Massively-parallel Lagrangian particle code and applications

Massively-parallel, distributed-memory algorithms for the Lagrangian particle hydrodynamic method (Samulyak et al., 2018) have been developed, verified, and implemented. The key component of parallel algorithms is a particle management module that includes a parallel construction of octree databases...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mechanics research communications Ročník 129; číslo C; s. 104075
Hlavní autoři: Yuan, Shaohua, Aguilar, Mario Zepeda, Naitlho, Nizar, Samulyak, Roman
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.05.2023
Elsevier
Témata:
ISSN:0093-6413, 1873-3972
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Massively-parallel, distributed-memory algorithms for the Lagrangian particle hydrodynamic method (Samulyak et al., 2018) have been developed, verified, and implemented. The key component of parallel algorithms is a particle management module that includes a parallel construction of octree databases, dynamic adaptation and refinement of octrees, and particle migration between parallel subdomains. The particle management module is based on the p4est (parallel forest of k-trees) library. The massively-parallel Lagrangian particle code has been applied to a variety of fundamental science and applied problems. A summary of Lagrangian particle code applications to the injection of impurities into thermonuclear fusion devices and to the simulation of supersonic hydrogen jets in support of laser-plasma wakefield acceleration research has also been presented. •Massively-parallel, distributed-memory algorithms for Lagrangian particle method.•Particle manager based on parallel construction and dynamic adaptation of octrees.•Optimal load balance and good scalability on hundreds of cores.•Summary of applications to thermonuclear fusion and supersonic hydrogen jets.
AbstractList Massively-parallel, distributed-memory algorithms for the Lagrangian particle hydrodynamic method (Samulyak et al., 2018) have been developed, verified, and implemented. The key component of parallel algorithms is a particle management module that includes a parallel construction of octree databases, dynamic adaptation and refinement of octrees, and particle migration between parallel subdomains. The particle management module is based on the p4est (parallel forest of k-trees) library. The massively-parallel Lagrangian particle code has been applied to a variety of fundamental science and applied problems. A summary of Lagrangian particle code applications to the injection of impurities into thermonuclear fusion devices and to the simulation of supersonic hydrogen jets in support of laser-plasma wakefield acceleration research has also been presented. •Massively-parallel, distributed-memory algorithms for Lagrangian particle method.•Particle manager based on parallel construction and dynamic adaptation of octrees.•Optimal load balance and good scalability on hundreds of cores.•Summary of applications to thermonuclear fusion and supersonic hydrogen jets.
ArticleNumber 104075
Author Yuan, Shaohua
Aguilar, Mario Zepeda
Naitlho, Nizar
Samulyak, Roman
Author_xml – sequence: 1
  givenname: Shaohua
  surname: Yuan
  fullname: Yuan, Shaohua
  organization: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
– sequence: 2
  givenname: Mario Zepeda
  surname: Aguilar
  fullname: Aguilar, Mario Zepeda
  organization: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
– sequence: 3
  givenname: Nizar
  surname: Naitlho
  fullname: Naitlho, Nizar
  organization: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
– sequence: 4
  givenname: Roman
  orcidid: 0000-0002-1855-7400
  surname: Samulyak
  fullname: Samulyak, Roman
  email: roman.samulyak@stonybrook.edu
  organization: Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
BackLink https://www.osti.gov/biblio/1959269$$D View this record in Osti.gov
BookMark eNqFkEtrwzAQhEVJoUna_2B6d7pryQ9BL23oC1J6yV3I0jpVcGQjmUD-fW1c6LGnhWFnhvlWbOE7T4wlCBsELB6OmxOZ70DRdKdNBhkfZQFlfsWWWJU85bLMFmwJIHlaCOQ3bBXjEQBKKWDJHj91jO5M7SXtddBtS22y04eg_cFpn4za4ExLieksJdrbRPd964weXOfjLbtudBvp7veu2f71Zb99T3dfbx_bp11quIAhRZ0VpchAWGktt8LYXAqpkSoqKkS0tW20aURdAs8gtxwlNIja1lCXHPma3c-xXRycisYN42LTeU9mUChzmRVyfKrmJxO6GAM1qg_upMNFIaiJlDqqP1JqIqVmUqP1ebbSuOHsKEwd5A1ZF6YK27n_Q34AEmZ4qw
Cites_doi 10.1088/1741-4326/abdcd2
10.1063/5.0029721
10.1146/annurev.aa.30.090192.002551
10.1016/j.jcp.2016.12.004
10.1088/0034-4885/68/8/R01
10.1002/(SICI)1097-0207(19990320)44:8<1115::AID-NME547>3.0.CO;2-L
10.1016/j.cpc.2022.108396
10.1016/j.jcp.2014.03.041
10.1063/1.5095780
10.1016/j.jcp.2018.02.004
10.1016/S0307-904X(01)00029-4
10.1137/100791634
10.1063/5.0106724
10.1016/j.jcp.2007.01.039
10.1063/5.0110388
10.1002/fld.1650200824
10.1006/jcph.2000.6517
10.1016/0146-664X(82)90104-6
10.1063/5.0027167
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.mechrescom.2023.104075
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3972
ExternalDocumentID 1959269
10_1016_j_mechrescom_2023_104075
S0093641323000332
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
WUQ
ZMT
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
AAIAV
ABMYL
ABYKQ
AFKWA
AJOXV
AMFUW
OTOTI
ID FETCH-LOGICAL-c340t-1a2674204d9dd3d4cd5949a1e8e68111dbdfacf4b703205d3190f11adb0b7313
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000949054800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0093-6413
IngestDate Mon Mar 11 05:21:12 EDT 2024
Sat Nov 29 07:21:55 EST 2025
Sun Apr 06 06:56:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Multiphase flows
Lagrangian particle method
Parallel algorithms
Parallel k-tree
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-1a2674204d9dd3d4cd5949a1e8e68111dbdfacf4b703205d3190f11adb0b7313
Notes USDOE
SC0014043
ORCID 0000-0002-1855-7400
0000000218557400
OpenAccessLink https://www.osti.gov/biblio/2420317
ParticipantIDs osti_scitechconnect_1959269
crossref_primary_10_1016_j_mechrescom_2023_104075
elsevier_sciencedirect_doi_10_1016_j_mechrescom_2023_104075
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mechanics research communications
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hollmann, Naitlho, Yuan, Samulyak, Parks, Shiraki, Herfindal, Marini (b16) 2022; 29
Avesani, Dumbser, Bellin (b3) 2014; 270
Oger (b8) 2007; 225
Burstedde, Wilcox, Ghattas (b14) 2011; 33
Yuan, Naitlho, Samulyak, Pegourie, Nardon, Hollmann, Parks, Lehnen (b19) 2022; 29
Yu, Kumar, Yuan, Cheng, Samulyak (b15) 2022; 277
Kumar, Yu, Zgadzaj, Amorim, Downer, Welsh, Litvinenko, Vafaei-Najafabadi, Samulyak (b20) 2019; 26
Diltz (b5) 1999; 44
Monaghan (b4) 1992; 30
Samulyak, Yuan, Naitlho, Parks (b11) 2021; 61
Yee, Vinokur, Djomehri (b17) 2000; 162
Hopkins (b6) 2014; 450
Frontiere, Raskin, Owen (b2) 2017; 332
Zepeda (b12) 2022
Bosviel, Parks, Samulyak (b18) 2021; 28
Kumar, Yu, Zgadzaj, Downer, Petrushina, Samulyak, Litvinenko, Vafaei-Najafabadi (b21) 2021; 28
Liu, Sukky, Zhang (b7) 1995; 20
Monaghan (b1) 2005; 68
Samulyak, Wang, Chen (b9) 2018; 362
Meagher (b13) 1982; 19
Benito, Urena, Gavete (b10) 2001; 25
Frontiere (10.1016/j.mechrescom.2023.104075_b2) 2017; 332
Zepeda (10.1016/j.mechrescom.2023.104075_b12) 2022
Burstedde (10.1016/j.mechrescom.2023.104075_b14) 2011; 33
Yu (10.1016/j.mechrescom.2023.104075_b15) 2022; 277
Hollmann (10.1016/j.mechrescom.2023.104075_b16) 2022; 29
Yuan (10.1016/j.mechrescom.2023.104075_b19) 2022; 29
Avesani (10.1016/j.mechrescom.2023.104075_b3) 2014; 270
Hopkins (10.1016/j.mechrescom.2023.104075_b6) 2014; 450
Yee (10.1016/j.mechrescom.2023.104075_b17) 2000; 162
Oger (10.1016/j.mechrescom.2023.104075_b8) 2007; 225
Kumar (10.1016/j.mechrescom.2023.104075_b21) 2021; 28
Monaghan (10.1016/j.mechrescom.2023.104075_b1) 2005; 68
Diltz (10.1016/j.mechrescom.2023.104075_b5) 1999; 44
Kumar (10.1016/j.mechrescom.2023.104075_b20) 2019; 26
Monaghan (10.1016/j.mechrescom.2023.104075_b4) 1992; 30
Meagher (10.1016/j.mechrescom.2023.104075_b13) 1982; 19
Benito (10.1016/j.mechrescom.2023.104075_b10) 2001; 25
Bosviel (10.1016/j.mechrescom.2023.104075_b18) 2021; 28
Liu (10.1016/j.mechrescom.2023.104075_b7) 1995; 20
Samulyak (10.1016/j.mechrescom.2023.104075_b9) 2018; 362
Samulyak (10.1016/j.mechrescom.2023.104075_b11) 2021; 61
References_xml – volume: 332
  start-page: 160
  year: 2017
  end-page: 209
  ident: b2
  article-title: CRKSPH conservative reproducing kernel smoothed particle hydrodynamics scheme
  publication-title: J. Comput. Phys.
– volume: 33
  start-page: 1103
  year: 2011
  end-page: 1133
  ident: b14
  article-title: P4EST: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees
  publication-title: SIAM J. Sci. Comput.
– volume: 25
  start-page: 1039
  year: 2001
  end-page: 1053
  ident: b10
  article-title: Influence of several factors in the generalized finite difference method
  publication-title: Appl. Math. Model.
– volume: 28
  year: 2021
  ident: b18
  article-title: Near-field models and simulations of pellet ablation in tokamaks
  publication-title: Phys. Plasmas
– volume: 20
  start-page: 1081
  year: 1995
  end-page: 1106
  ident: b7
  article-title: Reproducing kernel particle methods
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 30
  start-page: 543
  year: 1992
  end-page: 574
  ident: b4
  article-title: Smoothed particle hydrodynamics
  publication-title: Annu. Rev. Astron. Astrophys.
– volume: 28
  year: 2021
  ident: b21
  article-title: Evolution of the self-injection process in long wavelength infrared laser driven LWFA
  publication-title: Phys. Plasmas
– volume: 29
  year: 2022
  ident: b16
  article-title: Measurement and simulation of small cryogenic neon pellet Ne-I 640 nm photon efficiency during ablation in DIII-D plasma
  publication-title: Phys. Plasmas
– year: 2022
  ident: b12
  article-title: Extension of the Lagrangian Particle Method to Multiphysics Problems and Applications
– volume: 29
  year: 2022
  ident: b19
  article-title: Lagrangian particle simulation of hydrogen pellets and SPI into runaway electron beam in ITER
  publication-title: Phys. Plasmas
– volume: 19
  start-page: 129
  year: 1982
  end-page: 147
  ident: b13
  article-title: Geometric modeling using octree encoding
  publication-title: Comput. Graph. Image Process.
– volume: 450
  year: 2014
  ident: b6
  article-title: GIZMO: a new class of accurate, mesh-free hydrodynamic simulation methods
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 362
  start-page: 1
  year: 2018
  end-page: 19
  ident: b9
  article-title: Lagrangian particle method for compressible fluid dynamics
  publication-title: J. Comput. Phys.
– volume: 225
  start-page: 1472
  year: 2007
  end-page: 1492
  ident: b8
  article-title: An improved SPH method: Towards higher order convergence
  publication-title: J. Comput. Phys.
– volume: 26
  year: 2019
  ident: b20
  article-title: Simulation study of CO2 laser-plasma interactions and self-modulated wakefield acceleration
  publication-title: Phys. Plasmas
– volume: 68
  start-page: 1703
  year: 2005
  end-page: 1759
  ident: b1
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Progr. Phys.
– volume: 277
  year: 2022
  ident: b15
  article-title: SPACE: 3D parallel solvers for Vlasov-Maxwell and Vlasov–Poisson equations for relativistic plasmas with atomic transformations
  publication-title: Comput. Phys. Comm.
– volume: 162
  start-page: 33
  year: 2000
  end-page: 81
  ident: b17
  article-title: Entropy splitting and numerical dissipation
  publication-title: J. Comput. Phys.
– volume: 61
  year: 2021
  ident: b11
  article-title: Lagrangian particle model for 3D simulation of pellets and SPI fragments in tokamaks
  publication-title: Nucl. Fusion
– volume: 44
  start-page: 1115
  year: 1999
  end-page: 1155
  ident: b5
  article-title: Moving-least-squares particle hydrodynamics - I. Consistency and stability
  publication-title: Int. J. Numer. Methods Eng.
– volume: 270
  start-page: 278
  year: 2014
  end-page: 299
  ident: b3
  article-title: A new class of moving-least-squares WENO-SPH schemes
  publication-title: J. Comput. Phys.
– volume: 61
  issue: 4
  year: 2021
  ident: 10.1016/j.mechrescom.2023.104075_b11
  article-title: Lagrangian particle model for 3D simulation of pellets and SPI fragments in tokamaks
  publication-title: Nucl. Fusion
  doi: 10.1088/1741-4326/abdcd2
– volume: 28
  year: 2021
  ident: 10.1016/j.mechrescom.2023.104075_b18
  article-title: Near-field models and simulations of pellet ablation in tokamaks
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0029721
– volume: 30
  start-page: 543
  year: 1992
  ident: 10.1016/j.mechrescom.2023.104075_b4
  article-title: Smoothed particle hydrodynamics
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev.aa.30.090192.002551
– volume: 332
  start-page: 160
  year: 2017
  ident: 10.1016/j.mechrescom.2023.104075_b2
  article-title: CRKSPH conservative reproducing kernel smoothed particle hydrodynamics scheme
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.12.004
– volume: 450
  year: 2014
  ident: 10.1016/j.mechrescom.2023.104075_b6
  article-title: GIZMO: a new class of accurate, mesh-free hydrodynamic simulation methods
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 68
  start-page: 1703
  year: 2005
  ident: 10.1016/j.mechrescom.2023.104075_b1
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/68/8/R01
– volume: 44
  start-page: 1115
  year: 1999
  ident: 10.1016/j.mechrescom.2023.104075_b5
  article-title: Moving-least-squares particle hydrodynamics - I. Consistency and stability
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19990320)44:8<1115::AID-NME547>3.0.CO;2-L
– year: 2022
  ident: 10.1016/j.mechrescom.2023.104075_b12
– volume: 277
  year: 2022
  ident: 10.1016/j.mechrescom.2023.104075_b15
  article-title: SPACE: 3D parallel solvers for Vlasov-Maxwell and Vlasov–Poisson equations for relativistic plasmas with atomic transformations
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2022.108396
– volume: 270
  start-page: 278
  year: 2014
  ident: 10.1016/j.mechrescom.2023.104075_b3
  article-title: A new class of moving-least-squares WENO-SPH schemes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.03.041
– volume: 26
  issue: 8
  year: 2019
  ident: 10.1016/j.mechrescom.2023.104075_b20
  article-title: Simulation study of CO2 laser-plasma interactions and self-modulated wakefield acceleration
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5095780
– volume: 362
  start-page: 1
  year: 2018
  ident: 10.1016/j.mechrescom.2023.104075_b9
  article-title: Lagrangian particle method for compressible fluid dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.02.004
– volume: 25
  start-page: 1039
  issue: 12
  year: 2001
  ident: 10.1016/j.mechrescom.2023.104075_b10
  article-title: Influence of several factors in the generalized finite difference method
  publication-title: Appl. Math. Model.
  doi: 10.1016/S0307-904X(01)00029-4
– volume: 33
  start-page: 1103
  issue: 3
  year: 2011
  ident: 10.1016/j.mechrescom.2023.104075_b14
  article-title: P4EST: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/100791634
– volume: 29
  year: 2022
  ident: 10.1016/j.mechrescom.2023.104075_b16
  article-title: Measurement and simulation of small cryogenic neon pellet Ne-I 640 nm photon efficiency during ablation in DIII-D plasma
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0106724
– volume: 225
  start-page: 1472
  year: 2007
  ident: 10.1016/j.mechrescom.2023.104075_b8
  article-title: An improved SPH method: Towards higher order convergence
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.01.039
– volume: 29
  year: 2022
  ident: 10.1016/j.mechrescom.2023.104075_b19
  article-title: Lagrangian particle simulation of hydrogen pellets and SPI into runaway electron beam in ITER
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0110388
– volume: 20
  start-page: 1081
  year: 1995
  ident: 10.1016/j.mechrescom.2023.104075_b7
  article-title: Reproducing kernel particle methods
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650200824
– volume: 162
  start-page: 33
  issue: 1
  year: 2000
  ident: 10.1016/j.mechrescom.2023.104075_b17
  article-title: Entropy splitting and numerical dissipation
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6517
– volume: 19
  start-page: 129
  year: 1982
  ident: 10.1016/j.mechrescom.2023.104075_b13
  article-title: Geometric modeling using octree encoding
  publication-title: Comput. Graph. Image Process.
  doi: 10.1016/0146-664X(82)90104-6
– volume: 28
  issue: 1
  year: 2021
  ident: 10.1016/j.mechrescom.2023.104075_b21
  article-title: Evolution of the self-injection process in long wavelength infrared laser driven LWFA
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0027167
SSID ssj0007940
Score 2.3251417
Snippet Massively-parallel, distributed-memory algorithms for the Lagrangian particle hydrodynamic method (Samulyak et al., 2018) have been developed, verified, and...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 104075
SubjectTerms Lagrangian particle method
Multiphase flows
Parallel algorithms
Parallel k-tree
Title Massively-parallel Lagrangian particle code and applications
URI https://dx.doi.org/10.1016/j.mechrescom.2023.104075
https://www.osti.gov/biblio/1959269
Volume 129
WOSCitedRecordID wos000949054800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3972
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007940
  issn: 0093-6413
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwN7mPgUY4DywNuUKXacpBZ7qdAQIFoh0YfCS2THTruRJtXWTB1_PXfY-YCBGEi8RFGkc2Lfz-c753dnQl5wFatA8dhnJokgQOHKFyZRfq5lHuYyYjn9nij8PplOR_O5-DAYbJtcmMsiKcvRdivW_1XV8AyUjamzf6HutlF4APegdLiC2uF6I8VPwB0GE1Zc-VjWuygM7lQvYEla4FxeO4lDzGW3lVp7v7D7rurEYFIwFnF2BYGQot7LJmmd8U-120RdympZt2Z-vKhPC0vfnkBAXh1-NmvTxf9TPLFnWVk0fpUtR_ijXNXFlfxiad8rB163L8F6LMDG1orQj7nNNG1trdvesNYSQsHAnptyzZDbPYWzoxX0FXqJzB58yVEn8mPt7J_WtJZp2JDYztKupRRbSm1Lt8gOSyIB9nBn_PZk_q5dxcFO2fQl1wvHArPcwF9_1e9cm2EF1rrntczukj0Xbnhjq_R7ZGDK-2S3V4TyATm-DhivA4zXAMZDwHgAGK8PmIdk9vpk9uqN787U8LOQBxufShYnnAVcC61DzTMdCS4kNSMTj2Dd00rnMsu5gpWABZEGCx3klEoNMzoJafiIDMuqNI-Jx2isTQTjA7Od6yxTKop5FoIAT0Jl6D6hzWika1s5Jf2TNvbJy2bYUucBWs8uBVzcQPoARxolsQByhkwxEMXySSwWT_7hew7InQ7aT8lwc16bZ-R2drk5vTh_7iDzDRBkjmo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Massively-parallel+Lagrangian+particle+code+and+applications&rft.jtitle=Mechanics+research+communications&rft.au=Yuan%2C+Shaohua&rft.au=Aguilar%2C+Mario+Zepeda&rft.au=Naitlho%2C+Nizar&rft.au=Samulyak%2C+Roman&rft.date=2023-05-01&rft.issn=0093-6413&rft.volume=129&rft.spage=104075&rft_id=info:doi/10.1016%2Fj.mechrescom.2023.104075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mechrescom_2023_104075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-6413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-6413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-6413&client=summon