Diffuse scattering on graphs

We formulate and analyze difference equations on graphs analogous to time-independent diffusion equations arising in the study of diffuse scattering in continuous media. Moreover, we show how to construct solutions in the presence of weak scatterers from the solution to the homogeneous (background p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 496; s. 1 - 35
Hlavní autoři: Gilbert, Anna C., Hoskins, Jeremy G., Schotland, John C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.05.2016
Témata:
ISSN:0024-3795, 1873-1856
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We formulate and analyze difference equations on graphs analogous to time-independent diffusion equations arising in the study of diffuse scattering in continuous media. Moreover, we show how to construct solutions in the presence of weak scatterers from the solution to the homogeneous (background problem) using Born series, providing necessary conditions for convergence and demonstrating the process through numerous examples. In addition, we outline a method for finding Green's functions for Cayley graphs for both abelian and non-abelian groups. Finally, we conclude with a discussion of the effects of sparsity on our method and results, outlining the simplifications that can be made provided that the scatterers are weak and well-separated.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2016.01.012