Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition

This paper describes the world’s largest gait database with wide view variation, the “OU-ISIR gait database, multi-view large population dataset (OU-MVLP)”, and its application to a statistically reliable performance evaluation of vision-based cross-view gait recognition. Specifically, we construct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IPSJ transactions on computer vision and applications Jg. 10; H. 1; S. 1 - 14
Hauptverfasser: Takemura, Noriko, Makihara, Yasushi, Muramatsu, Daigo, Echigo, Tomio, Yagi, Yasushi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 20.02.2018
Springer Nature B.V
Schlagworte:
ISSN:1882-6695, 1882-6695
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the world’s largest gait database with wide view variation, the “OU-ISIR gait database, multi-view large population dataset (OU-MVLP)”, and its application to a statistically reliable performance evaluation of vision-based cross-view gait recognition. Specifically, we construct a gait dataset that includes 10,307 subjects (5114 males and 5193 females) from 14 view angles ranging 0° −90°, 180° −270°. In addition, we evaluate various approaches to gait recognition which are robust against view angles. By using our dataset, we can fully exploit a state-of-the-art method requiring a large number of training samples, e.g., CNN-based cross-view gait recognition method, and we validate effectiveness of such a family of the methods.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1882-6695
1882-6695
DOI:10.1186/s41074-018-0039-6