41524_025_01651_0
crossref_primary_10_1038_s41524_022_00836_1
crossref_primary_10_1002_idm2_12020
crossref_primary_10_1038_s41524_024_01443_y
crossref_primary_10_1016_j_chip_2022_100033
crossref_primary_10_1039_D5DD00106D
crossref_primary_10_1002_adem_202402024
crossref_primary_10_1039_D4CP04295F
crossref_primary_10_1016_j_csbr_2024_100008
crossref_primary_10_1007_s00214_021_02795_0
crossref_primary_10_1039_D5CP01101A
crossref_primary_10_1016_j_mtcomm_2021_102462
crossref_primary_10_1016_j_jcis_2025_137827
crossref_primary_10_1016_j_jmmm_2023_171590
crossref_primary_10_1002_cphc_202400773
crossref_primary_10_1016_j_aca_2022_340558
crossref_primary_10_1016_j_matdes_2022_111162
crossref_primary_10_1016_j_actamat_2023_119465
crossref_primary_10_1016_j_commatsci_2022_111284
crossref_primary_10_1063_5_0124363
crossref_primary_10_1016_j_scriptamat_2023_115862
crossref_primary_10_1007_s11426_024_2163_1
crossref_primary_10_1088_2632_2153_ac8f1a
crossref_primary_10_1016_j_jcat_2021_02_011
crossref_primary_10_3390_computation10050074
crossref_primary_10_1016_j_resconrec_2024_107950
crossref_primary_10_1088_1361_648X_ad6bdb
crossref_primary_10_1016_j_commatsci_2024_113108
crossref_primary_10_1103_PhysRevB_106_214206
crossref_primary_10_1039_D4SC08582E
crossref_primary_10_1103_PhysRevB_105_174422
crossref_primary_10_5194_acp_25_685_2025
crossref_primary_10_1137_23M1549584
crossref_primary_10_5194_gmd_18_2701_2025
crossref_primary_10_1038_s41598_023_36336_5
crossref_primary_10_1002_wcms_70044
crossref_primary_10_1038_s41467_024_55449_7
crossref_primary_10_1038_s41570_022_00416_3
crossref_primary_10_1063_5_0282674
crossref_primary_10_1038_s41524_022_00847_y
crossref_primary_10_1088_2632_2153_abe347
crossref_primary_10_1002_adem_202001299
crossref_primary_10_1063_5_0235654
crossref_primary_10_1016_j_ijhydene_2021_06_021
crossref_primary_10_1016_j_actamat_2021_116980
crossref_primary_10_1088_2632_2153_ad9fcf
crossref_primary_10_1038_s43247_024_01450_3
crossref_primary_10_1073_pnas_2410968121
crossref_primary_10_1016_j_isci_2024_109673
crossref_primary_10_1007_s10462_024_10731_4
crossref_primary_10_1007_s11837_023_06025_9
crossref_primary_10_1063_5_0159349
crossref_primary_10_1557_s43578_023_01155_x
crossref_primary_10_1002_adfm_202515635
crossref_primary_10_1038_s41598_025_10017_x
crossref_primary_10_1038_s41524_021_00554_0
crossref_primary_10_1002_jcc_27477
crossref_primary_10_1002_wcms_1558
crossref_primary_10_1080_23746149_2025_2536269
crossref_primary_10_1002_adfm_202214271
crossref_primary_10_1038_s41524_024_01392_6
crossref_primary_10_1021_jacs_0c11261
crossref_primary_10_1038_s41524_022_00717_7
crossref_primary_10_1063_5_0187741
crossref_primary_10_1002_advs_202302816
crossref_primary_10_1038_s41524_020_00467_4
crossref_primary_10_1038_s41524_024_01249_y
crossref_primary_10_1007_s40843_024_3026_8
crossref_primary_10_1088_2515_7655_ab95f4
crossref_primary_10_1007_s40843_023_2836_0
crossref_primary_10_1016_j_triboint_2023_108381
crossref_primary_10_1038_s41467_021_27849_6
crossref_primary_10_1063_5_0156682
crossref_primary_10_1007_s40194_025_01962_2
crossref_primary_10_1002_qua_27110
crossref_primary_10_1103_PhysRevMaterials_5_035003
crossref_primary_10_1038_s41467_021_21091_w
crossref_primary_10_1038_s41524_022_00865_w
crossref_primary_10_1088_2632_2153_abc940
crossref_primary_10_1002_adfm_202411652
crossref_primary_10_1016_j_actamat_2021_117535
crossref_primary_10_1063_5_0214377
crossref_primary_10_1039_D0SC03287E
crossref_primary_10_1155_2024_2138847
crossref_primary_10_1021_acs_jctc_5c00366
crossref_primary_10_1038_s41598_023_27729_7
crossref_primary_10_1002_sstr_202200290
crossref_primary_10_1016_j_actamat_2025_120896
crossref_primary_10_1002_qua_26956
crossref_primary_10_1088_2632_2153_adfffd
crossref_primary_10_1038_s41467_020_15619_9
crossref_primary_10_1016_j_aichem_2023_100021
crossref_primary_10_1002_advs_202307261
crossref_primary_10_1016_j_mtcomm_2022_104900
crossref_primary_10_21105_joss_07954
crossref_primary_10_1021_jacs_3c13574
crossref_primary_10_1088_1674_1056_abc0e3
crossref_primary_10_1088_1361_6641_acba3d
crossref_primary_10_1103_PhysRevMaterials_9_053802
crossref_primary_10_1103_PhysRevX_11_041026
crossref_primary_10_1016_j_cossms_2024_101202
crossref_primary_10_1021_jacs_3c04030
crossref_primary_10_1088_2632_2153_ad2f52
crossref_primary_10_1088_1402_4896_ad432e
crossref_primary_10_1021_acs_chemmater_4c03028
crossref_primary_10_1038_s41524_022_00721_x
crossref_primary_10_1111_jace_20128
crossref_primary_10_1016_j_nxener_2024_100159
crossref_primary_10_1002_cphc_202300721
crossref_primary_10_1016_j_jmmm_2024_172001
crossref_primary_10_1021_acs_jcim_5c01068
crossref_primary_10_1016_j_jmst_2020_12_010
crossref_primary_10_1038_s41524_023_00967_z
crossref_primary_10_1103_PhysRevMaterials_9_043803
crossref_primary_10_1002_jcc_27043
crossref_primary_10_1002_minf_202200135
crossref_primary_10_1021_acs_jpclett_4c03487
crossref_primary_10_1039_D4QI02430C
crossref_primary_10_1021_jacs_5c03510
crossref_primary_10_1038_s41570_021_00278_1
crossref_primary_10_1002_adfm_202210374
crossref_primary_10_1088_1361_648X_ac8037
crossref_primary_10_3390_polym17172399
crossref_primary_10_1016_S1872_2067_21_63852_4
crossref_primary_10_1039_D4SC04064C
crossref_primary_10_1088_2632_2153_ac568d
crossref_primary_10_1002_adts_202300292
crossref_primary_10_1016_j_commatsci_2024_113392
crossref_primary_10_1016_j_comptc_2024_114923
crossref_primary_10_1038_s41524_019_0221_0
crossref_primary_10_1063_5_0016005
crossref_primary_10_1007_s11467_023_1325_z
crossref_primary_10_1016_j_joule_2022_06_001
crossref_primary_10_1016_j_commatsci_2024_112983
crossref_primary_10_1021_acscatal_5c02818
crossref_primary_10_1063_5_0082952
crossref_primary_10_1039_D4CP04605F
crossref_primary_10_1039_D5TA02975A
crossref_primary_10_1016_j_ccst_2025_100374
crossref_primary_10_1016_j_cjche_2020_10_044
crossref_primary_10_1002_qua_27389
crossref_primary_10_1016_j_jaerosci_2020_105733
crossref_primary_10_3390_batteries10020051
crossref_primary_10_1016_j_nima_2023_168195
crossref_primary_10_1007_s10853_023_08705_y
crossref_primary_10_1039_D5DD00007F
crossref_primary_10_1039_D0SC00049C
crossref_primary_10_1002_advs_202410065
crossref_primary_10_1016_j_jocs_2024_102437
crossref_primary_10_1038_s41524_021_00537_1
crossref_primary_10_1088_2399_6528_ad1f73
crossref_primary_10_1002_smtd_202301415
crossref_primary_10_1063_5_0160369
crossref_primary_10_1103_PhysRevB_108_014301
crossref_primary_10_1021_acs_jctc_5c00374
crossref_primary_10_1002_adfm_202304926
crossref_primary_10_1016_j_matt_2025_101958
crossref_primary_10_1063_5_0267668
crossref_primary_10_1002_sstr_202400260
crossref_primary_10_1016_j_cpc_2025_109701
crossref_primary_10_1038_s41467_024_53748_7
crossref_primary_10_1038_s41524_023_01056_x
crossref_primary_10_1360_SSC_2025_0052
crossref_primary_10_1007_s11244_021_01486_1
crossref_primary_10_1126_science_abj7943
crossref_primary_10_1515_pac_2022_0202
crossref_primary_10_1021_acscatal_5c04236
crossref_primary_10_1016_j_mtcomm_2023_107526
crossref_primary_10_1063_5_0091994
crossref_primary_10_1002_anie_202101986
crossref_primary_10_1007_s40033_024_00854_x
crossref_primary_10_1021_acs_inorgchem_5c01713
crossref_primary_10_1016_j_apmt_2023_101951
crossref_primary_10_1002_aenm_202202380
crossref_primary_10_1063_5_0189714
crossref_primary_10_1063_5_0272583
crossref_primary_10_1038_s41524_022_00734_6
crossref_primary_10_1007_s00214_021_02743_y
crossref_primary_10_1038_s41598_023_50978_5
crossref_primary_10_1088_1361_651X_ad5dd3
crossref_primary_10_1038_s41598_025_92669_3
crossref_primary_10_1016_j_fuel_2024_133999
crossref_primary_10_1002_cphc_202200940
crossref_primary_10_1038_s41524_024_01446_9
crossref_primary_10_1007_s00214_025_03219_z
crossref_primary_10_1002_qua_26870
crossref_primary_10_1038_s41524_024_01484_3
crossref_primary_10_5194_acp_21_13227_2021
crossref_primary_10_1063_5_0151122
crossref_primary_10_1063_5_0248572
crossref_primary_10_1016_j_jmgm_2024_108901
crossref_primary_10_1038_s42004_023_00936_z
crossref_primary_10_1002_adfm_202108044
crossref_primary_10_1007_s00521_022_07416_w
crossref_primary_10_1016_S1003_6326_20_65482_6
crossref_primary_10_1021_acs_jpcb_5c00532
crossref_primary_10_1039_D1SC01825F
crossref_primary_10_1038_s41524_024_01495_0
crossref_primary_10_1111_jace_19343
crossref_primary_10_3389_fenrg_2022_1031118
crossref_primary_10_1021_jacs_2c07957
crossref_primary_10_1016_j_jphotochemrev_2021_100456
crossref_primary_10_2109_jcersj2_24128
crossref_primary_10_1016_j_checat_2022_02_009
crossref_primary_10_1002_adts_202401344
crossref_primary_10_1073_pnas_2400161121
crossref_primary_10_1038_s41524_025_01749_5
crossref_primary_10_1063_5_0149804
crossref_primary_10_1021_acs_jcim_5c01262
crossref_primary_10_1134_S1027451024020393
crossref_primary_10_1038_s41467_025_57134_9
crossref_primary_10_1039_D3SC03922F
crossref_primary_10_1016_j_mtadv_2025_100583
crossref_primary_10_1038_s41524_024_01479_0
crossref_primary_10_1007_s12293_024_00414_6
crossref_primary_10_1016_j_nantod_2023_101802
crossref_primary_10_1038_s41467_021_25342_8
crossref_primary_10_1038_s41524_025_01629_y
crossref_primary_10_1088_2053_1591_acb683
crossref_primary_10_1088_2632_2153_ad9378
crossref_primary_10_1088_2632_2153_adea2d
crossref_primary_10_1007_s41061_021_00339_5
crossref_primary_10_1016_j_jcat_2025_115971
crossref_primary_10_1038_s41467_022_30820_8
crossref_primary_10_1002_jcc_26550
crossref_primary_10_1016_j_cclet_2025_111149
crossref_primary_10_1063_5_0005039
crossref_primary_10_1103_PhysRevResearch_5_013180
crossref_primary_10_1002_batt_202000262
crossref_primary_10_1016_j_triboint_2023_108893
crossref_primary_10_1039_D0SC00982B
crossref_primary_10_1002_prep_202200236
crossref_primary_10_1016_j_commatsci_2022_111789
crossref_primary_10_1038_s41598_022_19205_5
crossref_primary_10_1021_acsnano_5c04622
crossref_primary_10_1016_j_commatsci_2021_110314
crossref_primary_10_1016_j_commatsci_2021_110671
crossref_primary_10_1038_s43246_024_00545_w
crossref_primary_10_1103_783t_5xqx
crossref_primary_10_1016_j_mcat_2025_115283
crossref_primary_10_1088_2632_2153_abfd96
crossref_primary_10_1016_j_commatsci_2024_113444
crossref_primary_10_1016_j_commatsci_2024_113445
crossref_primary_10_1063_5_0013826
crossref_primary_10_1038_s41524_025_01642_1
crossref_primary_10_1039_D1SC03564A
crossref_primary_10_1103_PhysRevB_110_245105
crossref_primary_10_3390_appliedmath5020072
crossref_primary_10_1007_s40843_024_2851_9
crossref_primary_10_1039_D3SC03613H
crossref_primary_10_1557_s43577_023_00531_6
crossref_primary_10_1016_j_jcat_2025_116250
crossref_primary_10_1103_PhysRevResearch_4_033161
crossref_primary_10_20517_energymater_2025_17
crossref_primary_10_1002_pssr_202300292
crossref_primary_10_1103_PhysRevMaterials_8_115408
crossref_primary_10_1007_s10910_022_01334_x
crossref_primary_10_1016_j_chip_2023_100071
crossref_primary_10_1021_acs_jpcc_4c05568
crossref_primary_10_1038_s41929_024_01175_8
crossref_primary_10_1002_aelm_202100579
crossref_primary_10_1016_j_jpowsour_2024_234575
crossref_primary_10_1016_j_cej_2022_135946
crossref_primary_10_1039_D4SC08141B
crossref_primary_10_1002_adma_202104113
crossref_primary_10_1016_j_cossms_2025_101214
crossref_primary_10_1140_epjp_s13360_024_05348_z
crossref_primary_10_3390_nano13121853
crossref_primary_10_1063_5_0156290
crossref_primary_10_1186_s13321_022_00669_6
crossref_primary_10_1016_j_actamat_2024_120275
crossref_primary_10_1039_D0RA05014H
crossref_primary_10_3389_fenrg_2021_695902
crossref_primary_10_1038_s41524_024_01509_x
crossref_primary_10_3390_ma18122862
crossref_primary_10_1016_j_seppur_2024_130933
crossref_primary_10_1021_acs_jpcb_5c04300
crossref_primary_10_1016_j_cpc_2025_109859
crossref_primary_10_1063_5_0244175
crossref_primary_10_1007_s00894_020_04438_w
crossref_primary_10_1039_D4NR02114B
crossref_primary_10_1088_2515_7639_adb181
crossref_primary_10_1016_j_cpc_2021_108244
crossref_primary_10_1039_D2EE03499A
crossref_primary_10_1016_j_aei_2022_101593
crossref_primary_10_1038_s41524_023_01053_0
crossref_primary_10_1016_j_commatsci_2023_112192
crossref_primary_10_1016_j_mtcomm_2024_110613
crossref_primary_10_1021_acs_jctc_5c00752
crossref_primary_10_1016_j_actamat_2025_120924
crossref_primary_10_1038_s41467_020_17035_5
crossref_primary_10_1038_s42004_022_00699_z
crossref_primary_10_1039_D4CY01152J
crossref_primary_10_1039_D3SC02974C
crossref_primary_10_1016_j_compbiolchem_2022_107656
crossref_primary_10_1016_j_mtcomm_2025_113871
crossref_primary_10_1103_PhysRevLett_134_056201
crossref_primary_10_1103_PhysRevB_106_035131
crossref_primary_10_1016_j_jaerosci_2024_106375
crossref_primary_10_1021_jacs_2c11420
crossref_primary_10_1016_j_commatsci_2023_112738
crossref_primary_10_1016_j_compstruct_2025_119419
crossref_primary_10_1016_j_jallcom_2024_173788
crossref_primary_10_1063_5_0152215
crossref_primary_10_1002_adma_202305192
crossref_primary_10_1002_inf2_12315
crossref_primary_10_1038_s41524_023_01136_y
crossref_primary_10_1063_5_0214754
crossref_primary_10_1038_s42256_024_00956_x
crossref_primary_10_1063_5_0201681
crossref_primary_10_1038_s41524_025_01599_1
crossref_primary_10_3390_polym12010163
crossref_primary_10_1088_1361_651X_ad1cd1
crossref_primary_10_1016_j_apmt_2025_102627
crossref_primary_10_1038_s41524_021_00496_7
crossref_primary_10_1007_s00214_021_02766_5
crossref_primary_10_1002_adma_202306733
crossref_primary_10_1088_2632_2153_aca005
crossref_primary_10_1007_s00521_025_11425_w
crossref_primary_10_1021_acs_jpcc_5c01790
crossref_primary_10_1016_j_cpc_2021_108218
crossref_primary_10_1016_j_cej_2022_135053
crossref_primary_10_1016_j_jechem_2023_10_049
crossref_primary_10_1016_j_cej_2025_160218
crossref_primary_10_1002_ange_202101986
crossref_primary_10_1088_2632_2153_adfa66
crossref_primary_10_1103_PhysRevMaterials_6_103406
crossref_primary_10_1557_s43577_024_00817_3
crossref_primary_10_1016_j_actamat_2024_120608
crossref_primary_10_1039_D3EY00246B
crossref_primary_10_1080_23746149_2022_2093129
crossref_primary_10_1016_j_carbon_2024_119086
Cites_doi 10.1103/PhysRevLett.120.026102
10.1109/4235.585893
10.1021/acs.jpclett.9b00560
10.1038/s41586-018-0337-2
10.1063/1.4966192
10.1126/science.aau5631
10.1103/PhysRevB.96.024104
10.1063/1.3553717
10.1021/acs.jctc.7b00577
10.1021/acs.jpcc.8b09284
10.1103/PhysRevLett.120.145301
10.1002/andp.19213690304
10.1103/PhysRevLett.108.058301
10.1016/j.commatsci.2015.11.047
10.1103/PhysRevB.95.144110
10.1038/s41524-019-0175-2
10.1002/qua.24917
10.1021/acs.chemmater.7b01183
10.1021/acs.jctc.7b00521
10.1103/PhysRevLett.104.136403
10.1038/s41467-016-0015-8
10.1103/PhysRevMaterials.2.083802
10.1080/08927028808080944
10.1103/PhysRevLett.114.105503
10.1039/C6DT01501H
10.1021/acs.chemmater.9b01294
10.1007/s11837-013-0755-4
10.1103/PhysRevMaterials.2.120301
10.1039/C6SC05720A
10.1063/1.5020710
10.1002/advs.201801367
10.1016/j.commatsci.2012.10.028
10.1039/C6CP00415F
10.1063/1.4928757
10.1103/PhysRevLett.117.135502
10.1063/1.5019667
10.1038/nphys4053
10.1002/aic.16198
10.1021/acs.jctc.8b00110
10.1063/1.1747632
10.1038/s41524-018-0096-5
10.1073/pnas.1108486108
10.1103/PhysRevMaterials.2.083801
10.1038/sdata.2014.22
10.1126/sciadv.1603015
10.1016/j.cpc.2016.05.010
10.1063/1.5086105
10.1063/1.4812323
10.1063/1.5024577
10.1063/1.5019779
10.1103/PhysRevB.87.184115
10.1021/ct400626b
10.1016/j.commatsci.2018.05.018
10.1016/0010-4655(96)00016-1
10.1021/acs.jpclett.5b00831
10.1021/cm503507h
10.1021/acs.jcim.7b00663
10.1038/ncomms15679
10.1126/sciadv.1600746
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cpc.2019.106949
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
ExternalDocumentID 10_1016_j_cpc_2019_106949
S0010465519303042
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c340t-3db2bdc9a4f09e61c1d2bf201e542908bbc42de329b74bbc30755001373fe5d93
ISICitedReferencesCount 597
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503093400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
IngestDate Tue Nov 18 21:44:06 EST 2025
Sat Nov 29 07:34:30 EST 2025
Fri Feb 23 02:49:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Materials science
Descriptor
Open source
Machine learning
Python
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-3db2bdc9a4f09e61c1d2bf201e542908bbc42de329b74bbc30755001373fe5d93
ORCID 0000-0001-7799-4267
0000-0001-5371-5905
OpenAccessLink https://dx.doi.org/10.1016/j.cpc.2019.106949
ParticipantIDs crossref_primary_10_1016_j_cpc_2019_106949
crossref_citationtrail_10_1016_j_cpc_2019_106949
elsevier_sciencedirect_doi_10_1016_j_cpc_2019_106949
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Computer physics communications
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Faber, Hutchison, Huang, Gilmer, Schoenholz, Dahl, Vinyals, Kearnes, Riley, Von Lilienfeld (b41) 2017; 13
Arbabzadah, Chmiela, Müller, Tkatchenko (b30) 2017; 8
Ramakrishnan, Dral, Rupp, von Lilienfeld (b68) 2014; 1
Bartók, Kondor, Csányi (b14) 2013; 87
Ghiringhelli, Vybiral, Levchenko, Draxl, Scheffler (b28) 2015; 114
Stuke, Todorović, Rupp, Kunkel, Ghosh, Himanen, Rinke (b10) 2019; 150
Magpie: A Materials-Agnostic Platform for Informatics and Exploration, URL
Chen, Ye, Zuo, Zheng, Ong (b69) 2019; 31
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b66) 2011; 12
Hansen, Biegler, Ramakrishnan, Pronobis, Von Lilienfeld, Müller, Tkatchenko (b34) 2015; 6
Takahashi, Tanaka (b1) 2016; 45
Chowdhury, Yang, Walker, Mamun, Heyden, Terejanu (b22) 2018; 122
Ward, Dunn, Faghaninia, Zimmermann, Bajaj, Wang, Montoya, Chen, Bystrom, Dylla, Chard, Asta, Persson, Snyder, Foster, Jain (b48) 2018; 152
Jackson, Catlow (b57) 1988; 1
van der Maaten, Hinton (b65) 2008; 9
Schütt, Sauceda, Kindermans, Tkatchenko, Müller (b32) 2018; 148
Xie, Grossman (b29) 2018; 120
Nguyen, Székely, Imbalzano, Behler, Csányi, Ceriotti, Götz, Paesani (b60) 2018; 148
Gerrits, Shakouri, Behler, Kroes (b58) 2019; 10
Choudhary, DeCost, Tavazza (b40) 2018; 2
Larsen, Mortensen, Blomqvist, Castelli, Christensen, Dułak, Friis, Groves, Hammer, Hargus, Hermes, Jennings, Jensen, Kermode, Kitchin, Kolsbjerg, Kubal, Kaasbjerg, Lysgaard, Maronsson, Maxson, Olsen, Pastewka, Peterson, Rostgaard, Schiøtz, Schütt, Strange, Thygesen, Vegge, Vilhelmsen, Walter, Zeng, Jacobsen (b63) 2017; 29
Zahrt, Henle, Rose, Wang, Darrow, Denmark (b24) 2019; 363
Montavon, Hansen, Fazli, Rupp, Biegler, Ziehe, Tkatchenko, Lilienfeld, Müller (b33) 2012
Gastegger, Schwiedrzik, Bittermann, Berzsenyi, Marquetand (b35) 2018; 148
A.S. Christensen, F.A. Faber, B. Huang, L.A. Bratholm, A. Tkatchenko, K.-R. Muller, O.A. von Lilienfeld, QML: A Python Toolkit for Quantum Machine Learning, URL
QUIP and quippy documentation, URL
Ong, Richards, Jain, Hautier, Kocher, Cholia, Gunter, Chevrier, Persson, Ceder (b64) 2013; 68
Smith, Isayev, Roitberg (b12) 2017; 8
Saal, Kirklin, Aykol, Meredig, Wolverton (b67) 2013; 65
Rupp, Tkatchenko, Müller, von Lilienfeld (b9) 2012; 108
Faber, Lindmaa, Von Lilienfeld, Armiento (b37) 2016; 117
.
Haghighatlari, Vishwakarma, Altarawy, Subramanian, Kota, Sonpal, Setlur, Hachmann (b47) 2019
Toukmaji, Board (b55) 1996; 95
Löwdin (b61) 1950; 18
Jain, Ong, Hautier, Chen, Richards, Dacek, Cholia, Gunter, Skinner, Ceder, Persson (b70) 2013; 1
Todorović, Gutmann, Corander, Rinke (b27) 2019; 5
Faber, Christensen, Huang, von Lilienfeld (b38) 2018; 148
Bartók, Payne, Kondor, Csányi (b13) 2010; 104
Jacobsen, Jørgensen, Hammer (b19) 2018; 120
Faber, Lindmaa, Lilienfeld, Armiento (b7) 2015; 115
Ramakrishnan, Hartmann, Tapavicza, von Lilienfeld (b53) 2015; 143
Jäger, Morooka, Federici Canova, Himanen, Foster (b23) 2018; 4
Seko, Hayashi, Nakayama, Takahashi, Tanaka (b8) 2017; 95
J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural Message Passing for Quantum Chemistry, Proceedings of the 34th International Conference on Machine Learning, 2017, pp. 1263–1272.
Pronobis, Tkatchenko, Müller (b39) 2018; 14
Behler (b16) 2011; 134
Li, Wang, Chin, Achenie, Xin (b20) 2017; 99
Chmiela, Tkatchenko, Sauceda, Poltavsky, Schütt, Müller (b15) 2017; 3
H. Huo, M. Rupp, Unified Representation of Molecules and Crystals for Machine Learning, arXiv e-prints
Goldsmith, Esterhuizen, Liu, Bartel, Sutton (b21) 2018; 64
De, Bartók, Csányi, Ceriotti (b51) 2016; 18
Behler (b17) 2016; 145
2019.
Bleiziffer, Schaller, Riniker (b71) 2018; 58
Ward, Liu, Krishna, Hegde, Agrawal, Choudhary, Wolverton (b5) 2017; 96
M.J. Willatt, F. Musil, M. Ceriotti, A Data-Driven Construction of the Periodic Table of the Elements, arXiv e-prints
Butler, Davies, Cartwright, Isayev, Walsh (b4) 2018; 559
Kiyohara, Oda, Miyata, Mizoguchi (b25) 2016; 2
Zdeborová (b2) 2017; 13
Khorshidi, Peterson (b44) 2016; 207
Zalake, Ghosh, Narasimhan, Thomas (b26) 2017; 29
Wolpert, Macready (b49) 1997; 1
Ouyang, Curtarolo, Ahmetcik, Scheffler, Ghiringhelli (b42) 2018; 2
Isayev, Oses, Toher, Gossett, Curtarolo, Tropsha (b36) 2017; 8
Ceriotti, Tribello, Parrinello (b50) 2011; 108
Hub, de Groot, Grubmüller, Groenhof (b56) 2014; 10
Ghosh, Stuke, Todorović, Jørgensen, Schmidt, Vehtari, Rinke (b11) 2019; 6
Li, Li, Pickard, Narayanan, Sen, Chan, Sankaranarayanan, Brooks, Roux (b18) 2017; 13
Artrith, Urban (b59) 2016; 114
Gubernatis, Lookman (b3) 2018; 2
Ewald (b54) 1921; 369
Isayev, Fourches, Muratov, Oses, Rasch, Tropsha, Curtarolo (b52) 2015; 27
Bartók (10.1016/j.cpc.2019.106949_b13) 2010; 104
Ong (10.1016/j.cpc.2019.106949_b64) 2013; 68
Choudhary (10.1016/j.cpc.2019.106949_b40) 2018; 2
Ward (10.1016/j.cpc.2019.106949_b5) 2017; 96
Chowdhury (10.1016/j.cpc.2019.106949_b22) 2018; 122
Löwdin (10.1016/j.cpc.2019.106949_b61) 1950; 18
Stuke (10.1016/j.cpc.2019.106949_b10) 2019; 150
Saal (10.1016/j.cpc.2019.106949_b67) 2013; 65
Gubernatis (10.1016/j.cpc.2019.106949_b3) 2018; 2
Larsen (10.1016/j.cpc.2019.106949_b63) 2017; 29
Faber (10.1016/j.cpc.2019.106949_b7) 2015; 115
Zahrt (10.1016/j.cpc.2019.106949_b24) 2019; 363
Isayev (10.1016/j.cpc.2019.106949_b52) 2015; 27
Arbabzadah (10.1016/j.cpc.2019.106949_b30) 2017; 8
Hub (10.1016/j.cpc.2019.106949_b56) 2014; 10
Jackson (10.1016/j.cpc.2019.106949_b57) 1988; 1
Faber (10.1016/j.cpc.2019.106949_b38) 2018; 148
Ceriotti (10.1016/j.cpc.2019.106949_b50) 2011; 108
Li (10.1016/j.cpc.2019.106949_b18) 2017; 13
Ouyang (10.1016/j.cpc.2019.106949_b42) 2018; 2
Haghighatlari (10.1016/j.cpc.2019.106949_b47) 2019
Jacobsen (10.1016/j.cpc.2019.106949_b19) 2018; 120
Zalake (10.1016/j.cpc.2019.106949_b26) 2017; 29
Nguyen (10.1016/j.cpc.2019.106949_b60) 2018; 148
Pronobis (10.1016/j.cpc.2019.106949_b39) 2018; 14
Hansen (10.1016/j.cpc.2019.106949_b34) 2015; 6
Seko (10.1016/j.cpc.2019.106949_b8) 2017; 95
Behler (10.1016/j.cpc.2019.106949_b17) 2016; 145
Todorović (10.1016/j.cpc.2019.106949_b27) 2019; 5
10.1016/j.cpc.2019.106949_b43
10.1016/j.cpc.2019.106949_b45
Artrith (10.1016/j.cpc.2019.106949_b59) 2016; 114
10.1016/j.cpc.2019.106949_b46
Goldsmith (10.1016/j.cpc.2019.106949_b21) 2018; 64
Zdeborová (10.1016/j.cpc.2019.106949_b2) 2017; 13
Li (10.1016/j.cpc.2019.106949_b20) 2017; 99
Takahashi (10.1016/j.cpc.2019.106949_b1) 2016; 45
Smith (10.1016/j.cpc.2019.106949_b12) 2017; 8
Chmiela (10.1016/j.cpc.2019.106949_b15) 2017; 3
Faber (10.1016/j.cpc.2019.106949_b41) 2017; 13
Ramakrishnan (10.1016/j.cpc.2019.106949_b53) 2015; 143
Ward (10.1016/j.cpc.2019.106949_b48) 2018; 152
Schütt (10.1016/j.cpc.2019.106949_b32) 2018; 148
Ghosh (10.1016/j.cpc.2019.106949_b11) 2019; 6
Jain (10.1016/j.cpc.2019.106949_b70) 2013; 1
De (10.1016/j.cpc.2019.106949_b51) 2016; 18
van der Maaten (10.1016/j.cpc.2019.106949_b65) 2008; 9
Pedregosa (10.1016/j.cpc.2019.106949_b66) 2011; 12
Toukmaji (10.1016/j.cpc.2019.106949_b55) 1996; 95
Montavon (10.1016/j.cpc.2019.106949_b33) 2012
Wolpert (10.1016/j.cpc.2019.106949_b49) 1997; 1
10.1016/j.cpc.2019.106949_b31
Ramakrishnan (10.1016/j.cpc.2019.106949_b68) 2014; 1
Gerrits (10.1016/j.cpc.2019.106949_b58) 2019; 10
Bleiziffer (10.1016/j.cpc.2019.106949_b71) 2018; 58
Behler (10.1016/j.cpc.2019.106949_b16) 2011; 134
Faber (10.1016/j.cpc.2019.106949_b37) 2016; 117
Gastegger (10.1016/j.cpc.2019.106949_b35) 2018; 148
Ghiringhelli (10.1016/j.cpc.2019.106949_b28) 2015; 114
Jäger (10.1016/j.cpc.2019.106949_b23) 2018; 4
Xie (10.1016/j.cpc.2019.106949_b29) 2018; 120
Butler (10.1016/j.cpc.2019.106949_b4) 2018; 559
Isayev (10.1016/j.cpc.2019.106949_b36) 2017; 8
Chen (10.1016/j.cpc.2019.106949_b69) 2019; 31
Kiyohara (10.1016/j.cpc.2019.106949_b25) 2016; 2
Bartók (10.1016/j.cpc.2019.106949_b14) 2013; 87
10.1016/j.cpc.2019.106949_b6
Rupp (10.1016/j.cpc.2019.106949_b9) 2012; 108
Ewald (10.1016/j.cpc.2019.106949_b54) 1921; 369
10.1016/j.cpc.2019.106949_b62
Khorshidi (10.1016/j.cpc.2019.106949_b44) 2016; 207
References_xml – volume: 95
  start-page: 73
  year: 1996
  end-page: 92
  ident: b55
  publication-title: Comput. Phys. Comm.
– reference: J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural Message Passing for Quantum Chemistry, Proceedings of the 34th International Conference on Machine Learning, 2017, pp. 1263–1272.
– reference: , 2019.
– volume: 1
  start-page: 207
  year: 1988
  end-page: 224
  ident: b57
  publication-title: Mol. Simul.
– reference: QUIP and quippy documentation, URL
– volume: 45
  start-page: 10497
  year: 2016
  end-page: 10499
  ident: b1
  publication-title: Dalton Trans.
– volume: 5
  start-page: 35
  year: 2019
  ident: b27
  publication-title: NPJ Comput. Mater.
– volume: 27
  start-page: 735
  year: 2015
  end-page: 743
  ident: b52
  publication-title: Chem. Mater.
– volume: 13
  start-page: 5255
  year: 2017
  end-page: 5264
  ident: b41
  publication-title: J. Chem. Theory Comput.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b65
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 381
  year: 2014
  end-page: 390
  ident: b56
  publication-title: J. Chem. Theory Comput.
– volume: 114
  start-page: 135
  year: 2016
  end-page: 150
  ident: b59
  publication-title: Comput. Mater. Sci.
– volume: 6
  start-page: 1801367
  year: 2019
  ident: b11
  publication-title: Adv. Sci.
– volume: 559
  start-page: 547
  year: 2018
  end-page: 555
  ident: b4
  publication-title: Nature
– volume: 148
  start-page: 241722
  year: 2018
  ident: b32
  publication-title: J. Chem. Phys.
– volume: 58
  start-page: 579
  year: 2018
  end-page: 590
  ident: b71
  publication-title: J. Chem. Inf. Model.
– volume: 96
  start-page: 1
  year: 2017
  end-page: 12
  ident: b5
  publication-title: Phys. Rev. B
– volume: 150
  start-page: 204121
  year: 2019
  ident: b10
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 37
  year: 2018
  ident: b23
  publication-title: NPJ Comput. Mater.
– volume: 369
  start-page: 253
  year: 1921
  end-page: 287
  ident: b54
  publication-title: Ann. Phys.
– volume: 29
  start-page: 273002
  year: 2017
  ident: b63
  publication-title: J. Phys.: Condens. Matter
– volume: 13
  start-page: 4492
  year: 2017
  end-page: 4503
  ident: b18
  publication-title: J. Chem. Theory Comput.
– volume: 68
  start-page: 314
  year: 2013
  end-page: 319
  ident: b64
  publication-title: Comput. Mater. Sci.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b66
  publication-title: J. Mach. Learn. Res.
– volume: 87
  start-page: 184115
  year: 2013
  ident: b14
  publication-title: Phys. Rev. B
– volume: 148
  start-page: 241717
  year: 2018
  ident: b38
  publication-title: J. Chem. Phys.
– volume: 108
  start-page: 058301
  year: 2012
  ident: b9
  publication-title: Phys. Rev. Lett.
– reference: H. Huo, M. Rupp, Unified Representation of Molecules and Crystals for Machine Learning, arXiv e-prints
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b49
  publication-title: IEEE Trans. Evol. Comput.
– volume: 363
  start-page: eaau5631
  year: 2019
  ident: b24
  publication-title: Science
– volume: 8
  start-page: 6
  year: 2017
  end-page: 13
  ident: b30
  publication-title: Nature Commun.
– volume: 122
  start-page: 28142
  year: 2018
  end-page: 28150
  ident: b22
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 2991
  year: 2018
  end-page: 3003
  ident: b39
  publication-title: J. Chem. Theory Comput.
– volume: 1
  start-page: 140022
  year: 2014
  ident: b68
  publication-title: Sci. Data
– volume: 18
  start-page: 365
  year: 1950
  end-page: 375
  ident: b61
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 15679
  year: 2017
  ident: b36
  publication-title: Nature Commun.
– reference: A.S. Christensen, F.A. Faber, B. Huang, L.A. Bratholm, A. Tkatchenko, K.-R. Muller, O.A. von Lilienfeld, QML: A Python Toolkit for Quantum Machine Learning, URL
– volume: 8
  start-page: 3192
  year: 2017
  end-page: 3203
  ident: b12
  publication-title: Chem. Sci.
– volume: 152
  start-page: 60
  year: 2018
  end-page: 69
  ident: b48
  publication-title: Comput. Mater. Sci.
– volume: 148
  start-page: 241725
  year: 2018
  ident: b60
  publication-title: J. Chem. Phys.
– volume: 143
  start-page: 084111
  year: 2015
  ident: b53
  publication-title: J. Chem. Phys.
– volume: 207
  start-page: 310
  year: 2016
  end-page: 324
  ident: b44
  publication-title: Comput. Phys. Comm.
– volume: 108
  start-page: 13023
  year: 2011
  end-page: 13028
  ident: b50
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1
  start-page: 011002
  year: 2013
  ident: b70
  publication-title: APL Mater.
– volume: 13
  start-page: 420
  year: 2017
  end-page: 421
  ident: b2
  publication-title: Nat. Phys.
– reference: Magpie: A Materials-Agnostic Platform for Informatics and Exploration, URL
– volume: 120
  start-page: 145301
  year: 2018
  ident: b29
  publication-title: Phys. Rev. Lett.
– volume: 64
  start-page: 2311
  year: 2018
  end-page: 2323
  ident: b21
  publication-title: AIChE J.
– volume: 120
  start-page: 026102
  year: 2018
  ident: b19
  publication-title: Phys. Rev. Lett.
– volume: 65
  start-page: 1501
  year: 2013
  end-page: 1509
  ident: b67
  publication-title: JOM
– volume: 99
  start-page: 016105
  year: 2017
  ident: b20
  publication-title: J. Mater. Chem. A
– volume: 117
  start-page: 2
  year: 2016
  end-page: 7
  ident: b37
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 120301
  year: 2018
  ident: b3
  publication-title: Phys. Rev. Mater.
– volume: 10
  start-page: 1763
  year: 2019
  end-page: 1768
  ident: b58
  publication-title: J. Phys. Chem. Lett.
– volume: 18
  start-page: 13754
  year: 2016
  end-page: 13769
  ident: b51
  publication-title: Phys. Chem. Chem. Phys.
– volume: 134
  start-page: 074106
  year: 2011
  ident: b16
  publication-title: J. Chem. Phys.
– volume: 2
  year: 2016
  ident: b25
  publication-title: Sci. Adv.
– start-page: 8323271
  year: 2019
  ident: b47
  publication-title: ChemRxiv
– reference: M.J. Willatt, F. Musil, M. Ceriotti, A Data-Driven Construction of the Periodic Table of the Elements, arXiv e-prints
– reference: .
– volume: 114
  start-page: 105503
  year: 2015
  ident: b28
  publication-title: Phys. Rev. Lett.
– volume: 104
  start-page: 1
  year: 2010
  end-page: 4
  ident: b13
  publication-title: Phys. Rev. Lett.
– volume: 148
  start-page: 241709
  year: 2018
  ident: b35
  publication-title: J. Chem. Phys.
– volume: 31
  start-page: 3564
  year: 2019
  end-page: 3572
  ident: b69
  publication-title: Chem. Mater.
– volume: 29
  start-page: 7170
  year: 2017
  end-page: 7182
  ident: b26
  publication-title: Chem. Mater.
– volume: 95
  start-page: 144110
  year: 2017
  ident: b8
  publication-title: Phys. Rev. B
– volume: 115
  start-page: 1094
  year: 2015
  end-page: 1101
  ident: b7
  publication-title: Int. J. Quantum Chem.
– volume: 3
  year: 2017
  ident: b15
  publication-title: Sci. Adv.
– volume: 2
  start-page: 083802
  year: 2018
  ident: b42
  publication-title: Phys. Rev. Mater.
– volume: 145
  start-page: 170901
  year: 2016
  ident: b17
  publication-title: J. Chem. Phys.
– start-page: 440
  year: 2012
  end-page: 448
  ident: b33
  publication-title: Advances in Neural Information Processing Systems, Vol. 25
– volume: 6
  start-page: 2326
  year: 2015
  end-page: 2331
  ident: b34
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 083801
  year: 2018
  ident: b40
  publication-title: Phys. Rev. Mater.
– volume: 120
  start-page: 026102
  issue: 2
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.026102
– ident: 10.1016/j.cpc.2019.106949_b43
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.cpc.2019.106949_b49
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 10
  start-page: 1763
  year: 2019
  ident: 10.1016/j.cpc.2019.106949_b58
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00560
– volume: 559
  start-page: 547
  issue: 7715
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b4
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– volume: 145
  start-page: 170901
  issue: 17
  year: 2016
  ident: 10.1016/j.cpc.2019.106949_b17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4966192
– volume: 363
  start-page: eaau5631
  issue: 6424
  year: 2019
  ident: 10.1016/j.cpc.2019.106949_b24
  publication-title: Science
  doi: 10.1126/science.aau5631
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.cpc.2019.106949_b66
  publication-title: J. Mach. Learn. Res.
– volume: 96
  start-page: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.cpc.2019.106949_b5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.024104
– ident: 10.1016/j.cpc.2019.106949_b62
– volume: 134
  start-page: 074106
  issue: 7
  year: 2011
  ident: 10.1016/j.cpc.2019.106949_b16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3553717
– volume: 13
  start-page: 5255
  issue: 11
  year: 2017
  ident: 10.1016/j.cpc.2019.106949_b41
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00577
– volume: 122
  start-page: 28142
  issue: 49
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b22
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b09284
– volume: 120
  start-page: 145301
  issue: 14
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.145301
– volume: 369
  start-page: 253
  issue: 3
  year: 1921
  ident: 10.1016/j.cpc.2019.106949_b54
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19213690304
– volume: 108
  start-page: 058301
  year: 2012
  ident: 10.1016/j.cpc.2019.106949_b9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.058301
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.cpc.2019.106949_b65
  publication-title: J. Mach. Learn. Res.
– volume: 114
  start-page: 135
  year: 2016
  ident: 10.1016/j.cpc.2019.106949_b59
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.11.047
– volume: 95
  start-page: 144110
  issue: 14
  year: 2017
  ident: 10.1016/j.cpc.2019.106949_b8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.144110
– volume: 5
  start-page: 35
  year: 2019
  ident: 10.1016/j.cpc.2019.106949_b27
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-019-0175-2
– volume: 115
  start-page: 1094
  issue: 16
  year: 2015
  ident: 10.1016/j.cpc.2019.106949_b7
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24917
– volume: 29
  start-page: 7170
  issue: 17
  year: 2017
  ident: 10.1016/j.cpc.2019.106949_b26
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01183
– volume: 13
  start-page: 4492
  issue: 9
  year: 2017
  ident: 10.1016/j.cpc.2019.106949_b18
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00521
– volume: 104
  start-page: 1
  issue: 13
  year: 2010
  ident: 10.1016/j.cpc.2019.106949_b13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.136403
– volume: 8
  start-page: 6
  year: 2017
  ident: 10.1016/j.cpc.2019.106949_b30
  publication-title: Nature Commun.
  doi: 10.1038/s41467-016-0015-8
– volume: 2
  start-page: 083802
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b42
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.083802
– volume: 1
  start-page: 207
  issue: 4
  year: 1988
  ident: 10.1016/j.cpc.2019.106949_b57
  publication-title: Mol. Simul.
  doi: 10.1080/08927028808080944
– volume: 99
  start-page: 016105
  year: 2017
  ident: 10.1016/j.cpc.2019.106949_b20
  publication-title: J. Mater. Chem. A
– volume: 114
  start-page: 105503
  year: 2015
  ident: 10.1016/j.cpc.2019.106949_b28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.105503
– volume: 45
  start-page: 10497
  issue: 26
  year: 2016
  ident: 10.1016/j.cpc.2019.106949_b1
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT01501H
– volume: 31
  start-page: 3564
  issue: 9
  year: 2019
  ident: 10.1016/j.cpc.2019.106949_b69
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01294
– volume: 65
  start-page: 1501
  issue: 11
  year: 2013
  ident: 10.1016/j.cpc.2019.106949_b67
  publication-title: JOM
  doi: 10.1007/s11837-013-0755-4
– volume: 2
  start-page: 120301
  issue: 12
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b3
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.120301
– volume: 8
  start-page: 3192
  year: 2017
  ident: 10.1016/j.cpc.2019.106949_b12
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05720A
– volume: 148
  start-page: 241717
  issue: 24
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5020710
– volume: 6
  start-page: 1801367
  issue: 9
  year: 2019
  ident: 10.1016/j.cpc.2019.106949_b11
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801367
– volume: 68
  start-page: 314
  year: 2013
  ident: 10.1016/j.cpc.2019.106949_b64
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.10.028
– volume: 18
  start-page: 13754
  issue: 20
  year: 2016
  ident: 10.1016/j.cpc.2019.106949_b51
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP00415F
– volume: 143
  start-page: 084111
  issue: 8
  year: 2015
  ident: 10.1016/j.cpc.2019.106949_b53
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4928757
– volume: 117
  start-page: 2
  issue: 13
  year: 2016
  ident: 10.1016/j.cpc.2019.106949_b37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.135502
– volume: 148
  start-page: 241709
  issue: 24
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019667
– volume: 13
  start-page: 420
  issue: 5
  year: 2017
  ident: 10.1016/j.cpc.2019.106949_b2
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4053
– volume: 64
  start-page: 2311
  issue: 7
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b21
  publication-title: AIChE J.
  doi: 10.1002/aic.16198
– volume: 14
  start-page: 2991
  issue: 6
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b39
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00110
– volume: 18
  start-page: 365
  issue: 3
  year: 1950
  ident: 10.1016/j.cpc.2019.106949_b61
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1747632
– volume: 4
  start-page: 37
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b23
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-018-0096-5
– ident: 10.1016/j.cpc.2019.106949_b45
– volume: 108
  start-page: 13023
  issue: 32
  year: 2011
  ident: 10.1016/j.cpc.2019.106949_b50
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1108486108
– volume: 2
  start-page: 083801
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b40
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.083801
– volume: 1
  start-page: 140022
  year: 2014
  ident: 10.1016/j.cpc.2019.106949_b68
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.22
– start-page: 8323271
  year: 2019
  ident: 10.1016/j.cpc.2019.106949_b47
  publication-title: ChemRxiv
– ident: 10.1016/j.cpc.2019.106949_b31
– volume: 3
  issue: 5
  year: 2017
  ident: 10.1016/j.cpc.2019.106949_b15
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603015
– ident: 10.1016/j.cpc.2019.106949_b6
– volume: 207
  start-page: 310
  issn: 0010-4655
  year: 2016
  ident: 10.1016/j.cpc.2019.106949_b44
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2016.05.010
– volume: 150
  start-page: 204121
  issue: 20
  year: 2019
  ident: 10.1016/j.cpc.2019.106949_b10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5086105
– volume: 1
  start-page: 011002
  issue: 1
  year: 2013
  ident: 10.1016/j.cpc.2019.106949_b70
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 148
  start-page: 241725
  issue: 24
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5024577
– volume: 148
  start-page: 241722
  issue: 24
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019779
– ident: 10.1016/j.cpc.2019.106949_b46
– volume: 87
  start-page: 184115
  year: 2013
  ident: 10.1016/j.cpc.2019.106949_b14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.184115
– volume: 10
  start-page: 381
  issue: 1
  year: 2014
  ident: 10.1016/j.cpc.2019.106949_b56
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400626b
– volume: 152
  start-page: 60
  issn: 0927-0256
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b48
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.05.018
– volume: 29
  start-page: 273002
  issue: 27
  year: 2017
  ident: 10.1016/j.cpc.2019.106949_b63
  publication-title: J. Phys.: Condens. Matter
– volume: 95
  start-page: 73
  issue: 2
  year: 1996
  ident: 10.1016/j.cpc.2019.106949_b55
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/0010-4655(96)00016-1
– start-page: 440
  year: 2012
  ident: 10.1016/j.cpc.2019.106949_b33
– volume: 6
  start-page: 2326
  issue: 12
  year: 2015
  ident: 10.1016/j.cpc.2019.106949_b34
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00831
– volume: 27
  start-page: 735
  issue: 3
  year: 2015
  ident: 10.1016/j.cpc.2019.106949_b52
  publication-title: Chem. Mater.
  doi: 10.1021/cm503507h
– volume: 58
  start-page: 579
  issue: 3
  year: 2018
  ident: 10.1016/j.cpc.2019.106949_b71
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.7b00663
– volume: 8
  start-page: 15679
  year: 2017
  ident: 10.1016/j.cpc.2019.106949_b36
  publication-title: Nature Commun.
  doi: 10.1038/ncomms15679
– volume: 2
  issue: 11
  year: 2016
  ident: 10.1016/j.cpc.2019.106949_b25
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600746
SSID ssj0007793
Score 2.7175977
Snippet DScribe is a software package for machine learning that provides popular feature transformations (“descriptors”) for atomistic materials simulations. DScribe...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106949
SubjectTerms Descriptor
Machine learning
Materials science
Open source
Python
Title DScribe: Library of descriptors for machine learning in materials science
URI https://dx.doi.org/10.1016/j.cpc.2019.106949
Volume 247
WOSCitedRecordID wos000503093400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFLam0Eq9VF1VusmHnjrKKIk98bg3RAcBUilSaTW3yFtQKGRGMCB-AD-878WOJ0VQlUMvUTY7jt-X58_OWwj5qIpKCMscTFOVTLhQPFF5oRPLCwXasLC51G2yCbG_P5nN5MFgcN35wlyeiKaZXF3JxX8VNZwDYaPr7D3EHSuFE7APQoctiB22_yT4L99BEejW5Tw4JSAhtM7rB8ytg5aFp60RpeuyRrR-LUBefQOHYVzsM9cu_UNYCzlHY_SVa0lk5jv1qWq8KkOX6zpa6LR_5PmRR8hXjBDwbbQ3ivKeA4P_1RLZaQ2kdvgzXtrGcBe1qYdbChO4tmwbF4EW8_6KBUxP02j9EbQw6H6M29bXwrkPvBn0aIb-uPJWFe9XG45HZoERKDM5Wt37ZzjtG8NcND7s7NqOS6iixCpKX8UDsp6LsQT1vr65O53txRFdiBC8ObS7-zve2gneaMft_KbHWQ6fkidhskE3PUiekYFrnpNHB16AL8hugMpnGoBC5xXtAYUCUGgACu2AQuuGRqDQAJSX5Mf29HBrJwmpNRLDeLpMmNW5tkYqXqXSFZnJbK4reA2H-cvSidaG59Yx-FIFhwMYCWAqi-EpWeXGVrJXZK2ZN-41oYxzV2jumGGCQ0lpMuagy0yaaTU2fIOkXYeUJsSdx_QnJ-Wdgtggn2KRhQ-68rebedfLZXhpzwZLQMzdxd7c5xlvyeMVkN-RteXZhXtPHprLZX1-9iHA5TeWCIrN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DScribe%3A+Library+of+descriptors+for+machine+learning+in+materials+science&rft.jtitle=Computer+physics+communications&rft.au=Himanen%2C+Lauri&rft.au=J%C3%A4ger%2C+Marc+O.J.&rft.au=Morooka%2C+Eiaki+V.&rft.au=Federici+Canova%2C+Filippo&rft.date=2020-02-01&rft.issn=0010-4655&rft.volume=247&rft.spage=106949&rft_id=info:doi/10.1016%2Fj.cpc.2019.106949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2019_106949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon