The constrained shortest common supersequence problem

Shortest common supersequence and longest common subsequence are two widely used measures to compare sequences in different fields, from AI planning to Bioinformatics. Inspired by recently proposed variants of these two measures, we introduce a new version of the shortest common supersequence proble...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of discrete algorithms (Amsterdam, Netherlands) Ročník 21; s. 11 - 17
Hlavní autor: Dondi, Riccardo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2013
Témata:
ISSN:1570-8667, 1570-8675
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Shortest common supersequence and longest common subsequence are two widely used measures to compare sequences in different fields, from AI planning to Bioinformatics. Inspired by recently proposed variants of these two measures, we introduce a new version of the shortest common supersequence problem, where the solution is required to satisfy a given constraint on the number of occurrences of each symbol. First, we investigate the computational and approximation complexity of the problem, then we give a 32-approximation algorithm. Finally, we investigate the parameterized complexity of the problem, and we present a fixed-parameter algorithm.
ISSN:1570-8667
1570-8675
DOI:10.1016/j.jda.2013.03.004