The constrained shortest common supersequence problem
Shortest common supersequence and longest common subsequence are two widely used measures to compare sequences in different fields, from AI planning to Bioinformatics. Inspired by recently proposed variants of these two measures, we introduce a new version of the shortest common supersequence proble...
Uloženo v:
| Vydáno v: | Journal of discrete algorithms (Amsterdam, Netherlands) Ročník 21; s. 11 - 17 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.07.2013
|
| Témata: | |
| ISSN: | 1570-8667, 1570-8675 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Shortest common supersequence and longest common subsequence are two widely used measures to compare sequences in different fields, from AI planning to Bioinformatics. Inspired by recently proposed variants of these two measures, we introduce a new version of the shortest common supersequence problem, where the solution is required to satisfy a given constraint on the number of occurrences of each symbol. First, we investigate the computational and approximation complexity of the problem, then we give a 32-approximation algorithm. Finally, we investigate the parameterized complexity of the problem, and we present a fixed-parameter algorithm. |
|---|---|
| ISSN: | 1570-8667 1570-8675 |
| DOI: | 10.1016/j.jda.2013.03.004 |