Robust and efficient FISTA-based method for moving object detection under background movements

Moving object detection is a fundamental task in many video processing applications, such as video surveillance. The robustness and efficiency of background subtraction make it one of the most common methods for detecting moving objects from a video stream. However, adapting background models with m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 294; s. 111765
Hlavní autoři: Amoozegar, Maryam, Akbarizadeh, Masoumeh, Bouwmans, Thierry
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 21.06.2024
Elsevier
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Moving object detection is a fundamental task in many video processing applications, such as video surveillance. The robustness and efficiency of background subtraction make it one of the most common methods for detecting moving objects from a video stream. However, adapting background models with moving cameras remains challenging. Major issues include maintaining the model given viewpoint alterations and compensating motions considering depth variations. Moreover, gradual illumination changes, dynamic backgrounds, and complex motions intensify over time in moving camera scenarios, further complicating background model maintenance. In this context, this paper proposes a novel Robust and Online Tensor-based model named ROTAB that incorporates a more implicit consideration of the relationship between sequential frames than the previous methods, allowing for better adaptation to background changes. Moreover, we propose an Improved version of FISTA named IFISTA that employs two strategies to reduce oscillatory behavior and minimize iterations, improving stability and efficiency. Practically, the combination of IFISTA and ROTAB (IFISTA-ROTAB) demonstrates suitable performance for real-time applications. Quantitative and qualitative experiments are conducted on three large-scale datasets, namely CDnet 2014, BMC 2012 and LASIESTA showing the superiority of IFISTA-ROTAB with a gain from two up to seven percent in average.
AbstractList Moving object detection is a fundamental task in many video processing applications, such as video surveillance. The robustness and efficiency of background subtraction make it one of the most common methods for detecting moving objects from a video stream. However, adapting background models with moving cameras remains challenging. Major issues include maintaining the model given viewpoint alterations and compensating motions considering depth variations. Moreover, gradual illumination changes, dynamic backgrounds, and complex motions intensify over time in moving camera scenarios, further complicating background model maintenance. In this context, this paper proposes a novel Robust and Online Tensor-based model named ROTAB that incorporates a more implicit consideration of the relationship between sequential frames than the previous methods, allowing for better adaptation to background changes. Moreover, we propose an Improved version of FISTA named IFISTA that employs two strategies to reduce oscillatory behavior and minimize iterations, improving stability and efficiency. Practically, the combination of IFISTA and ROTAB (IFISTA-ROTAB) demonstrates suitable performance for real-time applications. Quantitative and qualitative experiments are conducted on three large-scale datasets, namely CDnet 2014, BMC 2012 and LASIESTA showing the superiority of IFISTA-ROTAB with a gain from two up to seven percent in average.
Moving object detection is a fundamental task in many video processing applications, such as video surveillance. The robustness and efficiency of background subtraction make it one of the most common methods for detecting moving objects from a video stream. However, adapting background models with moving cameras remains challenging. Main issues include maintaining the model given viewpoint alterations and compensating motions considering depth variations. Moreover, gradual illumination changes, dynamic backgrounds, and complex motions intensify over time in moving camera scenarios, further complicating background model maintenance. In this context, this paper proposes a novel Robust and Online Tensor-based model named ROTAB that incorporates a more implicit consideration of the relationship between sequential frames than the previous methods, allowing for better adaptation to background changes. Moreover, we propose an Improved version of FISTA named IFISTA that employs two strategies to reduce oscillatory behavior and minimize iterations, improving stability and efficiency. Practically, the combination of IFISTA and ROTAB (IFISTA-ROTAB) demonstrates suitable performance for real-time applications. Quantitative and qualitative experiments are conducted on three large-scale datasets, namely CDnet 2014, BMC 2012 and LASIESTA showing the superiority of IFISTA-ROTAB with a gain from two up to seven percent in average.
ArticleNumber 111765
Author Akbarizadeh, Masoumeh
Amoozegar, Maryam
Bouwmans, Thierry
Author_xml – sequence: 1
  givenname: Maryam
  orcidid: 0000-0001-7161-8623
  surname: Amoozegar
  fullname: Amoozegar, Maryam
  email: moozegar@kgut.ac.ir
  organization: Department of Computer and Information Technology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
– sequence: 2
  givenname: Masoumeh
  surname: Akbarizadeh
  fullname: Akbarizadeh, Masoumeh
  email: masoumeh.akbarizadeh@gmail.com
  organization: Department of Mathematics, Iran University of Science and Technology. Narmak, Tehran 16846-13114, Iran
– sequence: 3
  givenname: Thierry
  orcidid: 0000-0003-4018-8856
  surname: Bouwmans
  fullname: Bouwmans, Thierry
  email: thierry.bouwmans@univ-lr.fr
  organization: Laboratoire MIA at La Rochelle Universite, France
BackLink https://hal.science/hal-04536897$$DView record in HAL
BookMark eNqFkE1LAzEQhoNUsFX_gYdcPWydZDebXQ9CKVYLBcGPqyGbndTUdiPJtuC_d5cVDx70NMzwPi_MMyGjxjdIyAWDKQOWX22m742Pn3HKgWdTxpjMxREZs0LyRGZQjsgYSgGJBMFOyCTGDQBwzooxeX301T62VDc1RWudcdi0dLF8ep4llY5Y0x22b76m1ge68wfXrKmvNmhaWmPbDecbum9qDLTS5n0dfLf0Qdx1RfGMHFu9jXj-PU_Jy-L2eX6frB7ulvPZKjFpBm3CMQUtkBthRYVVjpKbykCR1dxCt6ecoSyFAG5zzLO8KExpUynLimeFTHV6Si6H3je9VR_B7XT4VF47dT9bqf4GmUjzopQH1mWzIWuCjzGg_QEYqN6n2qjBp-p9qsFnh13_woxrdf9_G7Tb_gffDDB2Eg4Og4q9aYO1C51EVXv3d8EXfxOWQA
CitedBy_id crossref_primary_10_1088_1538_3873_adb334
crossref_primary_10_1016_j_aej_2025_05_082
crossref_primary_10_3390_fluids10080196
crossref_primary_10_1109_TIFS_2024_3447237
crossref_primary_10_1016_j_cviu_2025_104290
crossref_primary_10_1016_j_dsp_2025_105049
crossref_primary_10_1109_TNNLS_2024_3519213
Cites_doi 10.1016/j.neucom.2018.11.030
10.1109/ICIP.2012.6467087
10.1007/s11263-022-01600-0
10.1007/s11042-021-10701-w
10.1016/j.neunet.2019.04.024
10.1109/TCSVT.2021.3066675
10.1137/21M1395685
10.1561/2200000016
10.1109/TIP.2021.3122102
10.1109/TPAMI.2012.132
10.1109/TAI.2024.3373388
10.1109/ICIP.2015.7350856
10.1109/JSTSP.2018.2876626
10.1137/07070111X
10.1016/j.cosrev.2019.100204
10.1109/TPAMI.2019.2891760
10.1137/080716542
10.1109/TNNLS.2021.3073248
10.1109/MSP.2018.2826566
10.1007/s10915-022-01789-9
10.1137/050626090
10.1109/TIP.2020.3037472
10.1137/23M1574282
10.1109/TIP.2019.2923376
10.1109/ACCESS.2022.3186364
10.1016/j.cviu.2016.08.005
10.1109/ACCESS.2021.3071163
10.1109/ICIP40778.2020.9190887
10.1109/ICME.2017.8019397
10.1016/j.patcog.2017.09.040
10.1109/JSAIT.2020.3040365
10.1109/ICASSP.2015.7178735
10.1049/iet-ipr.2018.6095
10.1007/s10107-016-1034-2
10.1109/TCSVT.2021.3129503
10.1109/JSTSP.2018.2869111
10.1109/ICCV.2013.419
10.1007/s10044-019-00845-9
10.1007/s00138-013-0555-4
10.1016/j.neucom.2022.06.104
10.1109/ICASSP39728.2021.9413554
10.1109/TSP.2015.2417491
10.1109/TNSM.2016.2598788
10.1109/TCSVT.2021.3055539
10.1109/TIP.2016.2627803
10.1109/ICIP46576.2022.9897894
10.1007/978-3-030-81638-4_3
10.1016/j.cosrev.2018.03.001
10.1109/ICCVW.2015.125
10.1007/978-3-642-37410-4_25
10.1109/ACCESS.2021.3123975
10.1109/TCSVT.2021.3088130
10.1016/j.knosys.2022.110198
10.1109/TSP.2013.2282910
10.1016/j.patcog.2017.09.009
10.1016/j.imavis.2014.02.015
10.1109/TIP.2017.2699483
10.1109/CVPR.2012.6247848
10.1109/TPAMI.2017.2745573
10.1109/TIT.2018.2872023
10.1109/CVPRW.2014.126
10.1109/TSP.2021.3066795
10.1007/978-981-16-6328-4_81
10.1109/TITS.2021.3077883
10.1109/34.868684
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.knosys.2024.111765
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID oai:HAL:hal-04536897v1
10_1016_j_knosys_2024_111765
S0950705124004003
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
~HD
1XC
ID FETCH-LOGICAL-c340t-2e30a5e2c5f5beb6e72cbc084d2f0eb6321e795502f6e64688c9f3779b24873a3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001229883000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Tue Oct 14 20:38:15 EDT 2025
Sat Nov 29 01:33:39 EST 2025
Tue Nov 18 22:18:31 EST 2025
Sat May 11 15:32:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Fast iterative Shrinkage-Thresholding algorithm
Background subtraction
Moving object detection
Online learning
Robust PCA
Foreground Detection
Background Subtraction
Background Modeling
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-2e30a5e2c5f5beb6e72cbc084d2f0eb6321e795502f6e64688c9f3779b24873a3
ORCID 0000-0003-4018-8856
0000-0001-7161-8623
ParticipantIDs hal_primary_oai_HAL_hal_04536897v1
crossref_primary_10_1016_j_knosys_2024_111765
crossref_citationtrail_10_1016_j_knosys_2024_111765
elsevier_sciencedirect_doi_10_1016_j_knosys_2024_111765
PublicationCentury 2000
PublicationDate 2024-06-21
PublicationDateYYYYMMDD 2024-06-21
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-21
  day: 21
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References C. Guyon, T. Bouwmans, E. Zahzah, Foreground detection based on low-rank and block-sparse matrix decomposition, in: IEEE International Conference on Image Processing, 2012, pp. 1225–1228.
Vaswani, Bouwmans, Javed, Narayanamurthy (b16) 2018; 35
Zhang, Zhang, Zhang, Duan, Li, Pan (b12) 2021; 30
Bouwmans (b20) 2016
Zhao, Wang, He, Jiang (b5) 2022; 503
Zhang, Yang, Wang, Luo (b39) 2023; 261
Djerida, Zhao, Zhao (b75) 2020; 14
Garcia-Garcia, Bouwmans, Silva (b1) 2020; 35
Salut, Anderson (b17) 2022; 10
Ma, Wu, Yu, Yang (b45) 2022; 33
Zhou, Yang, Yu (b49) 2012; 35
Subudhi, Veerakumar, Jakhetiya, Esakkirajan (b38) 2022
H. Fu, Z. Ma, B. Zhao, Z. Yang, Y. Jiang, M. Zhu, Lightweight Convolutional Neural Network for Foreground Segmentation, in: Chinese Intelligent Systems Conference, 2021, pp. 811–819.
Chapel, Bouwmans (b4) 2020; 38
Wang, Zhao, Zhang, Wang, Li (b23) 2022; 32
J. Xu, V.K. Ithapu, L. Mukherjee, J.M. Rehg, V. Singh, GOSUS: Grassmannian online subspace updates with structured-sparsity, in: IEEE International Conference on Computer Vision, 2013, pp. 3376–3383.
Gao, Li, Lu (b76) 2021; 31
Bouwmans, Javed, Sultana, Jung (b44) 2019; 117
Xue, Zhao, Huang, Liao, Chan, Kong (b34) 2021; 33
Boyd, Parikh, Chu, Peleato, Eckstein (b65) 2010; 3
Hou, Liu, Ling, Liu, Ren (b9) 2021; 9
L.T. Thanh, K. Abed-Meraim, N. Trung, A. Hafiane, A fast randomized adaptive CP decomposition for streaming tensors, in: IEEE International Conference on Acoustics, Speech and Signal Processing, 2021.
Chi, Eldar, Calderbank (b56) 2013; 61
S. Tao, D. Boley, S. Zhang, Convergence of common proximal methods for
Chau, Rodriguez (b60) 2017
I. Osman, M. Shehata, Few-Shot Learning Network for Moving Object Detection using Exemplar-Based Attention Map, in: IEEE International Conference on Image Processing, 2022, pp. 1056–1060.
Boyd, Vandenberghe (b66) 2004
Kasai (b29) 2019; 347
Jiang, Sanogo, Navasca (b35) 2022; 91
Kolda, Bader (b63) 2009; 51
Hong, Luo (b67) 2017; 162
Cai, Chao, Huang, Needell (b26) 2024; 17
He, Zhang, Balzano, Tao (b61) 2014; 32
Ma, Jin, Yang (b2) 2023
Tezcan, Ishwar, Konrad (b77) 2021; 9
Ebadi, Izquierdo (b48) 2017; 40
Yang, Ruan, Zhang, Cheng, Zhang, Xie (b7) 2022; 32
Yazdi, Bouwmans (b13) 2018; 28
Liu, Li (b50) 2022; 32
Narayanamurthy, Vaswani (b55) 2020; 1
X. Zhao, Y. Chen, M. Tang, J. Wang, Joint background reconstruction and foreground segmentation via a two-stage convolutional neural network, in: IEEE International Conference on Multimedia and Expo, 2017, pp. 343–348.
J. Giraldo, et al., Semi-Supervised Background Subtraction of Unseen Videos: Minimization of The Total Variation of Graph Signals, in: IEEE ICIP 2020, Abu Dhabi, UAE, 2020, pp. 3224–3228.
A. Sobral, S. Javed, S. Jung, T. Bouwmans, E. Zahzah, Online Stochastic Tensor Decomposition for Background Subtraction in Multispectral Video Sequences, in: IEEE International Conference on Computer Vision, 2015, pp. 946–953.
Li, Wang, Zhao, Zhang, Meng (b14) 2022
Babapour, Lakestani, Fatholahzadeh (b32) 2021; 80
regularized least squares, in: International Joint Conference on Artificifial Intelligence, 2015, pp. 3849–3855.
Berjón, Cuevas, Morán, García (b72) 2018; 74
Mandal, Vipparthi (b40) 2022; 23
Combettes, Wajs (b64) 2005; 4
Y. Wang, P. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, P. Ishwar, CDnet 2014: An expanded change detection benchmark dataset, in: IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 393–400.
Narayanamurthy, Vaswani (b19) 2019; 65
Oliver, Rosario, Pentland (b15) 2000; 22
Hu, Yang, Zhang, Xie (b24) 2017; 26
H. Mansour, X. Jiang, A robust online subspace estimation and tracking algorithm, in: IEEE International Conference on Acoustics, Speech and Signal Processing, 2015, pp. 4065–4069.
Sedghi, Amoozegar, Rashedi, Afsari (b81) 2023
Beck, Teboulle (b30) 2009; 2
Rezaei, Ostadabbas (b47) 2018; 12
Thanh, Dung, Trung, Abed-Meraim (b28) 2021; 69
Liang, Luo, Schonlieb (b33) 2022; 44
P. Rodriguez, B. Wohlberg, Translational and rotational jitter invariant incremental principal component pursuit for video background modeling, in: IEEE International Conference on Image Processing, 2015, pp. 537–541.
Bouwmans (b37) 2011; 4
Mardani, Mateos, Giannakis (b25) 2015; 63
Cuevas, Yáñez, García (b69) 2016; 152
Kasai, Kellerer, Kleinsteuber (b74) 2016; 13
Mandal, Dhar, Mishra, Vipparthi, Abdel-Mottaleb (b11) 2021; 30
J. He, L. Balzano, A. Szlam, Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012, pp. 1568–1575.
Stauffer, Grimson (b36) 1999; vol. 2
Giraldo, Bouwmans (b80) 2020
Trung Thanh, Viet Dung, Linh Trung, Abed-Meraim (b21) 2021; 11
Eltantawy, Shehata (b51) 2019; 28
Babaee, Dinh, Rigoll (b78) 2018; 76
Behnaz, Amirreza, Ostadabbas (b6) 2021; vol. 12662 LNCS
J. Giraldo, et al., The Emerging Field of Graph Signal Processing for Moving Object Segmentation, in: International Workshop on Frontiers of Computer Vision, Daegu, South Korea, 2021, pp. 31–45.
Lu, Feng, Chen, Liu, Lin, Yan (b22) 2019; 42
Linh-Trung, Nguyen, Thameri, Minh-Chinh, Abed-Meraim (b58) 2018; 12
Kalsotra, Arora (b18) 2021
Ma, Zhu, Yang (b3) 2022; 130
Seidel, Hage, Kleinsteuber (b52) 2014; 25
Lim, Keles (b41) 2020; 23
A. Vacavant, T. Chateau, A. Wilhelm, L. Lequièvre, A benchmark dataset for outdoor foreground/background extraction, in: Asian Conference on Computer Vision, 2012, pp. 291–300.
Xu, Fang, Wang, Chen (b27) 2024
Zibetti, Helou, Pipa (b31) 2017; 26
10.1016/j.knosys.2024.111765_b62
10.1016/j.knosys.2024.111765_b8
Narayanamurthy (10.1016/j.knosys.2024.111765_b19) 2019; 65
Bouwmans (10.1016/j.knosys.2024.111765_b20) 2016
Mardani (10.1016/j.knosys.2024.111765_b25) 2015; 63
He (10.1016/j.knosys.2024.111765_b61) 2014; 32
Thanh (10.1016/j.knosys.2024.111765_b28) 2021; 69
Xu (10.1016/j.knosys.2024.111765_b27) 2024
Kasai (10.1016/j.knosys.2024.111765_b29) 2019; 347
10.1016/j.knosys.2024.111765_b68
Zhao (10.1016/j.knosys.2024.111765_b5) 2022; 503
Babaee (10.1016/j.knosys.2024.111765_b78) 2018; 76
Jiang (10.1016/j.knosys.2024.111765_b35) 2022; 91
Hou (10.1016/j.knosys.2024.111765_b9) 2021; 9
Liu (10.1016/j.knosys.2024.111765_b50) 2022; 32
Mandal (10.1016/j.knosys.2024.111765_b40) 2022; 23
Chi (10.1016/j.knosys.2024.111765_b56) 2013; 61
Mandal (10.1016/j.knosys.2024.111765_b11) 2021; 30
Eltantawy (10.1016/j.knosys.2024.111765_b51) 2019; 28
Ma (10.1016/j.knosys.2024.111765_b2) 2023
Rezaei (10.1016/j.knosys.2024.111765_b47) 2018; 12
10.1016/j.knosys.2024.111765_b53
Narayanamurthy (10.1016/j.knosys.2024.111765_b55) 2020; 1
10.1016/j.knosys.2024.111765_b59
Hu (10.1016/j.knosys.2024.111765_b24) 2017; 26
Tezcan (10.1016/j.knosys.2024.111765_b77) 2021; 9
Combettes (10.1016/j.knosys.2024.111765_b64) 2005; 4
10.1016/j.knosys.2024.111765_b10
10.1016/j.knosys.2024.111765_b54
10.1016/j.knosys.2024.111765_b57
Seidel (10.1016/j.knosys.2024.111765_b52) 2014; 25
Hong (10.1016/j.knosys.2024.111765_b67) 2017; 162
Beck (10.1016/j.knosys.2024.111765_b30) 2009; 2
Garcia-Garcia (10.1016/j.knosys.2024.111765_b1) 2020; 35
Wang (10.1016/j.knosys.2024.111765_b23) 2022; 32
Subudhi (10.1016/j.knosys.2024.111765_b38) 2022
Sedghi (10.1016/j.knosys.2024.111765_b81) 2023
10.1016/j.knosys.2024.111765_b42
Linh-Trung (10.1016/j.knosys.2024.111765_b58) 2018; 12
Boyd (10.1016/j.knosys.2024.111765_b66) 2004
Gao (10.1016/j.knosys.2024.111765_b76) 2021; 31
Ebadi (10.1016/j.knosys.2024.111765_b48) 2017; 40
Kasai (10.1016/j.knosys.2024.111765_b74) 2016; 13
Yang (10.1016/j.knosys.2024.111765_b7) 2022; 32
Chapel (10.1016/j.knosys.2024.111765_b4) 2020; 38
Boyd (10.1016/j.knosys.2024.111765_b65) 2010; 3
Lim (10.1016/j.knosys.2024.111765_b41) 2020; 23
10.1016/j.knosys.2024.111765_b43
10.1016/j.knosys.2024.111765_b46
Yazdi (10.1016/j.knosys.2024.111765_b13) 2018; 28
Stauffer (10.1016/j.knosys.2024.111765_b36) 1999; vol. 2
Bouwmans (10.1016/j.knosys.2024.111765_b37) 2011; 4
Li (10.1016/j.knosys.2024.111765_b14) 2022
Kalsotra (10.1016/j.knosys.2024.111765_b18) 2021
Kolda (10.1016/j.knosys.2024.111765_b63) 2009; 51
Ma (10.1016/j.knosys.2024.111765_b3) 2022; 130
Cai (10.1016/j.knosys.2024.111765_b26) 2024; 17
Zibetti (10.1016/j.knosys.2024.111765_b31) 2017; 26
10.1016/j.knosys.2024.111765_b73
Babapour (10.1016/j.knosys.2024.111765_b32) 2021; 80
Lu (10.1016/j.knosys.2024.111765_b22) 2019; 42
Oliver (10.1016/j.knosys.2024.111765_b15) 2000; 22
Salut (10.1016/j.knosys.2024.111765_b17) 2022; 10
10.1016/j.knosys.2024.111765_b71
Xue (10.1016/j.knosys.2024.111765_b34) 2021; 33
10.1016/j.knosys.2024.111765_b70
Behnaz (10.1016/j.knosys.2024.111765_b6) 2021; vol. 12662 LNCS
Ma (10.1016/j.knosys.2024.111765_b45) 2022; 33
Giraldo (10.1016/j.knosys.2024.111765_b80) 2020
Djerida (10.1016/j.knosys.2024.111765_b75) 2020; 14
10.1016/j.knosys.2024.111765_b79
Zhang (10.1016/j.knosys.2024.111765_b39) 2023; 261
Cuevas (10.1016/j.knosys.2024.111765_b69) 2016; 152
Vaswani (10.1016/j.knosys.2024.111765_b16) 2018; 35
Trung Thanh (10.1016/j.knosys.2024.111765_b21) 2021; 11
Liang (10.1016/j.knosys.2024.111765_b33) 2022; 44
Zhou (10.1016/j.knosys.2024.111765_b49) 2012; 35
Zhang (10.1016/j.knosys.2024.111765_b12) 2021; 30
Berjón (10.1016/j.knosys.2024.111765_b72) 2018; 74
Bouwmans (10.1016/j.knosys.2024.111765_b44) 2019; 117
Chau (10.1016/j.knosys.2024.111765_b60) 2017
References_xml – volume: 38
  year: 2020
  ident: b4
  article-title: Moving objects detection with a moving camera: A comprehensive review
  publication-title: Comp. Sci. Rev.
– reference: -regularized least squares, in: International Joint Conference on Artificifial Intelligence, 2015, pp. 3849–3855.
– volume: 28
  start-page: 157
  year: 2018
  end-page: 177
  ident: b13
  article-title: New trends on moving object detection in video images captured by a moving camera: A survey
  publication-title: Comp. Sci. Rev.
– volume: 32
  start-page: 743
  year: 2022
  end-page: 757
  ident: b23
  article-title: Spatio-temporal online matrix factorization for multi-scale moving objects detection
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 152
  start-page: 103
  year: 2016
  end-page: 117
  ident: b69
  article-title: Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA
  publication-title: Comput. Vis. Image Underst.
– volume: 9
  start-page: 53849
  year: 2021
  end-page: 53860
  ident: b77
  article-title: BSUV-Net 2.0: Spatio-temporal data augmentations for video-agnostic supervised background subtraction
  publication-title: IEEE Access
– volume: 32
  start-page: 2145
  year: 2022
  end-page: 2157
  ident: b7
  article-title: STPNet: A spatial-temporal propagation network for background subtraction
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2016
  ident: b20
  article-title: Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset
  publication-title: Comp. Sci. Rev.
– volume: 1
  start-page: 723
  year: 2020
  end-page: 744
  ident: b55
  article-title: Fast robust subspace tracking via PCA in sparse data-dependent noise
  publication-title: IEEE J. Sel. Areas Inf. Theory
– volume: 51
  start-page: 455
  year: 2009
  end-page: 500
  ident: b63
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
– volume: 503
  start-page: 28
  year: 2022
  end-page: 48
  ident: b5
  article-title: A survey of moving object detection methods: A practical perspective
  publication-title: Neurocomputing
– volume: 30
  start-page: 546
  year: 2021
  end-page: 558
  ident: b11
  article-title: 3DCD: Scene independent end-to-end spatiotemporal feature learning framework for change detection in unseen videos
  publication-title: IEEE Trans. Image Process.
– start-page: 1844
  year: 2017
  end-page: 1852
  ident: b60
  article-title: Panning and jitter invariant incremental principal component pursuit for video background modeling
  publication-title: IEEE International Conference on Computer Vision Workshop
– volume: 26
  start-page: 724
  year: 2017
  end-page: 737
  ident: b24
  article-title: Moving object detection using tensor-based low-rank and saliently fused-sparse decomposition
  publication-title: IEEE Trans. Image Process.
– year: 2024
  ident: b27
  article-title: Dual-enhanced high-order self-learning tensor singular value decomposition for robust principal component analysis
  publication-title: IEEE Trans. Artif. Intell.
– reference: J. Giraldo, et al., Semi-Supervised Background Subtraction of Unseen Videos: Minimization of The Total Variation of Graph Signals, in: IEEE ICIP 2020, Abu Dhabi, UAE, 2020, pp. 3224–3228.
– volume: 13
  start-page: 636
  year: 2016
  end-page: 650
  ident: b74
  article-title: Network volume anomaly detection and identification in large-scale networks based on online time-structured traffic tensor tracking
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 42
  start-page: 925
  year: 2019
  end-page: 938
  ident: b22
  article-title: Tensor robust principal component analysis with a new tensor nuclear norm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 74
  start-page: 156
  year: 2018
  end-page: 170
  ident: b72
  article-title: Real-time nonparametric background subtraction with tracking-based foreground update
  publication-title: Pattern Recognit.
– volume: 3
  start-page: 1
  year: 2010
  end-page: 122
  ident: b65
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
– reference: J. He, L. Balzano, A. Szlam, Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012, pp. 1568–1575.
– year: 2023
  ident: b81
  article-title: ORGRU: Online robust gated recurrent units for real-time background subtraction in video sequences
– volume: 80
  start-page: 20707
  year: 2021
  end-page: 20731
  ident: b32
  article-title: AFISTA: Accelerated FISTA for sparse signal recovery and compressive sensing
  publication-title: Multimedia Tools Appl.
– reference: S. Tao, D. Boley, S. Zhang, Convergence of common proximal methods for
– volume: 12
  start-page: 1197
  year: 2018
  end-page: 1212
  ident: b58
  article-title: Low-complexity adaptive algorithms for robust subspace tracking
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– volume: 30
  start-page: 9058
  year: 2021
  end-page: 9068
  ident: b12
  article-title: Meta-knowledge learning and domain adaptation for unseen background subtraction
  publication-title: IEEE Trans. Image Process.
– volume: 347
  start-page: 177
  year: 2019
  end-page: 190
  ident: b29
  article-title: Fast online low-rank tensor subspace tracking by CP decomposition using recursive least squares from incomplete observations
  publication-title: Neurocomputing
– volume: 9
  start-page: 148433
  year: 2021
  end-page: 148448
  ident: b9
  article-title: A fast lightweight 3D separable convolutional neural network with multi-input multi-output for moving object detection
  publication-title: IEEE Access
– reference: C. Guyon, T. Bouwmans, E. Zahzah, Foreground detection based on low-rank and block-sparse matrix decomposition, in: IEEE International Conference on Image Processing, 2012, pp. 1225–1228.
– volume: 61
  start-page: 5947
  year: 2013
  end-page: 5959
  ident: b56
  article-title: PETRELS: Parallel subspace estimation and tracking by recursive least squares from partial observations
  publication-title: IEEE Trans. Signal Process.
– reference: A. Sobral, S. Javed, S. Jung, T. Bouwmans, E. Zahzah, Online Stochastic Tensor Decomposition for Background Subtraction in Multispectral Video Sequences, in: IEEE International Conference on Computer Vision, 2015, pp. 946–953.
– volume: 23
  start-page: 6101
  year: 2022
  end-page: 6122
  ident: b40
  article-title: An empirical review of deep learning frameworks for change detection: Model design, experimental frameworks, challenges and research needs
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 33
  start-page: 6916
  year: 2021
  end-page: 6930
  ident: b34
  article-title: Multilayer sparsity-based tensor decomposition for low-rank tensor completion
  publication-title: Inform. Sci.
– volume: 35
  start-page: 32
  year: 2018
  end-page: 55
  ident: b16
  article-title: Robust subspace learning: Robust PCA, robust subspace tracking, and robust subspace recovery
  publication-title: IEEE Signal Process. Mag.
– volume: 130
  start-page: 1244
  year: 2022
  end-page: 1258
  ident: b3
  article-title: Weakly supervised moment localization with decoupled consistent concept prediction
  publication-title: Int. J. Comput. Vis.
– volume: vol. 12662 LNCS
  start-page: 608
  year: 2021
  end-page: 621
  ident: b6
  article-title: DEEBPM: Deep probabilistic background model estimation from video sequences
  publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– year: 2023
  ident: b2
  article-title: Temporal perceiving video-language pre-training unified transformer tracker for object tracking, preprint
– volume: 35
  start-page: 597
  year: 2012
  end-page: 610
  ident: b49
  article-title: Moving object detection by detecting contiguous outliers in the low-rank representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 35
  year: 2020
  ident: b1
  article-title: Background subtraction in real applications: Challenges, current models and future directions
  publication-title: Comput. Sci. Rev.
– volume: 117
  start-page: 8
  year: 2019
  end-page: 66
  ident: b44
  article-title: Deep neural network concepts for background subtraction: A systematic review and comparative evaluation
  publication-title: Neural Netw.
– reference: H. Mansour, X. Jiang, A robust online subspace estimation and tracking algorithm, in: IEEE International Conference on Acoustics, Speech and Signal Processing, 2015, pp. 4065–4069.
– volume: 65
  start-page: 1547
  year: 2019
  end-page: 1577
  ident: b19
  article-title: Provable dynamic robust PCA or robust subspace tracking
  publication-title: IEEE Trans. Inform. Theory
– reference: L.T. Thanh, K. Abed-Meraim, N. Trung, A. Hafiane, A fast randomized adaptive CP decomposition for streaming tensors, in: IEEE International Conference on Acoustics, Speech and Signal Processing, 2021.
– volume: 11
  start-page: 16
  year: 2021
  end-page: 25
  ident: b21
  article-title: Robust subspace tracking algorithms in signal processing: A brief survey
  publication-title: REV J. Electron. Commun.
– volume: 44
  year: 2022
  ident: b33
  article-title: Improving fast iterative shrinkage-thresholding algorithm: Faster, smarter, and greedier
  publication-title: SIAM J. Sci. Comput.
– volume: 162
  start-page: 165
  year: 2017
  end-page: 199
  ident: b67
  article-title: On the linear convergence of the alternating direction method of multipliers
  publication-title: Math. Programm.
– reference: P. Rodriguez, B. Wohlberg, Translational and rotational jitter invariant incremental principal component pursuit for video background modeling, in: IEEE International Conference on Image Processing, 2015, pp. 537–541.
– volume: 32
  start-page: 800
  year: 2014
  end-page: 813
  ident: b61
  article-title: Iterative grassmannian optimization for robust image alignment
  publication-title: Image Vis. Comput.
– volume: 63
  start-page: 2663
  year: 2015
  end-page: 2677
  ident: b25
  article-title: Subspace learning and imputation for streaming big data matrices and tensors
  publication-title: IEEE Trans. Image Process.
– volume: 76
  start-page: 635
  year: 2018
  end-page: 649
  ident: b78
  article-title: A deep convolutional neural network for video sequence background subtraction
  publication-title: Pattern Recognit.
– volume: 25
  start-page: 1227
  year: 2014
  end-page: 1240
  ident: b52
  article-title: PROST: A smoothed
  publication-title: Mach. Vis. Appl.
– volume: 17
  start-page: 225
  year: 2024
  end-page: 247
  ident: b26
  article-title: Robust tensor CUR decompositions: Rapid low-tucker-rank tensor recovery with sparse corruptions
  publication-title: SIAM J. Imaging Sci.
– volume: 261
  year: 2023
  ident: b39
  article-title: Randomized sampling techniques based low-tubal-rank plus sparse tensor recovery
  publication-title: Knowl.-Based Syst.
– reference: X. Zhao, Y. Chen, M. Tang, J. Wang, Joint background reconstruction and foreground segmentation via a two-stage convolutional neural network, in: IEEE International Conference on Multimedia and Expo, 2017, pp. 343–348.
– reference: Y. Wang, P. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, P. Ishwar, CDnet 2014: An expanded change detection benchmark dataset, in: IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 393–400.
– year: 2021
  ident: b18
  article-title: Background subtraction for moving object detection: Explorations of recent developments and challenges
  publication-title: Vis. Comput.
– volume: 28
  start-page: 5991
  year: 2019
  end-page: 6006
  ident: b51
  article-title: An accelerated sequential PCP-based method for ground-moving objects detection from aerial videos
  publication-title: IEEE Transavtions Image Process.
– volume: 14
  start-page: 245
  year: 2020
  end-page: 255
  ident: b75
  article-title: Background subtraction in dynamic scenes using the dynamic principal component analysis
  publication-title: IET Image Process.
– volume: 32
  start-page: 4900
  year: 2022
  end-page: 4904
  ident: b50
  article-title: Efficient low-rank matrix factorization based on
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2022
  ident: b38
  article-title: Kernel induced possibilistic fuzzy associate background subtraction for video scene
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 91
  start-page: 18
  year: 2022
  ident: b35
  article-title: Low-CP-rank tensor completion via practical regularization
  publication-title: J. Sci. Comput.
– year: 2004
  ident: b66
  article-title: Convex Optimization
– volume: 26
  start-page: 3569
  year: 2017
  end-page: 3578
  ident: b31
  article-title: Accelerating overrelaxed and monotone fast iterative shrinkage-thresholding algorithms with line search for sparse reconstructions
  publication-title: IEEE Trans. Image Process.
– reference: I. Osman, M. Shehata, Few-Shot Learning Network for Moving Object Detection using Exemplar-Based Attention Map, in: IEEE International Conference on Image Processing, 2022, pp. 1056–1060.
– volume: 4
  start-page: 147
  year: 2011
  end-page: 176
  ident: b37
  article-title: Recent advanced statistical background modeling for foreground detection: A systematic survey
  publication-title: Recent Patents Comput. Sci.
– volume: 23
  start-page: 1369
  year: 2020
  end-page: 1380
  ident: b41
  article-title: Learning multi-scale features for foreground segmentation
  publication-title: Pattern Anal. Appl.
– reference: J. Xu, V.K. Ithapu, L. Mukherjee, J.M. Rehg, V. Singh, GOSUS: Grassmannian online subspace updates with structured-sparsity, in: IEEE International Conference on Computer Vision, 2013, pp. 3376–3383.
– volume: 69
  start-page: 2070
  year: 2021
  end-page: 2085
  ident: b28
  article-title: Robust subspace tracking with missing data and outliers: Novel algorithm with convergence guarantee
  publication-title: IEEE Trans. Image Process.
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: b30
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– start-page: 1
  year: 2022
  end-page: 15
  ident: b14
  article-title: A tensor-based online RPCA model for compressive background subtraction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 33
  start-page: 6275
  year: 2022
  end-page: 6285
  ident: b45
  article-title: Learning with noisy labels via self-reweighting from class centroids
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 4
  start-page: 1168
  year: 2005
  end-page: 1200
  ident: b64
  article-title: Signal recovery by proximal forward–backward splitting
  publication-title: Multiscale Model. Simul.
– volume: 40
  start-page: 2273
  year: 2017
  end-page: 2280
  ident: b48
  article-title: Foreground segmentation with tree-structured sparse RPCA
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: H. Fu, Z. Ma, B. Zhao, Z. Yang, Y. Jiang, M. Zhu, Lightweight Convolutional Neural Network for Foreground Segmentation, in: Chinese Intelligent Systems Conference, 2021, pp. 811–819.
– volume: 10
  start-page: 69354
  year: 2022
  end-page: 69363
  ident: b17
  article-title: Online tensor robust principal component analysis
  publication-title: IEEE Access
– reference: J. Giraldo, et al., The Emerging Field of Graph Signal Processing for Moving Object Segmentation, in: International Workshop on Frontiers of Computer Vision, Daegu, South Korea, 2021, pp. 31–45.
– start-page: 6881
  year: 2020
  end-page: 6888
  ident: b80
  article-title: Graphbgs: Background subtraction via recovery of graph signals
  publication-title: Proceedings - International Conference on Pattern Recognition
– volume: vol. 2
  start-page: 246
  year: 1999
  end-page: 252
  ident: b36
  article-title: Adaptive background mixture models for real-time tracking
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 22
  start-page: 831
  year: 2000
  end-page: 843
  ident: b15
  article-title: A Bayesian computer vision system for modeling human interactions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 12
  start-page: 1313
  year: 2018
  end-page: 1323
  ident: b47
  article-title: Moving object detection through robust matrix completion augmented with objectness
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– reference: A. Vacavant, T. Chateau, A. Wilhelm, L. Lequièvre, A benchmark dataset for outdoor foreground/background extraction, in: Asian Conference on Computer Vision, 2012, pp. 291–300.
– volume: 31
  start-page: 4840
  year: 2021
  end-page: 4849
  ident: b76
  article-title: Extracting moving objects more accurately: A CDA contour optimizer
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 347
  start-page: 177
  year: 2019
  ident: 10.1016/j.knosys.2024.111765_b29
  article-title: Fast online low-rank tensor subspace tracking by CP decomposition using recursive least squares from incomplete observations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.030
– ident: 10.1016/j.knosys.2024.111765_b46
  doi: 10.1109/ICIP.2012.6467087
– volume: 130
  start-page: 1244
  year: 2022
  ident: 10.1016/j.knosys.2024.111765_b3
  article-title: Weakly supervised moment localization with decoupled consistent concept prediction
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-022-01600-0
– volume: 80
  start-page: 20707
  issue: 13
  year: 2021
  ident: 10.1016/j.knosys.2024.111765_b32
  article-title: AFISTA: Accelerated FISTA for sparse signal recovery and compressive sensing
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-10701-w
– volume: 117
  start-page: 8
  year: 2019
  ident: 10.1016/j.knosys.2024.111765_b44
  article-title: Deep neural network concepts for background subtraction: A systematic review and comparative evaluation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.04.024
– volume: 32
  start-page: 743
  issue: 2
  year: 2022
  ident: 10.1016/j.knosys.2024.111765_b23
  article-title: Spatio-temporal online matrix factorization for multi-scale moving objects detection
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3066675
– volume: 44
  issue: 3
  year: 2022
  ident: 10.1016/j.knosys.2024.111765_b33
  article-title: Improving fast iterative shrinkage-thresholding algorithm: Faster, smarter, and greedier
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/21M1395685
– year: 2022
  ident: 10.1016/j.knosys.2024.111765_b38
  article-title: Kernel induced possibilistic fuzzy associate background subtraction for video scene
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 3
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.knosys.2024.111765_b65
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– volume: 30
  start-page: 9058
  year: 2021
  ident: 10.1016/j.knosys.2024.111765_b12
  article-title: Meta-knowledge learning and domain adaptation for unseen background subtraction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3122102
– volume: 35
  start-page: 597
  issue: 3
  year: 2012
  ident: 10.1016/j.knosys.2024.111765_b49
  article-title: Moving object detection by detecting contiguous outliers in the low-rank representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.132
– year: 2024
  ident: 10.1016/j.knosys.2024.111765_b27
  article-title: Dual-enhanced high-order self-learning tensor singular value decomposition for robust principal component analysis
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2024.3373388
– ident: 10.1016/j.knosys.2024.111765_b62
  doi: 10.1109/ICIP.2015.7350856
– year: 2023
  ident: 10.1016/j.knosys.2024.111765_b81
– volume: 12
  start-page: 1197
  issue: 6
  year: 2018
  ident: 10.1016/j.knosys.2024.111765_b58
  article-title: Low-complexity adaptive algorithms for robust subspace tracking
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2018.2876626
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 10.1016/j.knosys.2024.111765_b63
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 35
  year: 2020
  ident: 10.1016/j.knosys.2024.111765_b1
  article-title: Background subtraction in real applications: Challenges, current models and future directions
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2019.100204
– volume: 42
  start-page: 925
  issue: 4
  year: 2019
  ident: 10.1016/j.knosys.2024.111765_b22
  article-title: Tensor robust principal component analysis with a new tensor nuclear norm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2891760
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.knosys.2024.111765_b30
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 33
  start-page: 6275
  issue: 11
  year: 2022
  ident: 10.1016/j.knosys.2024.111765_b45
  article-title: Learning with noisy labels via self-reweighting from class centroids
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3073248
– volume: 35
  start-page: 32
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2024.111765_b16
  article-title: Robust subspace learning: Robust PCA, robust subspace tracking, and robust subspace recovery
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2826566
– ident: 10.1016/j.knosys.2024.111765_b68
– volume: 91
  start-page: 18
  issue: 1
  year: 2022
  ident: 10.1016/j.knosys.2024.111765_b35
  article-title: Low-CP-rank tensor completion via practical regularization
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-022-01789-9
– volume: 4
  start-page: 1168
  issue: 4
  year: 2005
  ident: 10.1016/j.knosys.2024.111765_b64
  article-title: Signal recovery by proximal forward–backward splitting
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– volume: 30
  start-page: 546
  year: 2021
  ident: 10.1016/j.knosys.2024.111765_b11
  article-title: 3DCD: Scene independent end-to-end spatiotemporal feature learning framework for change detection in unseen videos
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3037472
– volume: 17
  start-page: 225
  issue: 1
  year: 2024
  ident: 10.1016/j.knosys.2024.111765_b26
  article-title: Robust tensor CUR decompositions: Rapid low-tucker-rank tensor recovery with sparse corruptions
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/23M1574282
– volume: 28
  start-page: 5991
  issue: 12
  year: 2019
  ident: 10.1016/j.knosys.2024.111765_b51
  article-title: An accelerated sequential PCP-based method for ground-moving objects detection from aerial videos
  publication-title: IEEE Transavtions Image Process.
  doi: 10.1109/TIP.2019.2923376
– start-page: 1
  year: 2022
  ident: 10.1016/j.knosys.2024.111765_b14
  article-title: A tensor-based online RPCA model for compressive background subtraction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 10
  start-page: 69354
  issue: May
  year: 2022
  ident: 10.1016/j.knosys.2024.111765_b17
  article-title: Online tensor robust principal component analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3186364
– volume: 152
  start-page: 103
  year: 2016
  ident: 10.1016/j.knosys.2024.111765_b69
  article-title: Labeled dataset for integral evaluation of moving object detection algorithms: LASIESTA
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2016.08.005
– volume: 9
  start-page: 53849
  year: 2021
  ident: 10.1016/j.knosys.2024.111765_b77
  article-title: BSUV-Net 2.0: Spatio-temporal data augmentations for video-agnostic supervised background subtraction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071163
– ident: 10.1016/j.knosys.2024.111765_b42
  doi: 10.1109/ICIP40778.2020.9190887
– ident: 10.1016/j.knosys.2024.111765_b79
  doi: 10.1109/ICME.2017.8019397
– volume: 76
  start-page: 635
  year: 2018
  ident: 10.1016/j.knosys.2024.111765_b78
  article-title: A deep convolutional neural network for video sequence background subtraction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.040
– volume: 1
  start-page: 723
  issue: 3
  year: 2020
  ident: 10.1016/j.knosys.2024.111765_b55
  article-title: Fast robust subspace tracking via PCA in sparse data-dependent noise
  publication-title: IEEE J. Sel. Areas Inf. Theory
  doi: 10.1109/JSAIT.2020.3040365
– ident: 10.1016/j.knosys.2024.111765_b57
  doi: 10.1109/ICASSP.2015.7178735
– volume: 4
  start-page: 147
  issue: 3
  year: 2011
  ident: 10.1016/j.knosys.2024.111765_b37
  article-title: Recent advanced statistical background modeling for foreground detection: A systematic survey
  publication-title: Recent Patents Comput. Sci.
– issue: 0123456789
  year: 2021
  ident: 10.1016/j.knosys.2024.111765_b18
  article-title: Background subtraction for moving object detection: Explorations of recent developments and challenges
  publication-title: Vis. Comput.
– volume: 14
  start-page: 245
  issue: 2
  year: 2020
  ident: 10.1016/j.knosys.2024.111765_b75
  article-title: Background subtraction in dynamic scenes using the dynamic principal component analysis
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2018.6095
– volume: 162
  start-page: 165
  issue: 1–2
  year: 2017
  ident: 10.1016/j.knosys.2024.111765_b67
  article-title: On the linear convergence of the alternating direction method of multipliers
  publication-title: Math. Programm.
  doi: 10.1007/s10107-016-1034-2
– volume: 38
  year: 2020
  ident: 10.1016/j.knosys.2024.111765_b4
  article-title: Moving objects detection with a moving camera: A comprehensive review
  publication-title: Comp. Sci. Rev.
– volume: 32
  start-page: 4900
  issue: 7
  year: 2022
  ident: 10.1016/j.knosys.2024.111765_b50
  article-title: Efficient low-rank matrix factorization based on ℓ1, ϵ-norm for online background subtraction
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3129503
– volume: vol. 12662 LNCS
  start-page: 608
  year: 2021
  ident: 10.1016/j.knosys.2024.111765_b6
  article-title: DEEBPM: Deep probabilistic background model estimation from video sequences
– volume: 12
  start-page: 1313
  issue: 6
  year: 2018
  ident: 10.1016/j.knosys.2024.111765_b47
  article-title: Moving object detection through robust matrix completion augmented with objectness
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2018.2869111
– ident: 10.1016/j.knosys.2024.111765_b54
  doi: 10.1109/ICCV.2013.419
– volume: 23
  start-page: 1369
  issue: 3
  year: 2020
  ident: 10.1016/j.knosys.2024.111765_b41
  article-title: Learning multi-scale features for foreground segmentation
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-019-00845-9
– volume: 25
  start-page: 1227
  issue: 5
  year: 2014
  ident: 10.1016/j.knosys.2024.111765_b52
  article-title: PROST: A smoothed ℓp-norm robust online subspace tracking method for background subtraction in video
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-013-0555-4
– volume: 503
  start-page: 28
  year: 2022
  ident: 10.1016/j.knosys.2024.111765_b5
  article-title: A survey of moving object detection methods: A practical perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.104
– ident: 10.1016/j.knosys.2024.111765_b73
  doi: 10.1109/ICASSP39728.2021.9413554
– volume: vol. 2
  start-page: 246
  year: 1999
  ident: 10.1016/j.knosys.2024.111765_b36
  article-title: Adaptive background mixture models for real-time tracking
– volume: 11
  start-page: 16
  issue: 1
  year: 2021
  ident: 10.1016/j.knosys.2024.111765_b21
  article-title: Robust subspace tracking algorithms in signal processing: A brief survey
  publication-title: REV J. Electron. Commun.
– volume: 63
  start-page: 2663
  issue: 10
  year: 2015
  ident: 10.1016/j.knosys.2024.111765_b25
  article-title: Subspace learning and imputation for streaming big data matrices and tensors
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TSP.2015.2417491
– volume: 13
  start-page: 636
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2024.111765_b74
  article-title: Network volume anomaly detection and identification in large-scale networks based on online time-structured traffic tensor tracking
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2016.2598788
– volume: 31
  start-page: 4840
  issue: 12
  year: 2021
  ident: 10.1016/j.knosys.2024.111765_b76
  article-title: Extracting moving objects more accurately: A CDA contour optimizer
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3055539
– volume: 26
  start-page: 724
  issue: 2
  year: 2017
  ident: 10.1016/j.knosys.2024.111765_b24
  article-title: Moving object detection using tensor-based low-rank and saliently fused-sparse decomposition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2627803
– ident: 10.1016/j.knosys.2024.111765_b10
  doi: 10.1109/ICIP46576.2022.9897894
– ident: 10.1016/j.knosys.2024.111765_b43
  doi: 10.1007/978-3-030-81638-4_3
– volume: 28
  start-page: 157
  year: 2018
  ident: 10.1016/j.knosys.2024.111765_b13
  article-title: New trends on moving object detection in video images captured by a moving camera: A survey
  publication-title: Comp. Sci. Rev.
  doi: 10.1016/j.cosrev.2018.03.001
– ident: 10.1016/j.knosys.2024.111765_b59
  doi: 10.1109/ICCVW.2015.125
– ident: 10.1016/j.knosys.2024.111765_b71
  doi: 10.1007/978-3-642-37410-4_25
– start-page: 1844
  year: 2017
  ident: 10.1016/j.knosys.2024.111765_b60
  article-title: Panning and jitter invariant incremental principal component pursuit for video background modeling
– volume: 9
  start-page: 148433
  year: 2021
  ident: 10.1016/j.knosys.2024.111765_b9
  article-title: A fast lightweight 3D separable convolutional neural network with multi-input multi-output for moving object detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3123975
– start-page: 6881
  year: 2020
  ident: 10.1016/j.knosys.2024.111765_b80
  article-title: Graphbgs: Background subtraction via recovery of graph signals
– volume: 32
  start-page: 2145
  issue: 4
  year: 2022
  ident: 10.1016/j.knosys.2024.111765_b7
  article-title: STPNet: A spatial-temporal propagation network for background subtraction
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3088130
– volume: 261
  year: 2023
  ident: 10.1016/j.knosys.2024.111765_b39
  article-title: Randomized sampling techniques based low-tubal-rank plus sparse tensor recovery
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110198
– volume: 61
  start-page: 5947
  issue: 23
  year: 2013
  ident: 10.1016/j.knosys.2024.111765_b56
  article-title: PETRELS: Parallel subspace estimation and tracking by recursive least squares from partial observations
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2282910
– volume: 74
  start-page: 156
  year: 2018
  ident: 10.1016/j.knosys.2024.111765_b72
  article-title: Real-time nonparametric background subtraction with tracking-based foreground update
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.009
– volume: 33
  start-page: 6916
  issue: 11
  year: 2021
  ident: 10.1016/j.knosys.2024.111765_b34
  article-title: Multilayer sparsity-based tensor decomposition for low-rank tensor completion IEEE Transactions on Neural Networks and Learning Systems
  publication-title: Inform. Sci.
– volume: 32
  start-page: 800
  issue: 10
  year: 2014
  ident: 10.1016/j.knosys.2024.111765_b61
  article-title: Iterative grassmannian optimization for robust image alignment
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2014.02.015
– volume: 26
  start-page: 3569
  issue: 7
  year: 2017
  ident: 10.1016/j.knosys.2024.111765_b31
  article-title: Accelerating overrelaxed and monotone fast iterative shrinkage-thresholding algorithms with line search for sparse reconstructions
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2699483
– ident: 10.1016/j.knosys.2024.111765_b53
  doi: 10.1109/CVPR.2012.6247848
– volume: 40
  start-page: 2273
  issue: 9
  year: 2017
  ident: 10.1016/j.knosys.2024.111765_b48
  article-title: Foreground segmentation with tree-structured sparse RPCA
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2745573
– year: 2004
  ident: 10.1016/j.knosys.2024.111765_b66
– year: 2023
  ident: 10.1016/j.knosys.2024.111765_b2
– volume: 65
  start-page: 1547
  issue: 3
  year: 2019
  ident: 10.1016/j.knosys.2024.111765_b19
  article-title: Provable dynamic robust PCA or robust subspace tracking
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2018.2872023
– ident: 10.1016/j.knosys.2024.111765_b70
  doi: 10.1109/CVPRW.2014.126
– volume: 69
  start-page: 2070
  year: 2021
  ident: 10.1016/j.knosys.2024.111765_b28
  article-title: Robust subspace tracking with missing data and outliers: Novel algorithm with convergence guarantee
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TSP.2021.3066795
– year: 2016
  ident: 10.1016/j.knosys.2024.111765_b20
  article-title: Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset
  publication-title: Comp. Sci. Rev.
– ident: 10.1016/j.knosys.2024.111765_b8
  doi: 10.1007/978-981-16-6328-4_81
– volume: 23
  start-page: 6101
  issue: 7
  year: 2022
  ident: 10.1016/j.knosys.2024.111765_b40
  article-title: An empirical review of deep learning frameworks for change detection: Model design, experimental frameworks, challenges and research needs
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3077883
– volume: 22
  start-page: 831
  issue: 8
  year: 2000
  ident: 10.1016/j.knosys.2024.111765_b15
  article-title: A Bayesian computer vision system for modeling human interactions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868684
SSID ssj0002218
Score 2.4464874
Snippet Moving object detection is a fundamental task in many video processing applications, such as video surveillance. The robustness and efficiency of background...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 111765
SubjectTerms Background subtraction
Computer Science
Fast iterative Shrinkage-Thresholding algorithm
Moving object detection
Online learning
Title Robust and efficient FISTA-based method for moving object detection under background movements
URI https://dx.doi.org/10.1016/j.knosys.2024.111765
https://hal.science/hal-04536897
Volume 294
WOSCitedRecordID wos001229883000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6jgde-EaML1mItylV5nw4fixo0wZjQlBQn4hs58JY12Rq2jL213OOHbcwwdgDL1HqOBe39-v57nIfhLwEoXXIShmIgssghlDjGUQBQrlEPGkp2jf4nw_50VE2Hov3vd6yy4VZnvKqys7Pxdl_ZTWOIbNN6uw12O2J4gCeI9PxiGzH4z8x_kOtFo2NG4e2PoR527938HE0DMyWVbim0W184dT6E2plvDHbBczBdg43mWWzbSX1xGR9ICWc2PoRm3Vl9m3nj3OEm7Xq5wZD07q-gK82gvudnP2QU39potBGv5AFHNuLTY0y0numX9WL71On4Y9Ms24Xq-y8Eyw2UVQ25dm7GcOAh66orJO4TMRrMhOlLbf9Ii6Jc-tZOBlMqhq_wsA8YLCa_mv17N92NR9r2IWxneSWSm6o5JbKBtlkPBFZn2wOD3bHb_wezljrGfar75Iu28jAy6v5k1Kzcdy551t1ZXSH3HJ2Bh1afNwlPajukdtdDw_qRPp98sXChSJcqIcLXYMLtXChCBdq4UItXKiHC23hQldwoR4uD8invd3R6_3A9dwIdBSH84BBFMoEmE7KRIFKgTOtdJjFBStD_ByxHeACzVpWppDGaZZpUZqilYqh6RvJ6CHpV3UFjwjFvbAQJVNcoQqok0RyoaOsQJ1Ypykw2CJR96Pl2hWkN31RTvO_sWyLBP6uM1uQ5Yr5vONH7pRKqyzmCLIr7nyB7PMPMXXY94eHuRlDOyhKM8GXO4-vuZwn5Obqb_KU9OezBTwjN_Ry_q2ZPXcw_AkPQKm_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+efficient+FISTA-based+method+for+moving+object+detection+under+background+movements&rft.jtitle=Knowledge-based+systems&rft.au=Amoozegar%2C+Maryam&rft.au=Akbarizadeh%2C+Masoumeh&rft.au=Bouwmans%2C+Thierry&rft.date=2024-06-21&rft.issn=0950-7051&rft.volume=294&rft.spage=111765&rft_id=info:doi/10.1016%2Fj.knosys.2024.111765&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2024_111765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon