Training Spiking Neural Networks Using Lessons From Deep Learning
The brain is the perfect place to look for inspiration to develop more efficient neural networks. The inner workings of our synapses and neurons provide a glimpse at what the future of deep learning might look like. This article serves as a tutorial and perspective showing how to apply the lessons l...
Saved in:
| Published in: | Proceedings of the IEEE Vol. 111; no. 9; pp. 1016 - 1054 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9219, 1558-2256 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The brain is the perfect place to look for inspiration to develop more efficient neural networks. The inner workings of our synapses and neurons provide a glimpse at what the future of deep learning might look like. This article serves as a tutorial and perspective showing how to apply the lessons learned from several decades of research in deep learning, gradient descent, backpropagation, and neuroscience to biologically plausible spiking neural networks (SNNs). We also explore the delicate interplay between encoding data as spikes and the learning process; the challenges and solutions of applying gradient-based learning to SNNs; the subtle link between temporal backpropagation and spike timing-dependent plasticity; and how deep learning might move toward biologically plausible online learning. Some ideas are well accepted and commonly used among the neuromorphic engineering community, while others are presented or justified for the first time here. A series of companion interactive tutorials complementary to this article using our Python package, snnTorch, are also made available: https://snntorch.readthedocs.io/en/latest/tutorials/index.html . |
|---|---|
| AbstractList | The brain is the perfect place to look for inspiration to develop more efficient neural networks. The inner workings of our synapses and neurons provide a glimpse at what the future of deep learning might look like. This article serves as a tutorial and perspective showing how to apply the lessons learned from several decades of research in deep learning, gradient descent, backpropagation, and neuroscience to biologically plausible spiking neural networks (SNNs). We also explore the delicate interplay between encoding data as spikes and the learning process; the challenges and solutions of applying gradient-based learning to SNNs; the subtle link between temporal backpropagation and spike timing-dependent plasticity; and how deep learning might move toward biologically plausible online learning. Some ideas are well accepted and commonly used among the neuromorphic engineering community, while others are presented or justified for the first time here. A series of companion interactive tutorials complementary to this article using our Python package, snnTorch, are also made available: https://snntorch.readthedocs.io/en/latest/tutorials/index.html . |
| Author | Jeong, Doo Seok Dwivedi, Girish Lenz, Gregor Wang, Xinxin Lu, Wei D. Bennamoun, Mohammed Ward, Max Eshraghian, Jason K. Neftci, Emre O. |
| Author_xml | – sequence: 1 givenname: Jason K. orcidid: 0000-0002-5832-4054 surname: Eshraghian fullname: Eshraghian, Jason K. email: Jeshragh@ucsc.edu organization: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA – sequence: 2 givenname: Max surname: Ward fullname: Ward, Max organization: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA – sequence: 3 givenname: Emre O. orcidid: 0000-0002-0332-3273 surname: Neftci fullname: Neftci, Emre O. organization: Department of Computer Science and the Department of Cognitive Sciences, University of California at Irvine (UC Irvine), Irvine, CA, USA – sequence: 4 givenname: Xinxin orcidid: 0000-0003-0136-5936 surname: Wang fullname: Wang, Xinxin organization: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA – sequence: 5 givenname: Gregor orcidid: 0000-0003-0619-3555 surname: Lenz fullname: Lenz, Gregor organization: SynSense AG, Zürich, Switzerland – sequence: 6 givenname: Girish orcidid: 0000-0003-0717-740X surname: Dwivedi fullname: Dwivedi, Girish organization: School of Medicine, The University of Western Australia, Crawley, WA, Australia – sequence: 7 givenname: Mohammed orcidid: 0000-0002-6603-3257 surname: Bennamoun fullname: Bennamoun, Mohammed organization: Department of Computer Science and Software Engineering, The University of Western Australia, Crawley, WA, Australia – sequence: 8 givenname: Doo Seok orcidid: 0000-0001-7954-2213 surname: Jeong fullname: Jeong, Doo Seok organization: Division of Materials Science and Engineering, Hanyang University, Seoul, South Korea – sequence: 9 givenname: Wei D. orcidid: 0000-0003-4731-1976 surname: Lu fullname: Lu, Wei D. organization: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA |
| BookMark | eNp9kE1LAzEQhoNUsK3-AfGw4HnrTJLdJsdSrR8UK9qeQ0wT2X5s1mSL9N-7a3sQD55eeJlnhnl6pFP60hJyiTBABHnz9PI6Gw8oUDZgDAQIcUK6mGUipTTLO6QLgCKVFOUZ6cW4AgCW5axLRvOgi7IoP5K3qli3-Wx3QW-aqL98WMdkEdt2amP0ZUwmwW-TW2urptGhBc_JqdObaC-O2SeLyd18_JBOZ_eP49E0NYxDnSLl-dAMda4z4Zh0POdINTBpnJFmicYKNHz4LpzJl8ANWu2YdQIlwpIawfrk-rC3Cv5zZ2OtVn4XyuakoiLPQILkspkShykTfIzBOmWKWteFL-vm0Y1CUK0w9SNMtcLUUViD0j9oFYqtDvv_oasDVFhrfwGUN-KRfQOX13ho |
| CODEN | IEEPAD |
| CitedBy_id | crossref_primary_10_1088_2634_4386_aded2d crossref_primary_10_1103_PhysRevApplied_23_034051 crossref_primary_10_1016_j_neucom_2024_129070 crossref_primary_10_1002_admt_202401677 crossref_primary_10_1109_TCAD_2025_3543439 crossref_primary_10_1038_s41586_024_08253_8 crossref_primary_10_1126_sciadv_adt3584 crossref_primary_10_1109_TCASAI_2024_3502573 crossref_primary_10_1109_TCAD_2024_3484353 crossref_primary_10_3390_a17040156 crossref_primary_10_1088_2634_4386_ada08b crossref_primary_10_1109_ACCESS_2025_3555539 crossref_primary_10_1109_TASC_2024_3359164 crossref_primary_10_1103_Physics_18_5 crossref_primary_10_3390_math13081361 crossref_primary_10_1002_aelm_202400835 crossref_primary_10_3389_fncom_2025_1559936 crossref_primary_10_1016_j_eng_2025_06_026 crossref_primary_10_1109_JRFID_2025_3600048 crossref_primary_10_1016_j_neunet_2024_106494 crossref_primary_10_1109_LWC_2024_3394318 crossref_primary_10_1109_TCSI_2022_3144240 crossref_primary_10_1016_j_patrec_2024_08_002 crossref_primary_10_1109_TCSI_2022_3160693 crossref_primary_10_1038_s41467_024_50490_y crossref_primary_10_1364_OE_564050 crossref_primary_10_1146_annurev_vision_101322_104600 crossref_primary_10_3390_app14135752 crossref_primary_10_1109_TRO_2024_3508053 crossref_primary_10_1109_TNNLS_2025_3526374 crossref_primary_10_1109_TAES_2023_3334216 crossref_primary_10_1109_TCSS_2024_3420445 crossref_primary_10_1109_TCSI_2024_3387993 crossref_primary_10_1088_2632_2153_ada220 crossref_primary_10_1109_LRA_2025_3585394 crossref_primary_10_1142_S0218126625500987 crossref_primary_10_1088_2634_4386_ad8c79 crossref_primary_10_1109_ACCESS_2022_3179968 crossref_primary_10_3390_particles8020052 crossref_primary_10_1038_s41467_024_52259_9 crossref_primary_10_3389_fnins_2024_1325062 crossref_primary_10_1002_aisy_202400265 crossref_primary_10_1038_s41598_024_77779_8 crossref_primary_10_1038_s43588_024_00677_6 crossref_primary_10_1109_ACCESS_2025_3528253 crossref_primary_10_1007_s40820_025_01902_1 crossref_primary_10_1109_JSEN_2024_3487021 crossref_primary_10_3389_fcomp_2024_1447745 crossref_primary_10_1109_ACCESS_2024_3479968 crossref_primary_10_1109_TCAD_2025_3537971 crossref_primary_10_1109_TCSI_2022_3141087 crossref_primary_10_3390_s24041329 crossref_primary_10_1038_s41467_025_63493_0 crossref_primary_10_1016_j_cej_2025_167677 crossref_primary_10_1002_adfm_202423267 crossref_primary_10_1016_j_engappai_2024_109415 crossref_primary_10_3389_fnins_2024_1420119 crossref_primary_10_3390_jlpea15030050 crossref_primary_10_1016_j_nanoen_2025_111261 crossref_primary_10_3389_fnins_2024_1439414 crossref_primary_10_32604_cmc_2024_047240 crossref_primary_10_1007_s11082_025_08261_6 crossref_primary_10_1109_ACCESS_2025_3577946 crossref_primary_10_1371_journal_pcbi_1012971 crossref_primary_10_1016_j_mee_2025_112408 crossref_primary_10_1002_aelm_202300564 crossref_primary_10_1145_3730581 crossref_primary_10_1088_2634_4386_ada9a8 crossref_primary_10_1038_s41598_023_50201_5 crossref_primary_10_3390_electronics13152948 crossref_primary_10_3390_s23249781 crossref_primary_10_1109_ACCESS_2024_3462606 crossref_primary_10_3390_electronics13234665 crossref_primary_10_1109_JSEN_2024_3454153 crossref_primary_10_1109_TCAD_2024_3443000 crossref_primary_10_1587_nolta_16_222 crossref_primary_10_1007_s40998_025_00808_3 crossref_primary_10_1002_adma_202312484 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_1007_s40747_025_01845_5 crossref_primary_10_1109_TSP_2025_3592099 crossref_primary_10_3389_fninf_2024_1331220 crossref_primary_10_1016_j_orgel_2024_107144 crossref_primary_10_1016_j_knosys_2024_112037 crossref_primary_10_1016_j_neucom_2025_130423 crossref_primary_10_1038_s41377_024_01502_5 crossref_primary_10_1142_S0129065725500583 crossref_primary_10_1038_s41598_024_71678_8 crossref_primary_10_1109_JETCAS_2023_3321107 crossref_primary_10_1007_s43939_024_00077_7 crossref_primary_10_1016_j_aei_2025_103132 crossref_primary_10_1103_n41r_3t9v crossref_primary_10_1007_s10489_024_06128_z crossref_primary_10_1088_2634_4386_add206 crossref_primary_10_1007_s13534_024_00436_6 crossref_primary_10_3390_math12081230 crossref_primary_10_1002_adfm_202415457 crossref_primary_10_1016_j_neunet_2024_106976 crossref_primary_10_3390_electronics14183712 crossref_primary_10_1016_j_neucom_2025_130814 crossref_primary_10_1002_aelm_202500091 crossref_primary_10_1002_admt_202500786 crossref_primary_10_1088_2634_4386_addc15 crossref_primary_10_1109_JPROC_2024_3437365 crossref_primary_10_1038_s41467_025_59603_7 crossref_primary_10_1088_2634_4386_addb6c crossref_primary_10_1109_TCSI_2025_3560666 crossref_primary_10_1038_s44335_025_00036_2 crossref_primary_10_3390_app132112068 crossref_primary_10_7498_aps_74_20250390 crossref_primary_10_1016_j_cma_2024_116847 crossref_primary_10_1109_ACCESS_2022_3187033 crossref_primary_10_1038_s41467_025_57352_1 crossref_primary_10_1002_aisy_202500351 crossref_primary_10_1109_TCSII_2024_3488526 crossref_primary_10_1109_ACCESS_2025_3588665 crossref_primary_10_1016_j_jmps_2025_106152 crossref_primary_10_1109_LRA_2025_3557744 crossref_primary_10_1109_TCSI_2022_3151920 crossref_primary_10_1109_JRFID_2022_3162952 crossref_primary_10_1109_ACCESS_2024_3425900 crossref_primary_10_1587_nolta_16_290 crossref_primary_10_1016_j_eswa_2025_126490 crossref_primary_10_1109_ACCESS_2025_3525583 crossref_primary_10_1016_j_neunet_2025_107256 crossref_primary_10_1109_TPAMI_2025_3530246 crossref_primary_10_64552_wipiec_v11i1_85 crossref_primary_10_1088_2634_4386_ad2ec3 crossref_primary_10_1002_adma_202400904 crossref_primary_10_1109_ACCESS_2022_3164440 crossref_primary_10_1109_LRA_2024_3350982 crossref_primary_10_1109_TNSRE_2025_3546682 crossref_primary_10_1017_S1759078723001575 crossref_primary_10_3390_e27040333 crossref_primary_10_1039_D3NH00421J crossref_primary_10_3390_bioengineering12060628 crossref_primary_10_3390_electronics11244179 crossref_primary_10_3390_metabo15030174 crossref_primary_10_1364_PRJ_558405 crossref_primary_10_1007_s00371_025_04022_4 crossref_primary_10_3389_fnins_2024_1383844 crossref_primary_10_1088_2634_4386_ad5c97 crossref_primary_10_1088_2634_4386_adad0e crossref_primary_10_1109_JPROC_2024_3429360 crossref_primary_10_1002_adma_202508803 crossref_primary_10_1016_j_micpro_2025_105187 crossref_primary_10_1109_TSG_2025_3547928 crossref_primary_10_1002_flm2_48 crossref_primary_10_3390_math12142267 crossref_primary_10_1002_aisy_202300762 crossref_primary_10_1109_JIOT_2025_3541150 crossref_primary_10_1038_s41534_024_00921_x crossref_primary_10_1088_2634_4386_ae006c crossref_primary_10_17308_sait_1995_5499_2024_4_156_166 crossref_primary_10_64214_jmsn_01_01005 crossref_primary_10_7717_peerj_cs_3077 crossref_primary_10_1007_s11390_024_0001_2 crossref_primary_10_1016_j_jcp_2024_113266 crossref_primary_10_1002_admt_202401587 crossref_primary_10_1109_TBCAS_2024_3456552 crossref_primary_10_1007_s13534_024_00404_0 crossref_primary_10_1109_TCDS_2024_3523338 crossref_primary_10_1007_s40747_024_01607_9 crossref_primary_10_1109_JSTSP_2024_3431996 crossref_primary_10_1109_TPEL_2024_3351911 crossref_primary_10_1038_s41377_024_01698_6 crossref_primary_10_1007_s13534_024_00405_z crossref_primary_10_1002_smtd_202401502 crossref_primary_10_3390_app14125011 crossref_primary_10_1007_s11431_024_2762_5 crossref_primary_10_1038_s41467_023_43034_3 crossref_primary_10_1088_2634_4386_add36c crossref_primary_10_1126_scirobotics_ads3968 crossref_primary_10_1039_D5TC01383F crossref_primary_10_1109_JETCAS_2023_3328911 crossref_primary_10_1109_TED_2024_3442161 crossref_primary_10_1007_s00521_024_10191_5 crossref_primary_10_1016_j_jii_2025_100944 crossref_primary_10_1088_2634_4386_adc6b4 crossref_primary_10_3389_fpls_2024_1421567 crossref_primary_10_1016_j_ifacol_2024_09_050 crossref_primary_10_1021_acsami_4c21417 crossref_primary_10_1103_PhysRevB_111_014423 |
| Cites_doi | 10.1038/s41467-022-28487-2 10.3389/fnins.2015.00437 10.7551/mitpress/7503.003.0024 10.1109/TNNLS.2022.3153985 10.1523/JNEUROSCI.3508-05.2005 10.1038/323533a0 10.1109/AICAS57966.2023.10168623 10.1109/ISCAS45731.2020.9180442 10.1142/S0129065720500276 10.1016/j.neunet.2013.02.003 10.1109/ICCV.2015.169 10.3389/fnins.2018.00608 10.1007/BFb0006203 10.1109/ICCV.2019.00058 10.1016/S0896-6273(03)00761-X 10.1109/JPROC.2018.2881432 10.1126/science.275.5306.1593 10.1109/TVLSI.2018.2829918 10.1109/ISCAS.2014.6865703 10.1038/s41583-020-0277-3 10.1073/pnas.1604850113 10.1007/s00422-007-0190-0 10.1523/JNEUROSCI.18-24-10464.1998 10.3389/fnins.2021.629892 10.1109/MIM.2020.8979519 10.1109/TBCAS.2015.2479256 10.1017/CBO9781107447615 10.1016/S0896-6273(01)00542-6 10.1038/s41928-020-0436-6 10.1002/sim.2932 10.3389/fnins.2018.00774 10.1109/TNANO.2013.2250995 10.1109/JPROC.2023.3273520 10.1109/MSP.2019.2931595 10.21437/Interspeech.2010-343 10.1142/S0129065718500041 10.1145/1390156.1390177 10.3389/fnins.2020.00637 10.1109/MSPEC.2022.9729948 10.1109/ICASSP.2016.7472621 10.1126/scirobotics.abl8419 10.1038/s41586-019-1799-6 10.1109/ICASSP.2017.7953077 10.1038/nature10262 10.3389/fncom.2015.00099 10.1038/s41586-019-1724-z 10.1038/s41467-021-26022-3 10.1109/LRA.2022.3149030 10.1038/s42256-020-0219-9 10.1037/h0042519 10.1126/science.1254642 10.1038/s42256-021-00311-4 10.1016/j.cub.2015.02.036 10.1109/JPROC.2020.3045625 10.1145/3007787.3001140 10.1088/2634-4386/ace737 10.1145/3589737.3605989 10.1113/jphysiol.1962.sp006837 10.1109/JSEN.2020.3009687 10.1162/neco_a_01367 10.3389/fnins.2018.00331 10.1109/MM.2018.112130359 10.1002/aisy.201900030 10.3115/v1/D14-1179 10.1109/IJCNN.2004.1379954 10.7554/eLife.22901 10.1523/JNEUROSCI.0388-18.2018 10.1038/337129a0 10.1109/ISCAS51556.2021.9401313 10.1038/s42256-021-00315-0 10.3389/fncom.2016.00094 10.1109/JSSC.2022.3193846 10.1177/0278364917691115 10.1109/TPAMI.2013.71 10.1098/rsos.220374 10.1016/j.bspc.2020.102170 10.1016/j.apenergy.2021.116842 10.1016/j.neunet.2004.07.003 10.1038/s42003-021-01778-y 10.1016/j.neunet.2013.07.012 10.1038/s41586-019-1424-8 10.1038/s41593-019-0520-2 10.1113/jphysiol.1952.sp004764 10.1109/ICRC.2016.7738691 10.1109/TPAMI.2020.3008413 10.1109/TNNLS.2020.3044364 10.1109/TCSII.2021.3065932 10.3389/fnins.2020.00424 10.3389/fnins.2016.00563 10.1016/j.ipl.2005.05.023 10.1371/journal.pcbi.1002561 10.1109/CVPR.2019.00065 10.1109/TNNLS.2015.2404938 10.1103/RevModPhys.70.1027 10.1109/LRA.2021.3068942 10.1109/TNNLS.2014.2362542 10.3389/fnsyn.2010.00005 10.3389/fncom.2010.00024 10.1016/S0896-6273(03)00255-1 10.1007/978-1-4615-4831-7_19 10.1016/j.neuron.2018.03.044 10.1038/nature16961 10.1162/neco.2007.19.11.2881 10.1162/089976605774320539 10.18653/v1/D15-1166 10.1109/CVPR.2016.90 10.1109/CVPR.2017.781 10.1002/wcs.142 10.1109/TNN.2003.820440 10.1109/JPROC.2014.2304638 10.3389/fnins.2018.00023 10.1109/ICASSP40776.2020.9053856 10.1038/nature24636 10.1109/CVPR.2016.91 10.1109/TBCAS.2019.2953001 10.1038/nn.3382 10.1109/TBCAS.2020.3036081 10.1007/BF00336731 10.1016/j.conb.2007.07.001 10.1063/5.0162712 10.1109/JPROC.2021.3067593 10.1109/ISCAS51556.2021.9401160 10.1007/s40295-018-00140-5 10.1016/S0925-2312(01)00658-0 10.1186/1756-6606-6-10 10.1109/ICRA48506.2021.9560937 10.3389/fnins.2017.00324 10.1162/neco.1989.1.2.270 10.1038/s41586-019-1677-2 10.1038/s42256-020-0161-x 10.1109/CVPR.2014.81 10.1162/neco.1997.9.8.1735 10.1126/science.abf4588 10.1038/s41598-021-91786-z 10.1016/j.neuron.2017.05.016 10.1016/j.neunet.2004.04.004 10.3389/fnins.2017.00682 10.3389/fnins.2021.773954 10.7554/eLife.43299 10.1109/AICAS48895.2020.9073963 10.1038/s41591-018-0268-3 10.1038/s41467-020-17236-y 10.1162/neco.2009.07-07-563 10.1007/978-1-4614-6940-7_15 10.1109/JSSC.2014.2342715 10.1109/ISCAS.2016.7527296 10.1088/2634-4386/acbab8 10.1109/JSSC.2003.819169 10.1109/LRA.2018.2800793 10.1038/s42256-023-00650-4 10.3389/fnsys.2015.00151 10.1007/BF00992696 10.1109/JBHI.2022.3157877 10.1109/JETCAS.2020.3040248 10.1159/000300352 10.1038/srep27755 10.1038/nn1643 10.1016/S1383-8121(01)80015-4 10.3389/fnins.2016.00405 10.3389/fnins.2015.00481 10.1109/ICCV.2015.123 10.1016/S1364-6613(03)00055-X 10.1007/s00422-006-0068-6 10.1038/s41467-021-23342-2 10.1038/nature00807 10.1085/jgp.25.6.819 10.1007/s40747-023-00983-y |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/JPROC.2023.3308088 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2256 |
| EndPage | 1054 |
| ExternalDocumentID | 10_1109_JPROC_2023_3308088 10242251 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: ECCS-1915550 funderid: 10.13039/100000001 |
| GroupedDBID | -DZ -~X .DC 0R~ 123 1OL 29P 3EH 4.4 6IK 85S 97E 9M8 AAJGR AAWTH ABAZT ABFSI ABJNI ABQJQ ABVLG ACBEA ACGFS AENEX AETEA AETIX AFOGA AGNAY AGQYO AGSQL AHBIQ AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL FA8 HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MVM O9- OCL RIA RIE RIU RNS TAE TN5 TWZ UDY UHB UKR UQL VOH WHG XJT XOL YNT ZCA ZXP ZY4 ~02 AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c340t-12467c7a6a58f39f46412a039cfc9cd1ce81c47b8fc6d04c1eaf3ef81910d2c83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 313 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001066603200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9219 |
| IngestDate | Sun Sep 07 03:52:54 EDT 2025 Sat Nov 29 06:01:44 EST 2025 Tue Nov 18 22:37:17 EST 2025 Wed Aug 27 02:51:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c340t-12467c7a6a58f39f46412a039cfc9cd1ce81c47b8fc6d04c1eaf3ef81910d2c83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6603-3257 0000-0002-5832-4054 0000-0003-0717-740X 0000-0003-4731-1976 0000-0003-0136-5936 0000-0001-7954-2213 0000-0002-0332-3273 0000-0003-0619-3555 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10242251 |
| PQID | 2865090949 |
| PQPubID | 85453 |
| PageCount | 39 |
| ParticipantIDs | ieee_primary_10242251 proquest_journals_2865090949 crossref_primary_10_1109_JPROC_2023_3308088 crossref_citationtrail_10_1109_JPROC_2023_3308088 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Proceedings of the IEEE |
| PublicationTitleAbbrev | JPROC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref207 ref56 ref208 ref59 ref205 ref206 ref53 ref203 ref55 ref201 ref54 voelker (ref82) 2019; 32 ref209 ref210 zhu (ref83) 2023 ref51 ref50 amodei (ref24) 2019 brown (ref25) 2020 laskin (ref130) 2020 williams (ref135) 1988 ref46 ref218 bengio (ref115) 2014 ref45 ref219 ref48 ref216 ref47 ref42 ref214 xiao (ref141) 2018 ref41 ref215 ref44 ref213 ref49 graves (ref7) 2014 kingma (ref179) 2014 ref8 ref9 tallec (ref194) 2018 ref3 ref6 ref5 ref100 ref221 ref101 ref222 ref40 ref220 ref35 linnainmaa (ref153) 1970 ref34 ref37 ref36 ref31 lapicque (ref75) 1907; 9 huh (ref170) 2017 ref30 ref33 glorot (ref168) 2010 ref39 renart (ref188) 2004 ref38 ref26 ref20 bellec (ref169) 2018 ref21 ref200 shrestha (ref73) 2018 olshausen (ref114) 2006; 23 ref128 ref129 ref97 ref126 ref96 ref127 ref99 ref124 ref98 ref125 fang (ref171) 2021; 34 ref93 ref133 ref92 ref95 ref131 ref94 ref132 zenke (ref150) 2019 ref91 ref90 dellaferrera (ref145) 2022 ref89 ref86 ref137 ref85 ref88 ref87 ref136 bartunov (ref140) 2018 lichtsteiner (ref65) 2006 anthony (ref27) 2020 vaswani (ref13) 2017 zhang (ref74) 2020 ref144 ref84 ref142 ref143 ref80 ref79 ref108 ref229 ref78 ref109 ref106 ref107 ref228 ref225 ref105 ref226 ref77 ref102 ref223 ref76 ref224 hebb (ref147) 1949 roth (ref196) 2018 hinton (ref212) 2016 ref71 ref232 ref70 ref112 ref230 ref110 ref231 ref119 ref67 ref117 ref69 ref118 ref64 ref236 ref63 ref116 ref66 ref113 ref234 ref235 quintana (ref202) 2023 gallego (ref68) 2019 miller (ref192) 2019 ref60 ref122 ref123 sun (ref81) 2022 ref62 ref120 ref61 ref121 modaresi (ref227) 2023 schmidgall (ref134) 2023 hu (ref158) 2018 hinton (ref146) 2022 ren (ref4) 2015; 28 godbole (ref180) 2023 ref177 ref173 ref174 ref172 amit (ref189) 1992 mujika (ref195) 2018 ref181 kag (ref204) 2021 ref186 ref187 ref184 ref185 ref182 azghadi (ref32) 2020; 2 ref183 ref149 schrimpf (ref217) 2018 p?un (ref29) 2005 ref155 ref154 ref151 ref152 duan (ref178) 2022; 35 lenz (ref104) 2021 ref159 ref157 ottati (ref175) 2023 kushnir (ref148) 2019 ref166 ref167 lillicrap (ref138) 2014 ref164 ref165 ref162 ref163 ref160 gerstner (ref72) 2001; 4 contreras (ref43) 2023 ref12 ref15 ref14 ref11 bohnstingl (ref199) 2020 hunsberger (ref156) 2015 ref17 ref16 ref19 ref18 thompson (ref23) 2020 dayan (ref58) 2001 perez-nieves (ref111) 2021 moskovitz (ref139) 2018 krizhevsky (ref1) 2012; 25 eshraghian (ref237) 2021 ioffe (ref176) 2015 paszke (ref233) 2017 rathi (ref161) 2019 ref2 mikolov (ref10) 2013 ref191 bengio (ref211) 2015 ref190 henkes (ref52) 2022 ref197 (ref22) 2023 ref193 yik (ref103) 2023 levy (ref28) 2020 marschall (ref198) 2020; 21 |
| References_xml | – year: 2014 ident: ref138 article-title: Random feedback weights support learning in deep neural networks publication-title: arXiv 1411 0247 – year: 2020 ident: ref74 article-title: Spike-timing-dependent back propagation in deep spiking neural networks publication-title: arXiv 2003 11837 – ident: ref45 doi: 10.1038/s41467-022-28487-2 – ident: ref91 doi: 10.3389/fnins.2015.00437 – ident: ref143 doi: 10.7551/mitpress/7503.003.0024 – year: 2020 ident: ref199 article-title: Online spatio-temporal learning in deep neural networks publication-title: arXiv 2007 12723 – ident: ref201 doi: 10.1109/TNNLS.2022.3153985 – year: 2020 ident: ref27 article-title: Carbontracker: Tracking and predicting the carbon footprint of training deep learning models publication-title: arXiv 2007 03051 – start-page: 1 year: 2018 ident: ref196 article-title: Kernel RNN learning (keRNl) publication-title: Proc Int Conf Learn Represent – ident: ref79 doi: 10.1523/JNEUROSCI.3508-05.2005 – ident: ref152 doi: 10.1038/323533a0 – ident: ref203 doi: 10.1109/AICAS57966.2023.10168623 – year: 2021 ident: ref104 publication-title: Tonic event-based datasets and transformations – ident: ref36 doi: 10.1109/ISCAS45731.2020.9180442 – ident: ref120 doi: 10.1142/S0129065720500276 – start-page: 4937 year: 2022 ident: ref145 article-title: Error-driven input modulation: Solving the credit assignment problem without a backward pass publication-title: Proc Int Conf Mach Learn – ident: ref164 doi: 10.1016/j.neunet.2013.02.003 – ident: ref3 doi: 10.1109/ICCV.2015.169 – ident: ref144 doi: 10.3389/fnins.2018.00608 – ident: ref154 doi: 10.1007/BFb0006203 – year: 2001 ident: ref58 publication-title: Theoretical Neuroscience Computational and Mathematical Modeling of Neural Systems – ident: ref86 doi: 10.1109/ICCV.2019.00058 – ident: ref55 doi: 10.1016/S0896-6273(03)00761-X – year: 2020 ident: ref23 article-title: The computational limits of deep learning publication-title: arXiv 2007 05558 – ident: ref222 doi: 10.1109/JPROC.2018.2881432 – ident: ref122 doi: 10.1126/science.275.5306.1593 – ident: ref66 doi: 10.1109/TVLSI.2018.2829918 – ident: ref132 doi: 10.1109/ISCAS.2014.6865703 – start-page: 9390 year: 2018 ident: ref140 article-title: Assessing the scalability of biologically-motivated deep learning algorithms and architectures publication-title: Proc 32nd Int Conf Neural Inf Process Syst – ident: ref129 doi: 10.1038/s41583-020-0277-3 – ident: ref107 doi: 10.1073/pnas.1604850113 – ident: ref76 doi: 10.1007/s00422-007-0190-0 – year: 2017 ident: ref170 article-title: Gradient descent for spiking neural networks publication-title: arXiv 1706 04698 – ident: ref33 doi: 10.1523/JNEUROSCI.18-24-10464.1998 – year: 2016 ident: ref212 article-title: Can the brain do back-propagation? publication-title: Proc Stanford Univ Colloq Comput Syst – ident: ref142 doi: 10.3389/fnins.2021.629892 – year: 2018 ident: ref139 article-title: Feedback alignment in deep convolutional networks publication-title: arXiv 1812 06488 – ident: ref99 doi: 10.1109/MIM.2020.8979519 – start-page: 5189 year: 2021 ident: ref204 article-title: Training recurrent neural networks via forward propagation through time publication-title: Proc Int Conf Mach Learn – ident: ref41 doi: 10.1109/TBCAS.2015.2479256 – ident: ref80 doi: 10.1017/CBO9781107447615 – ident: ref184 doi: 10.1016/S0896-6273(01)00542-6 – year: 2015 ident: ref156 article-title: Spiking deep networks with LIF neurons publication-title: arXiv 1510 08829 – ident: ref133 doi: 10.1038/s41928-020-0436-6 – ident: ref116 doi: 10.1002/sim.2932 – year: 2023 ident: ref43 article-title: Neuromorphic neuromodulation: Towards the next generation of on-device AI-revolution in electroceuticals publication-title: arXiv 2307 12471 – ident: ref162 doi: 10.3389/fnins.2018.00774 – ident: ref210 doi: 10.1109/TNANO.2013.2250995 – ident: ref226 doi: 10.1109/JPROC.2023.3273520 – start-page: 448 year: 2015 ident: ref176 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – start-page: 431 year: 2004 ident: ref188 article-title: Mean-field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks publication-title: Computational Neuroscience A Comprehensive Approach – ident: ref172 doi: 10.1109/MSP.2019.2931595 – ident: ref14 doi: 10.21437/Interspeech.2010-343 – ident: ref63 doi: 10.1142/S0129065718500041 – volume: 23 start-page: 182 year: 2006 ident: ref114 publication-title: What is the Other 85 Percent of V1 Doing – ident: ref11 doi: 10.1145/1390156.1390177 – ident: ref228 doi: 10.3389/fnins.2020.00637 – start-page: 249 year: 2010 ident: ref168 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Statist – ident: ref54 doi: 10.1109/MSPEC.2022.9729948 – ident: ref8 doi: 10.1109/ICASSP.2016.7472621 – ident: ref44 doi: 10.1126/scirobotics.abl8419 – ident: ref17 doi: 10.1038/s41586-019-1799-6 – year: 2014 ident: ref179 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref9 doi: 10.1109/ICASSP.2017.7953077 – year: 2019 ident: ref192 article-title: Stable recurrent models publication-title: arXiv 1805 10369 – ident: ref30 doi: 10.1038/nature10262 – ident: ref206 doi: 10.3389/fncom.2015.00099 – ident: ref16 doi: 10.1038/s41586-019-1724-z – ident: ref57 doi: 10.1038/s41467-021-26022-3 – ident: ref46 doi: 10.1109/LRA.2022.3149030 – year: 2019 ident: ref68 article-title: Event-based vision: A survey publication-title: arXiv 1904 08405 – volume: 25 start-page: 1097 year: 2012 ident: ref1 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref26 doi: 10.1038/s42256-020-0219-9 – ident: ref70 doi: 10.1037/h0042519 – ident: ref220 doi: 10.1126/science.1254642 – year: 2019 ident: ref148 article-title: Learning temporal structure of the input with a network of integrate-and-fire neurons publication-title: arXiv 1912 10262 – ident: ref160 doi: 10.1038/s42256-021-00311-4 – ident: ref85 doi: 10.1016/j.cub.2015.02.036 – ident: ref71 doi: 10.1109/JPROC.2020.3045625 – ident: ref31 doi: 10.1145/3007787.3001140 – year: 2023 ident: ref180 publication-title: Deep Learning Tuning Playbook Version 1 0 – volume: 32 start-page: 1 year: 2019 ident: ref82 article-title: Legendre memory units: Continuous-time representation in recurrent neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref48 doi: 10.1088/2634-4386/ace737 – volume: 28 start-page: 91 year: 2015 ident: ref4 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref187 doi: 10.1145/3589737.3605989 – ident: ref59 doi: 10.1113/jphysiol.1962.sp006837 – ident: ref51 doi: 10.1109/JSEN.2020.3009687 – ident: ref113 doi: 10.1162/neco_a_01367 – volume: 2 year: 2020 ident: ref32 article-title: Complementary metal-oxide semiconductor and memristive hardware for neuromorphic computing publication-title: Advances in Intelligent Systems – ident: ref108 doi: 10.3389/fnins.2018.00331 – year: 2021 ident: ref237 publication-title: snnTorch – ident: ref219 doi: 10.1109/MM.2018.112130359 – start-page: 1 year: 2018 ident: ref194 article-title: Unbiased online recurrent optimization publication-title: Proc Int Conf Learn Represent – ident: ref225 doi: 10.1002/aisy.201900030 – ident: ref182 doi: 10.3115/v1/D14-1179 – ident: ref185 doi: 10.1109/IJCNN.2004.1379954 – ident: ref126 doi: 10.7554/eLife.22901 – start-page: 1 year: 2017 ident: ref233 article-title: Automatic differentiation in PyTorch publication-title: Proc 31st Int Conf Neural Inf Process Syst Workshop Autodiff Submission – ident: ref216 doi: 10.1523/JNEUROSCI.0388-18.2018 – year: 2023 ident: ref134 article-title: Brain-inspired learning in artificial neural networks: A review publication-title: arXiv 2305 11252 – year: 2020 ident: ref130 article-title: Parallel training of deep networks with local updates publication-title: arXiv 2012 03837 – ident: ref214 doi: 10.1038/337129a0 – year: 2023 ident: ref227 article-title: OpenSpike: An OpenRAM SNN accelerator publication-title: arXiv 2302 01015 – ident: ref67 doi: 10.1109/ISCAS51556.2021.9401313 – ident: ref34 doi: 10.1038/s42256-021-00315-0 – ident: ref124 doi: 10.3389/fncom.2016.00094 – ident: ref40 doi: 10.1109/JSSC.2022.3193846 – year: 2019 ident: ref24 publication-title: AI and Compute – ident: ref87 doi: 10.1177/0278364917691115 – ident: ref155 doi: 10.1109/TPAMI.2013.71 – ident: ref21 doi: 10.1098/rsos.220374 – ident: ref38 doi: 10.1016/j.bspc.2020.102170 – ident: ref53 doi: 10.1016/j.apenergy.2021.116842 – ident: ref106 doi: 10.1016/j.neunet.2004.07.003 – ident: ref56 doi: 10.1038/s42003-021-01778-y – ident: ref209 doi: 10.1016/j.neunet.2013.07.012 – ident: ref223 doi: 10.1038/s41586-019-1424-8 – ident: ref121 doi: 10.1038/s41593-019-0520-2 – ident: ref77 doi: 10.1113/jphysiol.1952.sp004764 – start-page: 2060 year: 2006 ident: ref65 article-title: A 128 × 128 120 db 30 mw asynchronous vision sensor that responds to relative intensity change publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers – ident: ref157 doi: 10.1109/ICRC.2016.7738691 – ident: ref49 doi: 10.1109/TPAMI.2020.3008413 – ident: ref95 doi: 10.1109/TNNLS.2020.3044364 – ident: ref131 doi: 10.1109/TCSII.2021.3065932 – ident: ref110 doi: 10.3389/fnins.2020.00424 – volume: 21 start-page: 5320 year: 2020 ident: ref198 article-title: A unified framework of online learning algorithms for training recurrent neural networks publication-title: J Mach Learn Res – ident: ref42 doi: 10.3389/fnins.2016.00563 – year: 2005 ident: ref29 publication-title: DNA Computing New Computing Paradigms – ident: ref163 doi: 10.1016/j.ipl.2005.05.023 – ident: ref232 doi: 10.1371/journal.pcbi.1002561 – ident: ref173 doi: 10.1109/CVPR.2019.00065 – year: 2018 ident: ref158 article-title: Spiking deep residual network publication-title: arXiv 1805 01352 – start-page: 6594 year: 2018 ident: ref195 article-title: Approximating real-time recurrent learning with random Kronecker factors publication-title: Proc 32nd Int Conf Neural Inf Process Syst – year: 2022 ident: ref52 article-title: Spiking neural networks for nonlinear regression publication-title: arXiv 2210 03515 – ident: ref186 doi: 10.1109/TNNLS.2015.2404938 – ident: ref98 doi: 10.1103/RevModPhys.70.1027 – ident: ref93 doi: 10.1109/LRA.2021.3068942 – ident: ref208 doi: 10.1109/TNNLS.2014.2362542 – ident: ref183 doi: 10.3389/fnsyn.2010.00005 – volume: 35 start-page: 34377 year: 2022 ident: ref178 article-title: Temporal effective batch normalization in spiking neural networks publication-title: Proc Adv Neural Inf Process Syst – year: 2015 ident: ref211 article-title: Towards biologically plausible deep learning publication-title: arXiv 1502 04156 – ident: ref191 doi: 10.3389/fncom.2010.00024 – ident: ref190 doi: 10.1016/S0896-6273(03)00255-1 – ident: ref105 doi: 10.1007/978-1-4615-4831-7_19 – ident: ref218 doi: 10.1016/j.neuron.2018.03.044 – year: 2018 ident: ref169 article-title: Long short-term memory and learning-to-learn in networks of spiking neurons publication-title: arXiv 1803 09574 – ident: ref15 doi: 10.1038/nature16961 – ident: ref207 doi: 10.1162/neco.2007.19.11.2881 – ident: ref137 doi: 10.1162/089976605774320539 – ident: ref12 doi: 10.18653/v1/D15-1166 – ident: ref174 doi: 10.1109/CVPR.2016.90 – ident: ref88 doi: 10.1109/CVPR.2017.781 – ident: ref123 doi: 10.1002/wcs.142 – volume: 34 start-page: 21056 year: 2021 ident: ref171 article-title: Deep residual learning in spiking neural networks publication-title: Proc Adv Neural Inf Process Syst – year: 2021 ident: ref111 article-title: Sparse spiking gradient descent publication-title: arXiv 2105 08810 – ident: ref84 doi: 10.1109/TNN.2003.820440 – ident: ref221 doi: 10.1109/JPROC.2014.2304638 – year: 2014 ident: ref115 article-title: How auto-encoders could provide credit assignment in deep networks via target propagation publication-title: arXiv 1407 7906 – start-page: 5998 year: 2017 ident: ref13 article-title: Attention is all you need publication-title: Proc Adv Neural Inf Process Syst – year: 2018 ident: ref217 article-title: Brain-score: Which artificial neural network for object recognition is most brain-like? publication-title: BioRxiv – ident: ref94 doi: 10.3389/fnins.2018.00023 – ident: ref167 doi: 10.1109/ICASSP40776.2020.9053856 – year: 2022 ident: ref81 article-title: Intelligence processing units accelerate neuromorphic learning publication-title: arXiv 2211 10725 – ident: ref235 doi: 10.1038/nature24636 – ident: ref5 doi: 10.1109/CVPR.2016.91 – ident: ref37 doi: 10.1109/TBCAS.2019.2953001 – ident: ref61 doi: 10.1038/nn.3382 – ident: ref20 doi: 10.1109/TBCAS.2020.3036081 – ident: ref60 doi: 10.1007/BF00336731 – ident: ref62 doi: 10.1016/j.conb.2007.07.001 – year: 1988 ident: ref135 article-title: Toward a theory of reinforcement-learning connectionist systems – ident: ref200 doi: 10.1063/5.0162712 – ident: ref229 doi: 10.1109/JPROC.2021.3067593 – ident: ref102 doi: 10.1109/ISCAS51556.2021.9401160 – ident: ref50 doi: 10.1007/s40295-018-00140-5 – ident: ref119 doi: 10.1016/S0925-2312(01)00658-0 – ident: ref234 doi: 10.1186/1756-6606-6-10 – ident: ref47 doi: 10.1109/ICRA48506.2021.9560937 – ident: ref127 doi: 10.3389/fnins.2017.00324 – ident: ref193 doi: 10.1162/neco.1989.1.2.270 – ident: ref224 doi: 10.1038/s41586-019-1677-2 – year: 2022 ident: ref146 article-title: The forward-forward algorithm: Some preliminary investigations publication-title: arXiv 2212 13345 – ident: ref6 doi: 10.1038/s42256-020-0161-x – ident: ref2 doi: 10.1109/CVPR.2014.81 – start-page: 1764 year: 2014 ident: ref7 article-title: Towards end-to-end speech recognition with recurrent neural networks publication-title: Proc Int Conf Mach Learn – ident: ref181 doi: 10.1162/neco.1997.9.8.1735 – year: 2023 ident: ref83 article-title: SpikeGPT: Generative pre-trained language model with spiking neural networks publication-title: arXiv 2302 13939 – ident: ref236 doi: 10.1126/science.abf4588 – start-page: 3111 year: 2013 ident: ref10 article-title: Distributed representations of words and phrases and their compositionality publication-title: Proc Adv Neural Inf Process Syst – ident: ref166 doi: 10.1038/s41598-021-91786-z – ident: ref149 doi: 10.1016/j.neuron.2017.05.016 – ident: ref128 doi: 10.1016/j.neunet.2004.04.004 – volume: 9 start-page: 620 year: 1907 ident: ref75 article-title: Recherches quantitatives sur l'excitation electrique des nerfs traitee comme une polarization publication-title: J Physiol Pathol Gen – year: 2018 ident: ref141 article-title: Biologically-plausible learning algorithms can scale to large datasets publication-title: arXiv 1811 03567 – ident: ref159 doi: 10.3389/fnins.2017.00682 – ident: ref177 doi: 10.3389/fnins.2021.773954 – ident: ref197 doi: 10.7554/eLife.43299 – start-page: 6 year: 1970 ident: ref153 article-title: The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors – ident: ref100 doi: 10.1109/AICAS48895.2020.9073963 – ident: ref18 doi: 10.1038/s41591-018-0268-3 – start-page: 1 year: 2019 ident: ref161 article-title: Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation publication-title: Proc Int Conf Learn Represent – year: 2023 ident: ref202 article-title: ETLP: Event-based three-factor local plasticity for online learning with neuromorphic hardware publication-title: arXiv 2301 08281 – ident: ref109 doi: 10.1038/s41467-020-17236-y – ident: ref231 doi: 10.1162/neco.2009.07-07-563 – year: 2023 ident: ref22 publication-title: Kaggle – ident: ref125 doi: 10.1007/978-1-4614-6940-7_15 – ident: ref69 doi: 10.1109/JSSC.2014.2342715 – ident: ref35 doi: 10.1109/ISCAS.2016.7527296 – ident: ref39 doi: 10.1088/2634-4386/acbab8 – year: 2019 ident: ref150 publication-title: Spytorch – ident: ref64 doi: 10.1109/JSSC.2003.819169 – ident: ref90 doi: 10.1109/LRA.2018.2800793 – ident: ref205 doi: 10.1038/s42256-023-00650-4 – ident: ref118 doi: 10.3389/fnsys.2015.00151 – year: 2020 ident: ref25 article-title: Language models are few-shot learners publication-title: arXiv 2005 14165 – ident: ref136 doi: 10.1007/BF00992696 – year: 1949 ident: ref147 publication-title: The Organization of Behavior A Neuropsychological Theory – ident: ref19 doi: 10.1109/JBHI.2022.3157877 – ident: ref213 doi: 10.1109/JETCAS.2020.3040248 – ident: ref97 doi: 10.1159/000300352 – ident: ref215 doi: 10.1038/srep27755 – year: 2020 ident: ref28 article-title: Computation in the human cerebral cortex uses less than 0.2 Watts yet this great expense is optimal when considering communication costs publication-title: BioRxiv – ident: ref112 doi: 10.1038/nn1643 – year: 1992 ident: ref189 publication-title: Modeling brain function The world of attractor neural networks – volume: 4 start-page: 469 year: 2001 ident: ref72 article-title: A framework for spiking neuron models: The spike response model publication-title: Handbook of Biological Physics doi: 10.1016/S1383-8121(01)80015-4 – ident: ref89 doi: 10.3389/fnins.2016.00405 – ident: ref92 doi: 10.3389/fnins.2015.00481 – start-page: 1419 year: 2018 ident: ref73 article-title: SLAYER: Spike layer error reassignment in time publication-title: Proc 32nd Int Conf Neural Inf Process Syst – ident: ref151 doi: 10.1109/ICCV.2015.123 – ident: ref101 doi: 10.1016/S1364-6613(03)00055-X – ident: ref78 doi: 10.1007/s00422-006-0068-6 – ident: ref230 doi: 10.1038/s41467-021-23342-2 – year: 2023 ident: ref103 article-title: NeuroBench: Advancing neuromorphic computing through collaborative, fair and representative benchmarking publication-title: arXiv 2304 04640 – ident: ref117 doi: 10.1038/nature00807 – year: 2023 ident: ref175 article-title: To spike or not to spike: A digital hardware perspective on deep learning acceleration publication-title: arXiv 2306 15749 – ident: ref96 doi: 10.1085/jgp.25.6.819 – ident: ref165 doi: 10.1007/s40747-023-00983-y |
| SSID | ssj0003563 |
| Score | 2.7529626 |
| Snippet | The brain is the perfect place to look for inspiration to develop more efficient neural networks. The inner workings of our synapses and neurons provide a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1016 |
| SubjectTerms | Australia Back propagation Back propagation networks Biological neural networks Brain modeling Deep learning Distance learning Electronic learning neural code Neural networks neuromorphic Neuromorphics Neurons online learning Online tutorials spiking neural networks (SNNs) Synapses Training Tutorials |
| Title | Training Spiking Neural Networks Using Lessons From Deep Learning |
| URI | https://ieeexplore.ieee.org/document/10242251 https://www.proquest.com/docview/2865090949 |
| Volume | 111 |
| WOSCitedRecordID | wos001066603200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1558-2256 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003563 issn: 0018-9219 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjBZ8VqlRy8ydbsZpvHsVSLiNSiFXpbtpOsCNqWPvz9ZrJpLYiCtxySZfmSmdnJzjcfIZdxmutcqDTKlTGYoLgRT2RkBB82BRSo-OLFJmS3qwYD3Qtkdc-Fsdb64jPbwKH_l2_GsMCrMmfhLqAkSJjelFKUZK2V2-XNIJsWOwt2drhkyDB9fd97emw3UCi84dJ3xbzMyncU8rIqP3yxDzCdvX--2j7ZDV-StFVu_QHZsKNDsrPWX_CItPpBAII-T97wTpxiLw63qFsWf8-orxigD87dudNHO9PxB72xdkJD29XXKnnp3Pbbd1HQTIiAp2weuXAtJMhc5E1VcF2kIo2TnHENBWgwMVgVQyqHqgBhWAqxzQtuC0zbmElA8WNSGY1H9oRQbO6XcAOSK-vMHDm8rOngtS4DRCZ6jcRLDDMIDcVR1-I984kF05nHPUPcs4B7jVyt1kzKdhp_zq4i0mszS5BrpL7cqyyY3CxDii3TLlvVp78sOyPb-PSyQqxOKvPpwp6TLficv82mF_40fQE_U8PC |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBfXgz4nTqTl4k860SdvkOKZj6qxDJ-xWuiSVgW5jP_z7zUuzORAFbzkktHzJe68vfd_7ELr0WSayiDMv40pBgmJGNIg9FdF-GMkcFF-s2EScJLzXEx1HVrdcGK21LT7TNRjaf_lqJOdwVWYs3ASUAAjT6yFjASnoWkvHS0MnnOYbGzaWuODIEHF933l-atRAKrxmEnhOrNDKdxyywio_vLENMc3df77cHtpx35K4Xmz-PlrTwwO0vdJh8BDVu04CAr-MB3ArjqEbh1mUFOXfU2xrBnDbODxz_nBzMvrAN1qPsWu8-lZGr83bbqPlOdUET1JGZp4J2FEs4yzKQp5TkbOI-UFGqJC5FFL5UnNfsrjPcxkpwqSvs5zqHBI3ogLJ6REqDUdDfYwwtPcLqJIx5doYOrB4SWjg1SYHBC56BfkLDFPpWoqDssV7alMLIlKLewq4pw73CrparhkXDTX-nF0GpFdmFiBXUHWxV6kzumkKJFsiTL4qTn5ZdoE2W93Hdtq-Sx5O0RY8qagXq6LSbDLXZ2hDfs4G08m5PVlfnOvHCQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+Spiking+Neural+Networks+Using+Lessons+From+Deep+Learning&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Eshraghian%2C+Jason+K.&rft.au=Ward%2C+Max&rft.au=Neftci%2C+Emre+O.&rft.au=Wang%2C+Xinxin&rft.date=2023-09-01&rft.issn=0018-9219&rft.eissn=1558-2256&rft.volume=111&rft.issue=9&rft.spage=1016&rft.epage=1054&rft_id=info:doi/10.1109%2FJPROC.2023.3308088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JPROC_2023_3308088 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon |