Zoll magnetic systems on the two-torus: A Nash–Moser construction

We construct an infinite-dimensional family of smooth integrable magnetic systems on the two-torus which are Zoll, meaning that all the unit-speed magnetic geodesics are periodic. The metric and the magnetic field of such systems are arbitrarily close to the flat metric and to a given constant magne...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in mathematics (New York. 1965) Ročník 452; s. 109826
Hlavní autoři: Asselle, Luca, Benedetti, Gabriele, Berti, Massimiliano
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.08.2024
Témata:
ISSN:0001-8708, 1090-2082
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We construct an infinite-dimensional family of smooth integrable magnetic systems on the two-torus which are Zoll, meaning that all the unit-speed magnetic geodesics are periodic. The metric and the magnetic field of such systems are arbitrarily close to the flat metric and to a given constant magnetic field. This extends to the magnetic setting a famous result by Guillemin [19] on the two-sphere. We characterize Zoll magnetic systems as zeros of a suitable action functional S, and then look for its zeros by means of a Nash–Moser implicit function theorem. This requires showing the right-invertibility of the linearized operator dS in a neighborhood of the flat metric and constant magnetic field, and establishing tame estimates for the right inverse. As key step we prove the invertibility of the normal operator dS∘dS⁎ which, unlike in Guillemin's case, is pseudo-differential only at the highest order. We overcome this difficulty noting that, by the asymptotic properties of Bessel functions, the lower order expansion of dS∘dS⁎ is a sum of Fourier integral operators. We then use a resolvent identity decomposition which reduces the problem to the invertibility of dS∘dS⁎ restricted to the subspace of functions corresponding to high Fourier modes. The inversion of such a restricted operator is finally achieved by making the crucial observation that lower order Fourier integral operators satisfy asymmetric tame estimates.
AbstractList We construct an infinite-dimensional family of smooth integrable magnetic systems on the two-torus which are Zoll, meaning that all the unit-speed magnetic geodesics are periodic. The metric and the magnetic field of such systems are arbitrarily close to the flat metric and to a given constant magnetic field. This extends to the magnetic setting a famous result by Guillemin [19] on the two-sphere. We characterize Zoll magnetic systems as zeros of a suitable action functional S, and then look for its zeros by means of a Nash–Moser implicit function theorem. This requires showing the right-invertibility of the linearized operator dS in a neighborhood of the flat metric and constant magnetic field, and establishing tame estimates for the right inverse. As key step we prove the invertibility of the normal operator dS∘dS⁎ which, unlike in Guillemin's case, is pseudo-differential only at the highest order. We overcome this difficulty noting that, by the asymptotic properties of Bessel functions, the lower order expansion of dS∘dS⁎ is a sum of Fourier integral operators. We then use a resolvent identity decomposition which reduces the problem to the invertibility of dS∘dS⁎ restricted to the subspace of functions corresponding to high Fourier modes. The inversion of such a restricted operator is finally achieved by making the crucial observation that lower order Fourier integral operators satisfy asymmetric tame estimates.
ArticleNumber 109826
Author Benedetti, Gabriele
Berti, Massimiliano
Asselle, Luca
Author_xml – sequence: 1
  givenname: Luca
  surname: Asselle
  fullname: Asselle, Luca
  email: luca.asselle@rub.de
  organization: Ruhr-Universität Bochum, Fakultät für Mathematik, Universitätsstraße 150, 44801 Bochum, Germany
– sequence: 2
  givenname: Gabriele
  surname: Benedetti
  fullname: Benedetti, Gabriele
  email: g.benedetti@vu.nl
  organization: Vrije Universiteit Amsterdam, Department of Mathematics, De Boelelaan 1111, 1081 HV Amsterdam, Netherlands
– sequence: 3
  givenname: Massimiliano
  surname: Berti
  fullname: Berti, Massimiliano
  email: berti@sissa.it
  organization: SISSA, Via Bonomea 265, 34136, Trieste, Italy
BookMark eNp9kD1OAzEQRi0UJELgAHS-wAbbG9Y2VFHEnxSggYbGcuwxcbS7RrYDSscduCEnwVGoKFLNfMUbzfeO0aAPPSB0RsmYEtqcr8bad2NG2KRkKVhzgIZlIRUjgg3QkBBCK8GJOELHKa1KlBMqh2j2GtoWd_qth-wNTpuUoUs49DgvAefPUOUQ1-kST_GjTsufr--HkCBiE_qU49pkH_oTdOh0m-D0b47Qy8318-yumj_d3s-m88rUE5IrJu1Cc8O5q8FQRxfSLJwWjmsNopFUs1pSLjmxzpqL2hpa6lDBoLHSaqHrEaK7uyaGlCI49R59p-NGUaK2FtRKFQtqa0HtLBSG_2OMz3r7dY7at3vJqx0JpdKHh6iS8dAbsD6CycoGv4f-Bf9Retg
CitedBy_id crossref_primary_10_1112_blms_70059
Cites_doi 10.4310/JSG.2022.v20.n1.a3
10.4310/jdg/1519959623
10.1088/1361-6544/ab839c
10.1112/blms/bdw050
10.1017/S0305004121000311
10.1007/s12220-020-00379-1
10.1007/BF00251855
10.1007/BF01449019
10.1007/s00039-014-0250-2
10.4310/jdg/1090351530
10.1007/BF01058438
10.1016/0001-8708(76)90139-0
10.4171/211
10.1007/s00039-023-00624-z
10.4171/pm/2039
10.1007/s00205-015-0842-5
10.5802/jep.231
10.4171/jems/361
10.1090/tran/8233
10.1007/s00222-017-0755-z
10.1007/BF01456044
10.1090/S0273-0979-1982-15004-2
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.aim.2024.109826
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-2082
ExternalDocumentID 10_1016_j_aim_2024_109826
S0001870824003414
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABCQX
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABVKL
ABXDB
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D0L
DM4
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
UPT
WH7
XOL
XPP
ZCG
ZKB
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c340t-29dba7c77f3ec1f1b9cbfa8f7aae8691a23917970dfdc53dc1202182e6d9da8a3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001266861200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-8708
IngestDate Tue Nov 18 22:17:49 EST 2025
Sat Nov 29 06:33:59 EST 2025
Sat Jul 27 15:42:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hamiltonian systems
Magnetic geodesics
Nash–Moser implicit function theorem
Zoll flows
Fourier integral operators
Bessel functions
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-29dba7c77f3ec1f1b9cbfa8f7aae8691a23917970dfdc53dc1202182e6d9da8a3
OpenAccessLink https://dx.doi.org/10.1016/j.aim.2024.109826
ParticipantIDs crossref_primary_10_1016_j_aim_2024_109826
crossref_citationtrail_10_1016_j_aim_2024_109826
elsevier_sciencedirect_doi_10_1016_j_aim_2024_109826
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Advances in mathematics (New York. 1965)
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ambrozio, Marques, Neves (br0060) 2021
Zoll (br0290) 1903; 57
Mazzucchelli, Suhr (br0260) 2022; 172
Tabachnikov (br0280) 2004
Benedetti (br0100) 2016; 48
Hörmander (br0220) 1976; 62
Guillemin (br0190) 1976; 22
Katz (br0230) 2007; vol. 137
Lochak (br0250) 1992; 47
Benedetti, Kang (br0110) 2020; 76
Abbondandolo, Bramham, Hryniewicz, Salomão (br0030) 2021; 374
Berti, Bolle (br0140) 2020
Berti, Bolle (br0130) 2013; 15
Asselle, Benedetti (br0070) 2021; 31
Lebrun, Mason (br0240) 2002; 61
Alazard, Baldi (br0040) 2015; 217
Hamilton (br0200) 1982; 7
Abbondandolo, Benedetti (br0010) 2023
Bambusi, Giorgilli (br0090) 1993; 71
Benedetti, Kang (br0120) 2022; 20
Besse (br0160) 1978; vol. 93
Funk (br0180) 1913; 74
Asselle, Lange (br0080) 2020; 33
Bohr, Paternain (br0170) 2023; 10
Stein (br0270) 1993
Berti, Montalto (br0150) 2020; 263
Álvarez Paiva, Balacheff (br0050) 2014; 24
Holman, Uhlmann (br0210) 2018; 108
Abbondandolo, Bramham, Hryniewicz, Salomão (br0020) 2018; 211
Abbondandolo (10.1016/j.aim.2024.109826_br0030) 2021; 374
Berti (10.1016/j.aim.2024.109826_br0140) 2020
Berti (10.1016/j.aim.2024.109826_br0150) 2020; 263
Hamilton (10.1016/j.aim.2024.109826_br0200) 1982; 7
Stein (10.1016/j.aim.2024.109826_br0270) 1993
Holman (10.1016/j.aim.2024.109826_br0210) 2018; 108
Ambrozio (10.1016/j.aim.2024.109826_br0060)
Berti (10.1016/j.aim.2024.109826_br0130) 2013; 15
Mazzucchelli (10.1016/j.aim.2024.109826_br0260) 2022; 172
Álvarez Paiva (10.1016/j.aim.2024.109826_br0050) 2014; 24
Zoll (10.1016/j.aim.2024.109826_br0290) 1903; 57
Abbondandolo (10.1016/j.aim.2024.109826_br0010) 2023
Alazard (10.1016/j.aim.2024.109826_br0040) 2015; 217
Benedetti (10.1016/j.aim.2024.109826_br0100) 2016; 48
Tabachnikov (10.1016/j.aim.2024.109826_br0280) 2004
Hörmander (10.1016/j.aim.2024.109826_br0220) 1976; 62
Benedetti (10.1016/j.aim.2024.109826_br0120) 2022; 20
Bambusi (10.1016/j.aim.2024.109826_br0090) 1993; 71
Guillemin (10.1016/j.aim.2024.109826_br0190) 1976; 22
Abbondandolo (10.1016/j.aim.2024.109826_br0020) 2018; 211
Bohr (10.1016/j.aim.2024.109826_br0170) 2023; 10
Funk (10.1016/j.aim.2024.109826_br0180) 1913; 74
Lochak (10.1016/j.aim.2024.109826_br0250) 1992; 47
Katz (10.1016/j.aim.2024.109826_br0230) 2007; vol. 137
Asselle (10.1016/j.aim.2024.109826_br0070) 2021; 31
Besse (10.1016/j.aim.2024.109826_br0160) 1978; vol. 93
Asselle (10.1016/j.aim.2024.109826_br0080) 2020; 33
Benedetti (10.1016/j.aim.2024.109826_br0110) 2020; 76
Lebrun (10.1016/j.aim.2024.109826_br0240) 2002; 61
References_xml – volume: 61
  start-page: 453
  year: 2002
  end-page: 535
  ident: br0240
  article-title: Zoll manifolds and complex surfaces
  publication-title: J. Differ. Geom.
– volume: 76
  start-page: 327
  year: 2020
  end-page: 394
  ident: br0110
  article-title: On a local systolic inequality for odd-symplectic forms
  publication-title: Port. Math.
– volume: 7
  start-page: 65
  year: 1982
  end-page: 222
  ident: br0200
  article-title: The inverse function theorem of Nash and Moser
  publication-title: Bull. Am. Math. Soc. (N. S.)
– volume: 22
  start-page: 85
  year: 1976
  end-page: 119
  ident: br0190
  article-title: The Radon transform on Zoll surfaces
  publication-title: Adv. Math.
– volume: 374
  start-page: 1815
  year: 2021
  end-page: 1845
  ident: br0030
  article-title: Sharp systolic inequalities for Riemannian and Finsler spheres of revolution
  publication-title: Trans. Am. Math. Soc.
– volume: 24
  start-page: 648
  year: 2014
  end-page: 669
  ident: br0050
  article-title: Contact geometry and isosystolic inequalities
  publication-title: Geom. Funct. Anal.
– volume: 10
  start-page: 727
  year: 2023
  end-page: 769
  ident: br0170
  article-title: The transport Oka–Grauert principle for simple surfaces
  publication-title: J. Éc. polytech. Math.
– start-page: 233
  year: 2004
  end-page: 250
  ident: br0280
  article-title: Remarks on magnetic flows and magnetic billiards, Finsler metrics and a magnetic analog of Hilbert's fourth problem
  publication-title: Modern Dynamical Systems and Applications
– volume: 57
  start-page: 108
  year: 1903
  end-page: 133
  ident: br0290
  article-title: Über Flächen mit Scharen geschlossener geodätischer Linien
  publication-title: Math. Ann.
– volume: 31
  start-page: 2924
  year: 2021
  end-page: 2940
  ident: br0070
  article-title: Integrable magnetic flows on the two-torus: Zoll examples and systolic inequalities
  publication-title: J. Geom. Anal.
– year: 2020
  ident: br0140
  article-title: Quasi-Periodic Solutions of Nonlinear Wave Equations on the
  publication-title: EMS Monographs in Mathematics
– year: 1993
  ident: br0270
  article-title: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals
– volume: 62
  start-page: 1
  year: 1976
  end-page: 52
  ident: br0220
  article-title: The boundary problems of physical geodesy
  publication-title: Arch. Ration. Mech. Anal.
– volume: vol. 93
  year: 1978
  ident: br0160
  article-title: Manifolds All of Whose Geodesics Are Closed
  publication-title: Ergebnisse der Mathematik und Ihrer Grenzgebiete
– volume: 20
  start-page: 99
  year: 2022
  end-page: 134
  ident: br0120
  article-title: On a systolic inequality for closed magnetic geodesics on surfaces
  publication-title: J. Symplectic Geom.
– volume: 172
  start-page: 591
  year: 2022
  end-page: 615
  ident: br0260
  article-title: A min-max characterization of Zoll Riemannian metrics
  publication-title: Math. Proc. Camb. Philos. Soc.
– volume: 217
  start-page: 741
  year: 2015
  end-page: 830
  ident: br0040
  article-title: Gravity capillary standing water waves
  publication-title: Arch. Ration. Mech. Anal.
– volume: 108
  start-page: 459
  year: 2018
  end-page: 494
  ident: br0210
  article-title: On the microlocal analysis of the geodesic X-ray transform with conjugate points
  publication-title: J. Differ. Geom.
– year: 2023
  ident: br0010
  article-title: On the local systolic optimality of Zoll contact forms
  publication-title: Geom. Funct. Anal.
– volume: 48
  start-page: 855
  year: 2016
  end-page: 865
  ident: br0100
  article-title: Magnetic Katok examples on the two-sphere
  publication-title: Bull. Lond. Math. Soc.
– volume: 263
  year: 2020
  ident: br0150
  article-title: Quasi-periodic standing wave solutions of gravity-capillary water waves
  publication-title: Mem. Am. Math. Soc.
– volume: 33
  start-page: 3173
  year: 2020
  end-page: 3194
  ident: br0080
  article-title: On the rigidity of Zoll magnetic systems on surfaces
  publication-title: Nonlinearity
– volume: 211
  start-page: 687
  year: 2018
  end-page: 778
  ident: br0020
  article-title: Sharp systolic inequalities for Reeb flows on the three-sphere
  publication-title: Invent. Math.
– volume: vol. 137
  year: 2007
  ident: br0230
  article-title: Systolic Geometry and Topology
  publication-title: Mathematical Surveys and Monographs
– volume: 74
  start-page: 278
  year: 1913
  end-page: 300
  ident: br0180
  article-title: Über Flächen mit lauter geschlossenen geodätischen Linien
  publication-title: Math. Ann.
– volume: 15
  start-page: 229
  year: 2013
  end-page: 286
  ident: br0130
  article-title: Quasi-periodic solutions with Sobolev regularity of NLS on
  publication-title: J. Eur. Math. Soc.
– year: 2021
  ident: br0060
  article-title: Riemannian metrics on the sphere with Zoll families of minimal hypersurfaces
– volume: 47
  start-page: 59
  year: 1992
  end-page: 140
  ident: br0250
  article-title: Canonical perturbation theory: an approach based on joint approximations
  publication-title: Usp. Mat. Nauk
– volume: 71
  start-page: 569
  year: 1993
  end-page: 606
  ident: br0090
  article-title: Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems
  publication-title: J. Stat. Phys.
– volume: 20
  start-page: 99
  issue: 1
  year: 2022
  ident: 10.1016/j.aim.2024.109826_br0120
  article-title: On a systolic inequality for closed magnetic geodesics on surfaces
  publication-title: J. Symplectic Geom.
  doi: 10.4310/JSG.2022.v20.n1.a3
– volume: 108
  start-page: 459
  issue: 3
  year: 2018
  ident: 10.1016/j.aim.2024.109826_br0210
  article-title: On the microlocal analysis of the geodesic X-ray transform with conjugate points
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1519959623
– volume: 33
  start-page: 3173
  year: 2020
  ident: 10.1016/j.aim.2024.109826_br0080
  article-title: On the rigidity of Zoll magnetic systems on surfaces
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ab839c
– volume: 48
  start-page: 855
  issue: 5
  year: 2016
  ident: 10.1016/j.aim.2024.109826_br0100
  article-title: Magnetic Katok examples on the two-sphere
  publication-title: Bull. Lond. Math. Soc.
  doi: 10.1112/blms/bdw050
– volume: vol. 93
  year: 1978
  ident: 10.1016/j.aim.2024.109826_br0160
  article-title: Manifolds All of Whose Geodesics Are Closed
– volume: 47
  start-page: 59
  issue: 6(288)
  year: 1992
  ident: 10.1016/j.aim.2024.109826_br0250
  article-title: Canonical perturbation theory: an approach based on joint approximations
  publication-title: Usp. Mat. Nauk
– volume: 172
  start-page: 591
  issue: 3
  year: 2022
  ident: 10.1016/j.aim.2024.109826_br0260
  article-title: A min-max characterization of Zoll Riemannian metrics
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004121000311
– volume: 31
  start-page: 2924
  year: 2021
  ident: 10.1016/j.aim.2024.109826_br0070
  article-title: Integrable magnetic flows on the two-torus: Zoll examples and systolic inequalities
  publication-title: J. Geom. Anal.
  doi: 10.1007/s12220-020-00379-1
– volume: 62
  start-page: 1
  issue: 1
  year: 1976
  ident: 10.1016/j.aim.2024.109826_br0220
  article-title: The boundary problems of physical geodesy
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00251855
– volume: 57
  start-page: 108
  year: 1903
  ident: 10.1016/j.aim.2024.109826_br0290
  article-title: Über Flächen mit Scharen geschlossener geodätischer Linien
  publication-title: Math. Ann.
  doi: 10.1007/BF01449019
– volume: 24
  start-page: 648
  issue: 2
  year: 2014
  ident: 10.1016/j.aim.2024.109826_br0050
  article-title: Contact geometry and isosystolic inequalities
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s00039-014-0250-2
– volume: 61
  start-page: 453
  issue: 3
  year: 2002
  ident: 10.1016/j.aim.2024.109826_br0240
  article-title: Zoll manifolds and complex surfaces
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1090351530
– volume: 71
  start-page: 569
  issue: 3–4
  year: 1993
  ident: 10.1016/j.aim.2024.109826_br0090
  article-title: Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01058438
– volume: 22
  start-page: 85
  year: 1976
  ident: 10.1016/j.aim.2024.109826_br0190
  article-title: The Radon transform on Zoll surfaces
  publication-title: Adv. Math.
  doi: 10.1016/0001-8708(76)90139-0
– year: 2020
  ident: 10.1016/j.aim.2024.109826_br0140
  article-title: Quasi-Periodic Solutions of Nonlinear Wave Equations on the d-Dimensional Torus
  doi: 10.4171/211
– start-page: 233
  year: 2004
  ident: 10.1016/j.aim.2024.109826_br0280
  article-title: Remarks on magnetic flows and magnetic billiards, Finsler metrics and a magnetic analog of Hilbert's fourth problem
– year: 2023
  ident: 10.1016/j.aim.2024.109826_br0010
  article-title: On the local systolic optimality of Zoll contact forms
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s00039-023-00624-z
– volume: 76
  start-page: 327
  issue: 3–4
  year: 2020
  ident: 10.1016/j.aim.2024.109826_br0110
  article-title: On a local systolic inequality for odd-symplectic forms
  publication-title: Port. Math.
  doi: 10.4171/pm/2039
– volume: 217
  start-page: 741
  issue: 3
  year: 2015
  ident: 10.1016/j.aim.2024.109826_br0040
  article-title: Gravity capillary standing water waves
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-015-0842-5
– volume: 10
  start-page: 727
  year: 2023
  ident: 10.1016/j.aim.2024.109826_br0170
  article-title: The transport Oka–Grauert principle for simple surfaces
  publication-title: J. Éc. polytech. Math.
  doi: 10.5802/jep.231
– volume: 15
  start-page: 229
  issue: 1
  year: 2013
  ident: 10.1016/j.aim.2024.109826_br0130
  article-title: Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/jems/361
– volume: 374
  start-page: 1815
  issue: 3
  year: 2021
  ident: 10.1016/j.aim.2024.109826_br0030
  article-title: Sharp systolic inequalities for Riemannian and Finsler spheres of revolution
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/8233
– year: 1993
  ident: 10.1016/j.aim.2024.109826_br0270
– volume: 263
  issue: 1273
  year: 2020
  ident: 10.1016/j.aim.2024.109826_br0150
  article-title: Quasi-periodic standing wave solutions of gravity-capillary water waves
  publication-title: Mem. Am. Math. Soc.
– volume: 211
  start-page: 687
  issue: 2
  year: 2018
  ident: 10.1016/j.aim.2024.109826_br0020
  article-title: Sharp systolic inequalities for Reeb flows on the three-sphere
  publication-title: Invent. Math.
  doi: 10.1007/s00222-017-0755-z
– ident: 10.1016/j.aim.2024.109826_br0060
– volume: 74
  start-page: 278
  year: 1913
  ident: 10.1016/j.aim.2024.109826_br0180
  article-title: Über Flächen mit lauter geschlossenen geodätischen Linien
  publication-title: Math. Ann.
  doi: 10.1007/BF01456044
– volume: vol. 137
  year: 2007
  ident: 10.1016/j.aim.2024.109826_br0230
  article-title: Systolic Geometry and Topology
– volume: 7
  start-page: 65
  issue: 1
  year: 1982
  ident: 10.1016/j.aim.2024.109826_br0200
  article-title: The inverse function theorem of Nash and Moser
  publication-title: Bull. Am. Math. Soc. (N. S.)
  doi: 10.1090/S0273-0979-1982-15004-2
SSID ssj0009419
Score 2.415217
Snippet We construct an infinite-dimensional family of smooth integrable magnetic systems on the two-torus which are Zoll, meaning that all the unit-speed magnetic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109826
SubjectTerms Bessel functions
Fourier integral operators
Hamiltonian systems
Magnetic geodesics
Nash–Moser implicit function theorem
Zoll flows
Title Zoll magnetic systems on the two-torus: A Nash–Moser construction
URI https://dx.doi.org/10.1016/j.aim.2024.109826
Volume 452
WOSCitedRecordID wos001266861200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2082
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009419
  issn: 0001-8708
  databaseCode: AIEXJ
  dateStart: 20211212
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVgygIWqLxEeckLVowySuJMbHc3VC0PaUYsijRiE_lJp2KSqplCl_0H_pAv4Tp2HhSK6IJNNMo4Hsv3zM299vG5CL2UwmQCIuFICk6iLE90BK8REUlHqWE21THRTbEJuliw5ZJ_CDumdVNOgJYlOz_nJ__V1HAPjO2Ozl7D3F2ncAM-g9HhCmaH6z8Z_hNYdrwWn0t3PDEoNbd7AuPNtyqCLPus9ifSF6I-aukOZF7B-BwNvdOUHUauM08WaOiz607rtR5W85mMnXDgcG2hrt2-QJP7n_WcoNfgX7XZeCLBGyFP3SH3_svAMJhDWL9ar9wyTDVcm0izjhnX-9sE_G3Mhv4285K1wWMmMWf-zPxvztyvKxxPxMpJBqTZpG_7q3D2pRdaRzNsGWzHBXRRuC4K38VNtJXSKWcjtDV7t79838s0Z0lImPy4233whhF4aRx_jmQG0cnhNrob0go883C4h26Y8j66M-_t9ADtOWDgFhg4AANXJYZGuAPGLp5hB4sfF98bQOAhIB6ijwf7h3tvo1BCI1IkizdRyrUUVFFqiVGJTSRX0gpmqRCG5TwRKYF8ndNYW62mRKskbTT9Ta65FkyQR2hUVqV5jLASOZWccmlsmimVCylT-DcTaYkVekp3UNxOR6GCvrwrc_KluNIMO-hV98iJF1f5W-OsneMiRIc-6isAL1c_9uQ6v_EU3e5h_AyNYHbNc3RLfd2s6tMXASw_AT12g-g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zoll+magnetic+systems+on+the+two-torus%3A+A+Nash%E2%80%93Moser+construction&rft.jtitle=Advances+in+mathematics+%28New+York.+1965%29&rft.au=Asselle%2C+Luca&rft.au=Benedetti%2C+Gabriele&rft.au=Berti%2C+Massimiliano&rft.date=2024-08-01&rft.issn=0001-8708&rft.volume=452&rft.spage=109826&rft_id=info:doi/10.1016%2Fj.aim.2024.109826&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aim_2024_109826
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8708&client=summon