Palindromic trees for a sliding window and its applications
•The first study of distinct palindromes in a sliding window.•Efficient algorithms to maintain all distinct palindromes in a sliding window.•Application for computing characteristic palindromic strings. The palindromic tree (a.k.a. eertree) for a string S of length n is a tree-like data structure th...
Gespeichert in:
| Veröffentlicht in: | Information processing letters Jg. 173; S. 106174 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.01.2022
|
| Schlagworte: | |
| ISSN: | 0020-0190, 1872-6119 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | •The first study of distinct palindromes in a sliding window.•Efficient algorithms to maintain all distinct palindromes in a sliding window.•Application for computing characteristic palindromic strings.
The palindromic tree (a.k.a. eertree) for a string S of length n is a tree-like data structure that represents the set of all distinct palindromic substrings of S, using O(n) space [Rubinchik and Shur, 2018]. It is known that, when S is over an alphabet of size σ and is given in an online manner, then the palindromic tree of S can be constructed in O(nlogσ) time with O(n) space. In this paper, we consider the sliding window version of the problem: For a sliding window of length at most d, we present two versions of an algorithm which maintains the palindromic tree of size O(d) for every sliding window S[i..j] over S, where 1≤j−i+1≤d. The first version works in O(nlogσ′) time with O(d) space where σ′≤d is the maximum number of distinct characters in the windows, and the second one works in O(n+dσ) time with (d+2)σ+O(d) space. We also show how our algorithms can be applied to efficient computation of minimal unique palindromic substrings (MUPS) and minimal absent palindromic words (MAPW) for a sliding window. |
|---|---|
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/j.ipl.2021.106174 |