A Recursive Approach to Solving Parity Games in Quasipolynomial Time

Zielonka's classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity is exponential, while currently the state-of-the-art algorithms have quasipolynomial complexity. Here, we present a modification of Zie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science Jg. 18, Issue 1; H. 1; S. 8:1 - 8:18
Hauptverfasser: Lehtinen, Karoliina, Parys, Paweł, Schewe, Sven, Wojtczak, Dominik
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Logical Methods in Computer Science Association 01.01.2022
Logical Methods in Computer Science e.V
Schlagworte:
ISSN:1860-5974, 1860-5974
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Zielonka's classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity is exponential, while currently the state-of-the-art algorithms have quasipolynomial complexity. Here, we present a modification of Zielonka's classic algorithm that brings its complexity down to $n^{O\left(\log\left(1+\frac{d}{\log n}\right)\right)}$, for parity games of size $n$ with $d$ priorities, in line with previous quasipolynomial-time solutions.
AbstractList Zielonka's classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity is exponential, while currently the state-of-the-art algorithms have quasipolynomial complexity. Here, we present a modification of Zielonka's classic algorithm that brings its complexity down to $n^{O\left(\log\left(1+\frac{d}{\log n}\right)\right)}$, for parity games of size $n$ with $d$ priorities, in line with previous quasipolynomial-time solutions.
Zielonka's classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity is exponential, while currently the state-of-the-art algorithms have quasipolynomial complexity. Here, we present a modification of Zielonka's classic algorithm that brings its complexity down to $n^{O\left(\log\left(1+\frac{d}{\log n}\right)\right)}$, for parity games of size $n$ with $d$ priorities, in line with previous quasipolynomial-time solutions.
Zielonka's classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity is exponential, while currently the state-of-the-art algorithms have quasipolynomial complexity. Here, we present a modification of Zielonka's classic algorithm that brings its complexity down to $n^{\mathcal{O}\left(\log\left(1+\frac{d}{\log n}\right)\right)}$, for parity games of size $n$ with $d$ priorities, in line with previous quasipolynomial-time solutions.
Author Lehtinen, Karoliina
Schewe, Sven
Parys, Paweł
Wojtczak, Dominik
Author_xml – sequence: 1
  givenname: Karoliina
  surname: Lehtinen
  fullname: Lehtinen, Karoliina
– sequence: 2
  givenname: Paweł
  orcidid: 0000-0001-7247-1408
  surname: Parys
  fullname: Parys, Paweł
– sequence: 3
  givenname: Sven
  orcidid: 0000-0002-9093-9518
  surname: Schewe
  fullname: Schewe, Sven
– sequence: 4
  givenname: Dominik
  surname: Wojtczak
  fullname: Wojtczak, Dominik
BackLink https://hal.science/hal-03320012$$DView record in HAL
BookMark eNpVkctOAjEUhhuDiYg8gLsuZTHa-3TcEVQgIfGG66ZTWiiZmZIWSHh7BzBGz-ac_PnPl3O5Bp0mNBaAW4zumSCFfKhqkzIs7_CjHBBEyAXoYilQxoucdf7UV6Cf0hq1QSmWRHTB0xB-WLOLye8tHG42MWizgtsAP0O1980Svunotwc41rVN0DfwfaeT34Tq0ITa6wrOfW1vwKXTVbL9n9wDXy_P89Ekm72Op6PhLDOUoW1GypxhuqCUM8QEFahg1pZCu4WWnDlHjUSSm5yI3HHNSsQosvK4T26sKwjtgemZuwh6rTbR1zoeVNBenYQQl0rHrTeVVbwoS4OJli53zJJS88KhQgpZMMkF4y1rcGatdPUPNRnO1FFrT0QQwmSPWy8-e00MKUXrfhswUqcPqOMHFJYKK6mOE9NvSSR5Mw
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.46298/lmcs-18(1:8)2022
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
EndPage 8:18
ExternalDocumentID oai_doaj_org_article_59bbc12a8f7f4e2ba59f098689485645
oai:HAL:hal-03320012v1
10_46298_lmcs_18_1_8_2022
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
1XC
VOOES
ID FETCH-LOGICAL-c340t-2b7413d335404636094eeb6afda854ff3c8085c7267f5a4b0430e820227cef923
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001127421400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-5974
IngestDate Fri Oct 03 12:38:40 EDT 2025
Tue Oct 14 20:39:27 EDT 2025
Sat Nov 29 06:21:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-2b7413d335404636094eeb6afda854ff3c8085c7267f5a4b0430e820227cef923
ORCID 0000-0002-9093-9518
0000-0001-7247-1408
OpenAccessLink https://doaj.org/article/59bbc12a8f7f4e2ba59f098689485645
ParticipantIDs doaj_primary_oai_doaj_org_article_59bbc12a8f7f4e2ba59f098689485645
hal_primary_oai_HAL_hal_03320012v1
crossref_primary_10_46298_lmcs_18_1_8_2022
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Logical methods in computer science
PublicationYear 2022
Publisher Logical Methods in Computer Science Association
Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science Association
– name: Logical Methods in Computer Science e.V
SSID ssj0000331826
Score 2.3596249
Snippet Zielonka's classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity...
Zielonka's classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 8:1
SubjectTerms Computer Science
computer science - computer science and game theory
computer science - formal languages and automata theory
Title A Recursive Approach to Solving Parity Games in Quasipolynomial Time
URI https://hal.science/hal-03320012
https://doaj.org/article/59bbc12a8f7f4e2ba59f098689485645
Volume 18, Issue 1
WOSCitedRecordID wos001127421400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LS8MwGA8yPHjxLc4XQTyoUNZH2ibepm7uoGO-YLeQpAkOZjv2Ai_-7eZLO9lOXryUEEqS_r6m36Nffh9CF1TqTGfUeIGOfY9kLPAEsa1Q-IIJcIli6YpNpN0u7fdZb6nUF-SElfTAJXCNmEmpglBQkxqiQyliZnxGEwq0Jglx7KXW6llyptw3OIrAcC5_Y5IkZLQx_FQTL6CXwQ29sh5_uKKIHF-_VS8fi3CqUy_tbbRZ2YW4Wa5nB63pfBdtLWou4GoL7qH7Jn6BEDlkneNmRQiOpwV-LYYQG8A9AeXo8ANkv-JBjp9nYjIYFcMvOH9sZ4AzH_vovd16u-t4VSUET0XEn3qhtIo_yiII0jiGL0a0lokwmaAxMSZS1JpOKg2T1MSCSCDy0hSeMlXaWBvuANXyIteHCEclKRshKaNExZqpTBuZZSSlyog4qaPrBSx8VBJecOsoOAw5YMgDygNOOYxeR7cA3O-NwFXtOqwEeSVB_pcE6-jcwr4yRqf5yKHPihFyvsJ5cPQfMx2jDVh1GUE5QbXpeKZP0bqaTweT8Zl7g-z16bv1A_0OyTA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Recursive+Approach+to+Solving+Parity+Games+in+Quasipolynomial+Time&rft.jtitle=Logical+methods+in+computer+science&rft.au=Lehtinen%2C+Karoliina&rft.au=Parys%2C+Pawe%C5%82&rft.au=Schewe%2C+Sven&rft.au=Wojtczak%2C+Dominik&rft.date=2022-01-01&rft.pub=Logical+Methods+in+Computer+Science+Association&rft.eissn=1860-5974&rft.volume=18&rft.issue=1&rft.spage=8%3A1&rft.epage=8%3A18&rft_id=info:doi/10.46298%2FLMCS-18%281%3A8%292022&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03320012v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon