Modeling of Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction onto Biochar

Environmental distresses linked to heavy metal (HM) impurity in the water received significant attention among research communities. Recently, advancements in industrial sectors like paper industries, mining, non-ferrous metallurgy, electroplating, mineral paint production, etc. have resulted in mas...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemosphere (Oxford) Ročník 303; číslo Pt 2; s. 135065
Hlavní autoři: Almalawi, Abdulmohsen, Khan, Asif Irshad, Alqurashi, Fahad, Abushark, Yoosef B., Alam, Md Mottahir, Qaiyum, Sana
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.09.2022
Témata:
ISSN:0045-6535, 1879-1298, 1879-1298
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Environmental distresses linked to heavy metal (HM) impurity in the water received significant attention among research communities. Recently, advancements in industrial sectors like paper industries, mining, non-ferrous metallurgy, electroplating, mineral paint production, etc. have resulted in massive heavy metals in wastewater. In contrast to organic pollutants, HMs are not recyclable and can be simply engrossed by living organisms. Recently, different solutions have been employed for removing HMs from water and wastewater, like membrane filtration, chemical precipitation, adsorption, ion-exchange, flotation, flocculation, etc. Sorption can be considered one of the efficient solutions for eradicating HMs from waste water. With this motivation, this article concentrates on the design of Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction (RODL-HMSEP) model onto Biochar. The proposed RODL-HMSEP technique intends to determine the sorption performance of HMs of various biochar features. Initially, the density based clustering (DBSCAN) technique is applied to simulating the features of metal adsorption data and splitting them into clusters of identical features. Besides, deep belief network (DBN) model was employed for prediction and the efficiency of the DBN model is optimally adjusted with utilize of RO technique. The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods. [Display omitted] •Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction (RODL-HMSEP) model onto Biochar.•RODL-HMSEP technique aims for predicting the sorption performance of HMs of various biochar features.•The RODL-HMSEP model uses density-based clustering (DBSCAN) technique for simulating the features of metal adsorption data.•Deep belief network (DBN) model performs the next phase of data clustering.•RODL-HMSEP technique ensured promising performance on the prediction of sorption efficiency onto biochar over other methods.
AbstractList Environmental distresses linked to heavy metal (HM) impurity in the water received significant attention among research communities. Recently, advancements in industrial sectors like paper industries, mining, non-ferrous metallurgy, electroplating, mineral paint production, etc. have resulted in massive heavy metals in wastewater. In contrast to organic pollutants, HMs are not recyclable and can be simply engrossed by living organisms. Recently, different solutions have been employed for removing HMs from water and wastewater, like membrane filtration, chemical precipitation, adsorption, ion-exchange, flotation, flocculation, etc. Sorption can be considered one of the efficient solutions for eradicating HMs from waste water. With this motivation, this article concentrates on the design of Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction (RODL-HMSEP) model onto Biochar. The proposed RODL-HMSEP technique intends to determine the sorption performance of HMs of various biochar features. Initially, the density based clustering (DBSCAN) technique is applied to simulating the features of metal adsorption data and splitting them into clusters of identical features. Besides, deep belief network (DBN) model was employed for prediction and the efficiency of the DBN model is optimally adjusted with utilize of RO technique. The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods.
Environmental distresses linked to heavy metal (HM) impurity in the water received significant attention among research communities. Recently, advancements in industrial sectors like paper industries, mining, non-ferrous metallurgy, electroplating, mineral paint production, etc. have resulted in massive heavy metals in wastewater. In contrast to organic pollutants, HMs are not recyclable and can be simply engrossed by living organisms. Recently, different solutions have been employed for removing HMs from water and wastewater, like membrane filtration, chemical precipitation, adsorption, ion-exchange, flotation, flocculation, etc. Sorption can be considered one of the efficient solutions for eradicating HMs from waste water. With this motivation, this article concentrates on the design of Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction (RODL-HMSEP) model onto Biochar. The proposed RODL-HMSEP technique intends to determine the sorption performance of HMs of various biochar features. Initially, the density based clustering (DBSCAN) technique is applied to simulating the features of metal adsorption data and splitting them into clusters of identical features. Besides, deep belief network (DBN) model was employed for prediction and the efficiency of the DBN model is optimally adjusted with utilize of RO technique. The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods. [Display omitted] •Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction (RODL-HMSEP) model onto Biochar.•RODL-HMSEP technique aims for predicting the sorption performance of HMs of various biochar features.•The RODL-HMSEP model uses density-based clustering (DBSCAN) technique for simulating the features of metal adsorption data.•Deep belief network (DBN) model performs the next phase of data clustering.•RODL-HMSEP technique ensured promising performance on the prediction of sorption efficiency onto biochar over other methods.
Environmental distresses linked to heavy metal (HM) impurity in the water received significant attention among research communities. Recently, advancements in industrial sectors like paper industries, mining, non-ferrous metallurgy, electroplating, mineral paint production, etc. have resulted in massive heavy metals in wastewater. In contrast to organic pollutants, HMs are not recyclable and can be simply engrossed by living organisms. Recently, different solutions have been employed for removing HMs from water and wastewater, like membrane filtration, chemical precipitation, adsorption, ion-exchange, flotation, flocculation, etc. Sorption can be considered one of the efficient solutions for eradicating HMs from waste water. With this motivation, this article concentrates on the design of Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction (RODL-HMSEP) model onto Biochar. The proposed RODL-HMSEP technique intends to determine the sorption performance of HMs of various biochar features. Initially, the density based clustering (DBSCAN) technique is applied to simulating the features of metal adsorption data and splitting them into clusters of identical features. Besides, deep belief network (DBN) model was employed for prediction and the efficiency of the DBN model is optimally adjusted with utilize of RO technique. The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods.Environmental distresses linked to heavy metal (HM) impurity in the water received significant attention among research communities. Recently, advancements in industrial sectors like paper industries, mining, non-ferrous metallurgy, electroplating, mineral paint production, etc. have resulted in massive heavy metals in wastewater. In contrast to organic pollutants, HMs are not recyclable and can be simply engrossed by living organisms. Recently, different solutions have been employed for removing HMs from water and wastewater, like membrane filtration, chemical precipitation, adsorption, ion-exchange, flotation, flocculation, etc. Sorption can be considered one of the efficient solutions for eradicating HMs from waste water. With this motivation, this article concentrates on the design of Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction (RODL-HMSEP) model onto Biochar. The proposed RODL-HMSEP technique intends to determine the sorption performance of HMs of various biochar features. Initially, the density based clustering (DBSCAN) technique is applied to simulating the features of metal adsorption data and splitting them into clusters of identical features. Besides, deep belief network (DBN) model was employed for prediction and the efficiency of the DBN model is optimally adjusted with utilize of RO technique. The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods.
ArticleNumber 135065
Author Qaiyum, Sana
Almalawi, Abdulmohsen
Khan, Asif Irshad
Alqurashi, Fahad
Abushark, Yoosef B.
Alam, Md Mottahir
Author_xml – sequence: 1
  givenname: Abdulmohsen
  surname: Almalawi
  fullname: Almalawi, Abdulmohsen
  email: balmalowy@kau.ed.sa
  organization: Computer Science Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
– sequence: 2
  givenname: Asif Irshad
  orcidid: 0000-0003-1131-5350
  surname: Khan
  fullname: Khan, Asif Irshad
  email: aikhan@kau.edu.sa
  organization: Computer Science Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
– sequence: 3
  givenname: Fahad
  surname: Alqurashi
  fullname: Alqurashi, Fahad
  email: fahad@kau.edu.sa
  organization: Computer Science Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
– sequence: 4
  givenname: Yoosef B.
  surname: Abushark
  fullname: Abushark, Yoosef B.
  email: yabusharkh@kau.edu.sa
  organization: Computer Science Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
– sequence: 5
  givenname: Md Mottahir
  surname: Alam
  fullname: Alam, Md Mottahir
  email: amalam@kau.edu.sa
  organization: Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
– sequence: 6
  givenname: Sana
  surname: Qaiyum
  fullname: Qaiyum, Sana
  email: sqaiyum.cs@gmail.com
  organization: Center for Research in Data Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 21 32610, 22 Perak, Malaysia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35618070$$D View this record in MEDLINE/PubMed
BookMark eNqNkV2LEzEYhYOsuN3VvyDxzpupb5JmPq5Ea3WFLit-XIdM5o1NmUnGJF2pv95puwviVS9CIDznBM5zRS588EjIKwZzBqx8s52bDQ4hjRuMOOfA-ZwJCaV8QmasrpqC8aa-IDOAhSxKKeQluUppCzCFZfOMXApZshoqmJF4Gzrsnf9Jg6Vfp9Ko6d2Y3eD-6OyCp79d3tAPiCNdo47-QK68bnvs6A3q-z29xax7-i3E8civrHXGoTd7-iVi58zxNfgc6HsXzEbH5-Sp1X3CFw_3NfnxcfV9eVOs7z59Xr5bF0YsIBeC6UpWwjDGO647aKG1XANwU6NllgtjtRXYNa1smbAca81Alo2oDpGGi2vy-tQ7xvBrhymrwSWDfa89hl1SvKyknA5fnIMyXtayYRP68gHdtQN2aoxu0HGvHiedgLcnwMSQUkSrjMvHLXPUrlcM1EGi2qp_JKqDRHWSODU0_zU8fnJOdnnK4rTsvcOo0tHGZCKiyaoL7oyWv9nvvqE
CitedBy_id crossref_primary_10_3390_buildings12101677
crossref_primary_10_3390_e25030450
crossref_primary_10_1007_s10661_025_13664_9
crossref_primary_10_3390_pr11051313
crossref_primary_10_1007_s42773_024_00304_7
crossref_primary_10_1007_s11356_023_27174_z
crossref_primary_10_1016_j_chemosphere_2022_136044
crossref_primary_10_1109_TGRS_2024_3462752
Cites_doi 10.1016/j.seppur.2019.115696
10.1016/j.ijleo.2021.168545
10.1016/j.envres.2022.112694
10.3390/app12030999
10.1016/j.jtice.2021.11.001
10.1016/j.jclepro.2020.123928
10.1016/j.envres.2020.110338
10.1016/j.scitotenv.2021.149623
10.1016/j.ijleo.2022.168789
10.1016/j.jhazmat.2022.128747
10.1155/2022/9908074
10.1016/j.chemosphere.2021.130204
10.1016/j.eswa.2021.115665
10.1016/j.chemosphere.2021.132251
10.3390/w12123490
10.11591/ijai.v10.i1.pp207-214
10.3390/math10071014
10.1021/acs.est.1c02479
10.1016/j.scitotenv.2021.150554
10.1016/j.envres.2021.112574
10.1016/j.jenvman.2021.112808
10.1016/j.jhazmat.2019.06.004
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022. Published by Elsevier Ltd.
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022. Published by Elsevier Ltd.
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2022.135065
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
ExternalDocumentID 35618070
10_1016_j_chemosphere_2022_135065
S0045653522015582
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADXHL
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
9DU
AAYXX
ACLOT
CITATION
EFLBG
~HD
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c340t-31a7573c112d2ad0b0bf2a002c8ef1f23cfaf3ed9b5b13f2e8a1056937c112923
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000813058700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-6535
1879-1298
IngestDate Thu Oct 02 21:41:28 EDT 2025
Sun Sep 28 11:51:11 EDT 2025
Mon Jul 21 05:53:05 EDT 2025
Sat Nov 29 06:55:23 EST 2025
Tue Nov 18 21:50:21 EST 2025
Sat Aug 02 17:11:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Deep learning
Remora optimization algorithm
Biochar
Sorption efficiency
Heavy metals
Predictive model
Language English
License Copyright © 2022. Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-31a7573c112d2ad0b0bf2a002c8ef1f23cfaf3ed9b5b13f2e8a1056937c112923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1131-5350
PMID 35618070
PQID 2671268591
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2675567524
proquest_miscellaneous_2671268591
pubmed_primary_35618070
crossref_citationtrail_10_1016_j_chemosphere_2022_135065
crossref_primary_10_1016_j_chemosphere_2022_135065
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2022_135065
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Peng C, Xiao T, Li Z. Environmental Sciences Research in 2017.Effects of Pyrolysis Temperature on Structural Characteristics of Sludge-Based Biochar and its Heavy Metal Adsorption.
Ke, Nguyen, Bui, Bui, Choi, Zhou, Moayedi, Costache, Nguyen-Trang (bib8) 2021; 276
Hafsa, Rushd, Al-Yaari, Rahman (bib4) 2020; 12
Jia, Peng, Lang (bib7) 2021; 185
Taoufik, Boumya, Achak, Chennouk, Dewil, Barka (bib22) 2022; 807
Arulkumar (bib2) 2022; 252
Zhu, Wang, Ok (bib29) 2019; 378
Hao, Fuzhou, Feng, Xun, Junzhen, Jun, Pengcheng, Yazhi, Yongchan, Guanghui, Caishen (bib6) 2022; 2022
Yatish, Shubham, Hukkeri, Xu, Shobha, Shetty, Chala (bib24) 2021; 10
Ke, Nguyen, Bui, Bui, Nguyen-Thoi (bib9) 2021; 293
Rahmani, Mamaghani, Hashisho, Crompton, Anderson (bib18) 2022
Li, Wei, Liu, Liu, Yan, Wei, Du, Xu (bib12) 2019; 227
Li, Zhu, Li, Tong, Ok, Wang (bib13) 2021; 278
Zhang, Mao, Chen, Huang, Qiu (bib25) 2013
Zheng, Nguyen (bib28) 2022; 287
Paulraj (bib16) 2020; 12
El Hanandeh, Mahdi, Imtiaz (bib5) 2021; 192
Kooh, Thotagamuge, Chau, Mahadi, Lim (bib10) 2022; 132
Lakshmi, Akhil, Kartik, Gopinath, Arun, Bhatnagar, Rinklebe, Kim, Muthusamy (bib11) 2021; 801
Rene Beulah, Sumathy, Varalakshmi (bib19) 2022; 205
Al-Yaari, Aldhyani, Rushd (bib1) 2022; 12
Palansooriya, Li, Dissanayake, Suvarna, Li, Yuan, Sarkar, Tsang, Rinklebe, Wang, Ok (bib15) 2022
Singh, Saravanakumar, Sateesh, Anand, Singh (bib20) 2022; 257
Zhao, Fan, Li, Yang (bib27) 2022
Tan, Liu, Zeng, Wang, Hu, Gu (bib21) 2015
Yang, Huang, Zhang, Weng, Zhang, Wang (bib23) 2021; 55
Liu, Li, Jia, Qi, Abualigah (bib14) 2022; 10
Bac, Nguyen, Thao, Hanh, Duyen, Dung, Du, Hiep (bib3) 2021
Zhao, Shen, Domene, Alcaiz, Liao, Palet, Zhao, Shen, Domene, Alcaiz, Liao, Palet (bib26) 2019
Zheng (10.1016/j.chemosphere.2022.135065_bib28) 2022; 287
Hao (10.1016/j.chemosphere.2022.135065_bib6) 2022; 2022
Taoufik (10.1016/j.chemosphere.2022.135065_bib22) 2022; 807
Bac (10.1016/j.chemosphere.2022.135065_bib3) 2021
Paulraj (10.1016/j.chemosphere.2022.135065_bib16) 2020; 12
Palansooriya (10.1016/j.chemosphere.2022.135065_bib15) 2022
Tan (10.1016/j.chemosphere.2022.135065_bib21) 2015
Yang (10.1016/j.chemosphere.2022.135065_bib23) 2021; 55
Yatish (10.1016/j.chemosphere.2022.135065_bib24) 2021; 10
Kooh (10.1016/j.chemosphere.2022.135065_bib10) 2022; 132
Singh (10.1016/j.chemosphere.2022.135065_bib20) 2022; 257
El Hanandeh (10.1016/j.chemosphere.2022.135065_bib5) 2021; 192
Li (10.1016/j.chemosphere.2022.135065_bib12) 2019; 227
Ke (10.1016/j.chemosphere.2022.135065_bib8) 2021; 276
Lakshmi (10.1016/j.chemosphere.2022.135065_bib11) 2021; 801
Zhu (10.1016/j.chemosphere.2022.135065_bib29) 2019; 378
Liu (10.1016/j.chemosphere.2022.135065_bib14) 2022; 10
Rahmani (10.1016/j.chemosphere.2022.135065_bib18) 2022
Al-Yaari (10.1016/j.chemosphere.2022.135065_bib1) 2022; 12
Arulkumar (10.1016/j.chemosphere.2022.135065_bib2) 2022; 252
Zhang (10.1016/j.chemosphere.2022.135065_bib25) 2013
Hafsa (10.1016/j.chemosphere.2022.135065_bib4) 2020; 12
Ke (10.1016/j.chemosphere.2022.135065_bib9) 2021; 293
10.1016/j.chemosphere.2022.135065_bib17
Li (10.1016/j.chemosphere.2022.135065_bib13) 2021; 278
Zhao (10.1016/j.chemosphere.2022.135065_bib26) 2019
Zhao (10.1016/j.chemosphere.2022.135065_bib27) 2022
Rene Beulah (10.1016/j.chemosphere.2022.135065_bib19) 2022; 205
Jia (10.1016/j.chemosphere.2022.135065_bib7) 2021; 185
References_xml – volume: 12
  start-page: 999
  year: 2022
  ident: bib1
  article-title: Prediction of arsenic removal from contaminated water using artificial neural network model
  publication-title: Appl. Sci.
– volume: 801
  start-page: 149623
  year: 2021
  ident: bib11
  article-title: Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar
  publication-title: Sci. Total Environ.
– year: 2015
  ident: bib21
  article-title: Application of biochar for the elimination of contaminants from aqueous solutions
  publication-title: Chemosphere is a term that has been used to describe the atmosphere since the year
– year: 2013
  ident: bib25
  article-title: Pb(II) and Cr(VI) sorption by biochars pyrolyzed from municipal wastewater sludge under different heating settings
– volume: 192
  start-page: 110338
  year: 2021
  ident: bib5
  article-title: Modelling of the adsorption of Pb, Cu and Ni ions from single and multi-component aqueous solutions by date seed derived biochar: comparison of six machine learning approaches
  publication-title: Environ. Res.
– reference: Peng C, Xiao T, Li Z. Environmental Sciences Research in 2017.Effects of Pyrolysis Temperature on Structural Characteristics of Sludge-Based Biochar and its Heavy Metal Adsorption.
– start-page: 128747
  year: 2022
  ident: bib18
  article-title: Prediction of heel build-up on activated carbon using machine learning
  publication-title: J. Hazard Mater.
– year: 2019
  ident: bib26
  article-title: Biochars made from various forms of feedstock are compared to see how effective they are at removing heavy metals from multiple-metal solutions
  publication-title: Sci. Rep.
– year: 2022
  ident: bib15
  article-title: Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning
– volume: 10
  start-page: 1014
  year: 2022
  ident: bib14
  article-title: Modified remora optimization algorithm for global optimization and multilevel thresholding image segmentation
  publication-title: Mathematics
– volume: 12
  year: 2020
  ident: bib16
  article-title: An automated exploring and learning model for data prediction using balanced CA-SVM
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 293
  start-page: 112808
  year: 2021
  ident: bib9
  article-title: Prediction of the sorption efficiency of heavy metal onto biochar using a robust combination of fuzzy C-means clustering and back-propagation neural network
  publication-title: J. Environ. Manag.
– volume: 378
  start-page: 120727
  year: 2019
  ident: bib29
  article-title: The application of machine learning methods for prediction of metal sorption onto biochars
  publication-title: J. Hazard Mater.
– volume: 12
  start-page: 3490
  year: 2020
  ident: bib4
  article-title: A generalized method for modeling the adsorption of heavy metals with machine learning algorithms
  publication-title: Water
– volume: 185
  start-page: 115665
  year: 2021
  ident: bib7
  article-title: Remora optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 807
  start-page: 150554
  year: 2022
  ident: bib22
  article-title: The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning
  publication-title: Sci. Total Environ.
– volume: 55
  start-page: 14316
  year: 2021
  end-page: 14328
  ident: bib23
  article-title: Predicting heavy metal adsorption on soil with machine learning and mapping global distribution of soil adsorption capacities
  publication-title: Environ. Sci. Technol.
– volume: 10
  start-page: 207
  year: 2021
  ident: bib24
  article-title: Massively scalable density based clustering (DBSCAN) on the HPCC systems big data platform
  publication-title: IAES Int. J. Artif. Intell.
– volume: 252
  start-page: 168545
  year: 2022
  ident: bib2
  article-title: Nilesh Shelke, an efficient low complexity compression based optimal homomorphic encryption for secure fiber optic communication
  publication-title: Optik
– volume: 257
  year: 2022
  ident: bib20
  article-title: Artificial intelligence based quality of transmission predictive model for cognitive optical networks
  publication-title: Optik
– start-page: 1
  year: 2021
  end-page: 16
  ident: bib3
  article-title: Estimating heavy metals absorption efficiency in an aqueous solution using nanotube-type halloysite from weathered pegmatites and a novel Harris hawks optimization-based multiple layers perceptron neural network
  publication-title: Eng. Comput.
– volume: 276
  start-page: 130204
  year: 2021
  ident: bib8
  article-title: Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models
  publication-title: Chemosphere
– volume: 205
  start-page: 112574
  year: 2022
  ident: bib19
  article-title: IoT enabled environmental toxicology for air pollution monitoring using AI techniques
  publication-title: Environ. Res.
– volume: 2022
  year: 2022
  ident: bib6
  article-title: Gear fault detection in a planetary gearbox using deep belief network
  publication-title: Math. Probl Eng.
– volume: 227
  start-page: 115696
  year: 2019
  ident: bib12
  article-title: EDTA functionalized magnetic biochar for Pb (II) removal: adsorption performance, mechanism and SVM model prediction
  publication-title: Separ. Purif. Technol.
– volume: 278
  start-page: 123928
  year: 2021
  ident: bib13
  article-title: Multi-task prediction and optimization of hydrochar properties from high-moisture municipal solid waste: application of machine learning on waste-to-resource
  publication-title: J. Clean. Prod.
– volume: 287
  start-page: 132251
  year: 2022
  ident: bib28
  article-title: A novel artificial intelligent model for predicting water treatment efficiency of various biochar systems based on artificial neural network and queuing search algorithm
  publication-title: Chemosphere
– volume: 132
  start-page: 104134
  year: 2022
  ident: bib10
  article-title: Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of methylene blue
  publication-title: J. Taiwan Inst. Chem. Eng.
– start-page: 112694
  year: 2022
  ident: bib27
  article-title: Application of machine learning in predicting the adsorption capacity of organic compounds onto biochar and resin
  publication-title: Environ. Res.
– volume: 227
  start-page: 115696
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135065_bib12
  article-title: EDTA functionalized magnetic biochar for Pb (II) removal: adsorption performance, mechanism and SVM model prediction
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115696
– volume: 252
  start-page: 168545
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135065_bib2
  article-title: Nilesh Shelke, an efficient low complexity compression based optimal homomorphic encryption for secure fiber optic communication
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.168545
– start-page: 112694
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135065_bib27
  article-title: Application of machine learning in predicting the adsorption capacity of organic compounds onto biochar and resin
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.112694
– start-page: 1
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135065_bib3
  article-title: Estimating heavy metals absorption efficiency in an aqueous solution using nanotube-type halloysite from weathered pegmatites and a novel Harris hawks optimization-based multiple layers perceptron neural network
  publication-title: Eng. Comput.
– ident: 10.1016/j.chemosphere.2022.135065_bib17
– year: 2015
  ident: 10.1016/j.chemosphere.2022.135065_bib21
  article-title: Application of biochar for the elimination of contaminants from aqueous solutions
– volume: 12
  start-page: 999
  issue: 3
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135065_bib1
  article-title: Prediction of arsenic removal from contaminated water using artificial neural network model
  publication-title: Appl. Sci.
  doi: 10.3390/app12030999
– volume: 132
  start-page: 104134
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135065_bib10
  article-title: Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of methylene blue
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2021.11.001
– volume: 278
  start-page: 123928
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135065_bib13
  article-title: Multi-task prediction and optimization of hydrochar properties from high-moisture municipal solid waste: application of machine learning on waste-to-resource
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.123928
– volume: 192
  start-page: 110338
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135065_bib5
  article-title: Modelling of the adsorption of Pb, Cu and Ni ions from single and multi-component aqueous solutions by date seed derived biochar: comparison of six machine learning approaches
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.110338
– volume: 801
  start-page: 149623
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135065_bib11
  article-title: Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149623
– volume: 257
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135065_bib20
  article-title: Artificial intelligence based quality of transmission predictive model for cognitive optical networks
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.168789
– start-page: 128747
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135065_bib18
  article-title: Prediction of heel build-up on activated carbon using machine learning
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2022.128747
– year: 2013
  ident: 10.1016/j.chemosphere.2022.135065_bib25
– volume: 2022
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135065_bib6
  article-title: Gear fault detection in a planetary gearbox using deep belief network
  publication-title: Math. Probl Eng.
  doi: 10.1155/2022/9908074
– volume: 276
  start-page: 130204
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135065_bib8
  article-title: Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130204
– volume: 185
  start-page: 115665
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135065_bib7
  article-title: Remora optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115665
– year: 2022
  ident: 10.1016/j.chemosphere.2022.135065_bib15
– volume: 287
  start-page: 132251
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135065_bib28
  article-title: A novel artificial intelligent model for predicting water treatment efficiency of various biochar systems based on artificial neural network and queuing search algorithm
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132251
– volume: 12
  start-page: 3490
  issue: 12
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135065_bib4
  article-title: A generalized method for modeling the adsorption of heavy metals with machine learning algorithms
  publication-title: Water
  doi: 10.3390/w12123490
– volume: 10
  start-page: 207
  issue: 1
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135065_bib24
  article-title: Massively scalable density based clustering (DBSCAN) on the HPCC systems big data platform
  publication-title: IAES Int. J. Artif. Intell.
  doi: 10.11591/ijai.v10.i1.pp207-214
– volume: 10
  start-page: 1014
  issue: 7
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135065_bib14
  article-title: Modified remora optimization algorithm for global optimization and multilevel thresholding image segmentation
  publication-title: Mathematics
  doi: 10.3390/math10071014
– volume: 55
  start-page: 14316
  issue: 20
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135065_bib23
  article-title: Predicting heavy metal adsorption on soil with machine learning and mapping global distribution of soil adsorption capacities
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c02479
– year: 2019
  ident: 10.1016/j.chemosphere.2022.135065_bib26
  article-title: Biochars made from various forms of feedstock are compared to see how effective they are at removing heavy metals from multiple-metal solutions
  publication-title: Sci. Rep.
– volume: 807
  start-page: 150554
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135065_bib22
  article-title: The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150554
– volume: 205
  start-page: 112574
  year: 2022
  ident: 10.1016/j.chemosphere.2022.135065_bib19
  article-title: IoT enabled environmental toxicology for air pollution monitoring using AI techniques
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.112574
– volume: 293
  start-page: 112808
  year: 2021
  ident: 10.1016/j.chemosphere.2022.135065_bib9
  article-title: Prediction of the sorption efficiency of heavy metal onto biochar using a robust combination of fuzzy C-means clustering and back-propagation neural network
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112808
– volume: 378
  start-page: 120727
  year: 2019
  ident: 10.1016/j.chemosphere.2022.135065_bib29
  article-title: The application of machine learning methods for prediction of metal sorption onto biochars
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2019.06.004
– volume: 12
  issue: 5
  year: 2020
  ident: 10.1016/j.chemosphere.2022.135065_bib16
  article-title: An automated exploring and learning model for data prediction using balanced CA-SVM
  publication-title: J. Ambient Intell. Hum. Comput.
SSID ssj0001659
Score 2.4453995
Snippet Environmental distresses linked to heavy metal (HM) impurity in the water received significant attention among research communities. Recently, advancements in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135065
SubjectTerms adsorption
Biochar
chemical precipitation
Deep learning
flocculation
Heavy metals
ion exchange
metallurgy
microfiltration
motivation
prediction
Predictive model
Remora optimization algorithm
Sorption efficiency
wastewater
Title Modeling of Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction onto Biochar
URI https://dx.doi.org/10.1016/j.chemosphere.2022.135065
https://www.ncbi.nlm.nih.gov/pubmed/35618070
https://www.proquest.com/docview/2671268591
https://www.proquest.com/docview/2675567524
Volume 303
WOSCitedRecordID wos000813058700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1298
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001659
  issn: 0045-6535
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9pAEF4R0telatMXfUQbqeoFgfDaxrbUC00dNW1KUEskcrLW9rokMjaxgSY_rf-usy_sqqWihx4wyHixtfOx-83uzHwIvU5M0-qxOO64oc0lzKjXoYSCzxMlxI4MZlErFmITznDoTibeqNH4oXNhVqmTZe71tTf_r6aGc2Bsnjr7D-Ze_yicgM9gdDiC2eG4leG5ulmqYpm_8Dha2j6FcWGmEi7lyut7xua6tuq3ti8SqGKek7S6aX9mPEHya17I0cQXRSZEhuao4Ns6kmNmQFrfXeQ8a6tOcHkBgrzktQoEeZX5iPXlhnRGU_pdxBAMwniZzvJpWaWjfZrKBVnot6R9XJRTGlctr5YFl34SfJvWvwmXcKGM-T7P85IlSktarWaAI6zDtfQA7DpcnkEqU3fZH86pUdvsmTV4jhZtUhuGDdPuSQmK32YIuVhx2Y2q7ujyB-lWbX6tyj08DY7OTk6CsT8Zv5lfdbhgGd_YV-otO2iXOLbnNtHu4NiffFzTAKMvlPrWD38HHVTBhRvuvokcbXJ-BAkaP0D3lfeCBxJ1D1GDZXvo7qEWDdxDt31RBf3mESo0DnGeYIlDXMch5jjEHIdY4xArHGKBQyxwiDUOcYVDXOEQcxxihcPH6OzIHx9-6CiBj04EI8QC5n_q2I4ZAeePCY17YS9MCIU5OnJZYiTEjBKamCz2Qjs0zIQwl4I70AdGzZuAa_IENbM8Y88Q7jPgxTQGfyG2rMg2XC-yrJiGbgIMGd5byNU9G0Sq-j0XYUkDHeZ4GdSMEnCjBNIoLUTWTeeyBMw2jd5q8wWKy0qOGgAQt2l-oE0egAX5Jh7NWL4sA9J3DNLnVSf_eo1tw4tYLfRU4mX95CY4TC7M88-3uMMLdK_6j75EzUWxZK_QrWi1uCiLfbTjTNx9BfufTlPmvQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+Remora+Optimization+with+Deep+Learning+Enabled+Heavy+Metal+Sorption+Efficiency+Prediction+onto+Biochar&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Almalawi%2C+Abdulmohsen&rft.au=Khan%2C+Asif+Irshad&rft.au=Alqurashi%2C+Fahad&rft.au=Abushark%2C+Yoosef+B&rft.date=2022-09-01&rft.issn=1879-1298&rft.eissn=1879-1298&rft.volume=303&rft.issue=Pt+2&rft.spage=135065&rft_id=info:doi/10.1016%2Fj.chemosphere.2022.135065&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon