ON the influence of parameter theta- on performance of RBF neural networks trained with the dynamic decay adjustment algorithm
The dynamic decay adjustment (DDA) algorithm is a fast constructive algorithm for training RBF neural networks (RBFNs) and probabilistic neural networks (PNNs). The algorithm has two parameters, namely, theta(+) and theta(-). The papers which introduced DDA argued that those parameters would not hea...
Uložené v:
| Vydané v: | International journal of neural systems Ročník 16; číslo 4; s. 271 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore
01.08.2006
|
| Predmet: | |
| ISSN: | 0129-0657 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The dynamic decay adjustment (DDA) algorithm is a fast constructive algorithm for training RBF neural networks (RBFNs) and probabilistic neural networks (PNNs). The algorithm has two parameters, namely, theta(+) and theta(-). The papers which introduced DDA argued that those parameters would not heavily influence classification performance and therefore they recommended using always the default values of these parameters. In contrast, this paper shows that smaller values of parameter theta(-) can, for a considerable number of datasets, result in strong improvement in generalization performance. The experiments described here were carried out using twenty benchmark classification datasets from both Proben1 and the UCI repositories. The results show that for eleven of the datasets, the parameter theta(-) strongly influenced classification performance. The influence of theta(-) was also noticeable, although much less, on six of the datasets considered. This paper also compares the performance of RBF-DDA with theta(-) selection with both AdaBoost and Support Vector Machines (SVMs). |
|---|---|
| AbstractList | The dynamic decay adjustment (DDA) algorithm is a fast constructive algorithm for training RBF neural networks (RBFNs) and probabilistic neural networks (PNNs). The algorithm has two parameters, namely, theta(+) and theta(-). The papers which introduced DDA argued that those parameters would not heavily influence classification performance and therefore they recommended using always the default values of these parameters. In contrast, this paper shows that smaller values of parameter theta(-) can, for a considerable number of datasets, result in strong improvement in generalization performance. The experiments described here were carried out using twenty benchmark classification datasets from both Proben1 and the UCI repositories. The results show that for eleven of the datasets, the parameter theta(-) strongly influenced classification performance. The influence of theta(-) was also noticeable, although much less, on six of the datasets considered. This paper also compares the performance of RBF-DDA with theta(-) selection with both AdaBoost and Support Vector Machines (SVMs).The dynamic decay adjustment (DDA) algorithm is a fast constructive algorithm for training RBF neural networks (RBFNs) and probabilistic neural networks (PNNs). The algorithm has two parameters, namely, theta(+) and theta(-). The papers which introduced DDA argued that those parameters would not heavily influence classification performance and therefore they recommended using always the default values of these parameters. In contrast, this paper shows that smaller values of parameter theta(-) can, for a considerable number of datasets, result in strong improvement in generalization performance. The experiments described here were carried out using twenty benchmark classification datasets from both Proben1 and the UCI repositories. The results show that for eleven of the datasets, the parameter theta(-) strongly influenced classification performance. The influence of theta(-) was also noticeable, although much less, on six of the datasets considered. This paper also compares the performance of RBF-DDA with theta(-) selection with both AdaBoost and Support Vector Machines (SVMs). The dynamic decay adjustment (DDA) algorithm is a fast constructive algorithm for training RBF neural networks (RBFNs) and probabilistic neural networks (PNNs). The algorithm has two parameters, namely, theta(+) and theta(-). The papers which introduced DDA argued that those parameters would not heavily influence classification performance and therefore they recommended using always the default values of these parameters. In contrast, this paper shows that smaller values of parameter theta(-) can, for a considerable number of datasets, result in strong improvement in generalization performance. The experiments described here were carried out using twenty benchmark classification datasets from both Proben1 and the UCI repositories. The results show that for eleven of the datasets, the parameter theta(-) strongly influenced classification performance. The influence of theta(-) was also noticeable, although much less, on six of the datasets considered. This paper also compares the performance of RBF-DDA with theta(-) selection with both AdaBoost and Support Vector Machines (SVMs). |
| Author | Bezerra, Miguel E R Medeiros, Ericles A Oliveira, Adriano L I Rocha, Thyago A B V Veras, Ronaldo C |
| Author_xml | – sequence: 1 givenname: Adriano L I surname: Oliveira fullname: Oliveira, Adriano L I email: adriano@dsc.upe.br organization: Department of Computing Systems, Polytechnic School of Engineering, Pernambuco State University, Rua Benfica, 455, Madalena, Recife - PE, Brazil. adriano@dsc.upe.br – sequence: 2 givenname: Ericles A surname: Medeiros fullname: Medeiros, Ericles A – sequence: 3 givenname: Thyago A B V surname: Rocha fullname: Rocha, Thyago A B V – sequence: 4 givenname: Miguel E R surname: Bezerra fullname: Bezerra, Miguel E R – sequence: 5 givenname: Ronaldo C surname: Veras fullname: Veras, Ronaldo C |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16972315$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kDtPwzAUhT0U0Qf8ABbkiS1gu47jjFBRQKqoxGOOHOeGpsR2sB1VXfjtpFCmI5376ZPOnaKRdRYQuqDkmlLObl4JZTkRaUYEIURkYoQmhyo5dGM0DWFLCOUZl6doTEWesTlNJ-h7_YzjBnBj67YHqwG7GnfKKwMR_OEUVYKdxR342nmjjsjL3RJb6L1qh4g75z8Djl41Fiq8a-LmV1rtrTKNxhVotceq2vYhGrARq_bD-YEyZ-ikVm2A82PO0Pvy_m3xmKzWD0-L21Wi55yIpCaQZbXmLM0VlZKSkg_Tair5HDRLS00gFaJkAEqWQFMmOANOylTILB9oNkNXf97Ou68eQixMEzS0rbLg-lAIKfmgzQfw8gj2pYGq6HxjlN8X_x9jP9eSbmw |
| CitedBy_id | crossref_primary_10_1007_s00362_015_0694_y crossref_primary_10_1016_j_neucom_2007_11_003 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1142/S0129065706000676 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 16972315 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- .DC 0R~ 36B 4.4 53G 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG CGR COF CS3 CUY CVF DU5 EBS ECM EIF EJD EMOBN ESX F5P HZ~ NPM O9- P2P P71 RWJ WSC 7X8 |
| ID | FETCH-LOGICAL-c3406-f0e77fc4259a18810b4129f1843ec25bc0e566b2eea8be152642e40b5687910b2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000240415500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0129-0657 |
| IngestDate | Fri Jul 11 09:50:58 EDT 2025 Sat Sep 28 07:52:14 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3406-f0e77fc4259a18810b4129f1843ec25bc0e566b2eea8be152642e40b5687910b2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 16972315 |
| PQID | 68848109 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_68848109 pubmed_primary_16972315 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-Aug 20060801 |
| PublicationDateYYYYMMDD | 2006-08-01 |
| PublicationDate_xml | – month: 08 year: 2006 text: 2006-Aug |
| PublicationDecade | 2000 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | International journal of neural systems |
| PublicationTitleAlternate | Int J Neural Syst |
| PublicationYear | 2006 |
| SSID | ssj0014748 |
| Score | 1.7414981 |
| Snippet | The dynamic decay adjustment (DDA) algorithm is a fast constructive algorithm for training RBF neural networks (RBFNs) and probabilistic neural networks... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 271 |
| SubjectTerms | Algorithms Artificial Intelligence Models, Statistical Neural Networks (Computer) Nonlinear Dynamics Time Factors |
| Title | ON the influence of parameter theta- on performance of RBF neural networks trained with the dynamic decay adjustment algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/16972315 https://www.proquest.com/docview/68848109 |
| Volume | 16 |
| WOSCitedRecordID | wos000240415500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKZWChvClPD6xWkza1EwkJAaJigFDxUrfKTi5QRJNCWiQWfjt3TqJOiIElS-LEOd_Zn-_O9zF2TKEvRweB8LtaC0-pjjBuOxZJLJ0oQgzrWdfA07UKQ38wCPo1dlKdhaG0ympOtBN1nEXkI29Jnwq_O8Hp5F0QZxTFVksCjQVW7yCQIbNUg3kMwVOWO4s8LQIXWlXGNF2v3bq37hfK-pB2vpa_40u7zvQa_-vhKlsp8SU_KxRijdUgXWeNiruBl6a8wb5vQ47Yj48qkhKeJZzqgI8pP4ZuTbXgWcon85MF9MjdeY9TDUz8RlpkkOfc0kxAzMmna18aFzT3PIZIf3Edv85ym8zO9dsz9nn6Mt5kj73Lh4srUXIxiKiDa75IHFAqidDCA-36-JvGQxEmxBYDOKQmcgCBoWkDaN8AggLc14DnmK70FWqDaW-xxTRLYYdxRIwgtYQg8TS2lgZi0EA4RxqFaLLJjir5DlHXKYChU8hm-bCScJNtF0M0nBQlOYauJPY0t7v7Z9s9tlx4USiHb5_VE7RyOGBL0ed0lH8cWhXCa9i_-QHEjdDv |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+the+influence+of+parameter+theta-+on+performance+of+RBF+neural+networks+trained+with+the+dynamic+decay+adjustment+algorithm&rft.jtitle=International+journal+of+neural+systems&rft.au=Oliveira%2C+Adriano+L+I&rft.au=Medeiros%2C+Ericles+A&rft.au=Rocha%2C+Thyago+A+B+V&rft.au=Bezerra%2C+Miguel+E+R&rft.date=2006-08-01&rft.issn=0129-0657&rft.volume=16&rft.issue=4&rft.spage=271&rft_id=info:doi/10.1142%2FS0129065706000676&rft_id=info%3Apmid%2F16972315&rft_id=info%3Apmid%2F16972315&rft.externalDocID=16972315 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-0657&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-0657&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-0657&client=summon |