The constrained shortest common supersequence problem

Shortest common supersequence and longest common subsequence are two widely used measures to compare sequences in different fields, from AI planning to Bioinformatics. Inspired by recently proposed variants of these two measures, we introduce a new version of the shortest common supersequence proble...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of discrete algorithms (Amsterdam, Netherlands) Ročník 21; s. 11 - 17
Hlavný autor: Dondi, Riccardo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.07.2013
Predmet:
ISSN:1570-8667, 1570-8675
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Shortest common supersequence and longest common subsequence are two widely used measures to compare sequences in different fields, from AI planning to Bioinformatics. Inspired by recently proposed variants of these two measures, we introduce a new version of the shortest common supersequence problem, where the solution is required to satisfy a given constraint on the number of occurrences of each symbol. First, we investigate the computational and approximation complexity of the problem, then we give a 32-approximation algorithm. Finally, we investigate the parameterized complexity of the problem, and we present a fixed-parameter algorithm.
ISSN:1570-8667
1570-8675
DOI:10.1016/j.jda.2013.03.004