A Recursive Approach to Solving Parity Games in Quasipolynomial Time

Zielonka's classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity is exponential, while currently the state-of-the-art algorithms have quasipolynomial complexity. Here, we present a modification of Zie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 18, Issue 1; číslo 1; s. 8:1 - 8:18
Hlavní autoři: Lehtinen, Karoliina, Parys, Paweł, Schewe, Sven, Wojtczak, Dominik
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science Association 01.01.2022
Logical Methods in Computer Science e.V
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Zielonka's classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity is exponential, while currently the state-of-the-art algorithms have quasipolynomial complexity. Here, we present a modification of Zielonka's classic algorithm that brings its complexity down to $n^{O\left(\log\left(1+\frac{d}{\log n}\right)\right)}$, for parity games of size $n$ with $d$ priorities, in line with previous quasipolynomial-time solutions.
ISSN:1860-5974
1860-5974
DOI:10.46298/lmcs-18(1:8)2022