A Novel Physics‐Aware Machine Learning‐Based Dynamic Error Correction Model for Improving Streamflow Forecast Accuracy
Occurrences of extreme events, especially floods, have become more frequent and severe in the recent past due to the global impacts of climate change. In this context, possibilities for generating a near‐accurate streamflow forecast at higher lead times, which could be utilized for developing a reli...
Uloženo v:
| Vydáno v: | Water resources research Ročník 59; číslo 2 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
01.02.2023
|
| Témata: | |
| ISSN: | 0043-1397, 1944-7973 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Occurrences of extreme events, especially floods, have become more frequent and severe in the recent past due to the global impacts of climate change. In this context, possibilities for generating a near‐accurate streamflow forecast at higher lead times, which could be utilized for developing a reliable flood warning system to minimize the effects of extreme events, are highly important. This paper aims to investigate the potential of a novel hybrid modeling framework that couples the random forest algorithm, particle filter, and the HBV model for improving the overall accuracy of forecasts at higher lead times through the dynamic error correction schematic. The new framework simulates an ensemble of streamflow for estimating uncertainty associated with the predictions and is applied across two snow‐fed Himalayan rivers: the Beas River in India and the Sunkoshi River in Nepal. Several statistical indices along with graphical performance indicators were used for assessing the accuracy of the model performance and associated uncertainty. The modeling framework achieved the Nash Sutcliffe Efficiency of 0.94 and 0.98 in calibration and 0.95 and 0.99 in validation for the Beas and Sunkoshi river basin respectively for a 7‐day ahead forecast. Thus, the proposed framework can be considered as a promising tool having reasonably good performance in forecasting streamflow at a higher lead time.
Key Points
Hybrid hydrological model integrates process‐based model with machine learning algorithm through data assimilation technique
Dynamic error correction framework capable of improving the streamflow forecast at longer lead time is proposed
Overall the developed framework improves the forecast accuracy along with quantifying the model prediction uncertainty |
|---|---|
| AbstractList | Occurrences of extreme events, especially floods, have become more frequent and severe in the recent past due to the global impacts of climate change. In this context, possibilities for generating a near‐accurate streamflow forecast at higher lead times, which could be utilized for developing a reliable flood warning system to minimize the effects of extreme events, are highly important. This paper aims to investigate the potential of a novel hybrid modeling framework that couples the random forest algorithm, particle filter, and the HBV model for improving the overall accuracy of forecasts at higher lead times through the dynamic error correction schematic. The new framework simulates an ensemble of streamflow for estimating uncertainty associated with the predictions and is applied across two snow‐fed Himalayan rivers: the Beas River in India and the Sunkoshi River in Nepal. Several statistical indices along with graphical performance indicators were used for assessing the accuracy of the model performance and associated uncertainty. The modeling framework achieved the Nash Sutcliffe Efficiency of 0.94 and 0.98 in calibration and 0.95 and 0.99 in validation for the Beas and Sunkoshi river basin respectively for a 7‐day ahead forecast. Thus, the proposed framework can be considered as a promising tool having reasonably good performance in forecasting streamflow at a higher lead time.
Hybrid hydrological model integrates process‐based model with machine learning algorithm through data assimilation technique
Dynamic error correction framework capable of improving the streamflow forecast at longer lead time is proposed
Overall the developed framework improves the forecast accuracy along with quantifying the model prediction uncertainty Occurrences of extreme events, especially floods, have become more frequent and severe in the recent past due to the global impacts of climate change. In this context, possibilities for generating a near‐accurate streamflow forecast at higher lead times, which could be utilized for developing a reliable flood warning system to minimize the effects of extreme events, are highly important. This paper aims to investigate the potential of a novel hybrid modeling framework that couples the random forest algorithm, particle filter, and the HBV model for improving the overall accuracy of forecasts at higher lead times through the dynamic error correction schematic. The new framework simulates an ensemble of streamflow for estimating uncertainty associated with the predictions and is applied across two snow‐fed Himalayan rivers: the Beas River in India and the Sunkoshi River in Nepal. Several statistical indices along with graphical performance indicators were used for assessing the accuracy of the model performance and associated uncertainty. The modeling framework achieved the Nash Sutcliffe Efficiency of 0.94 and 0.98 in calibration and 0.95 and 0.99 in validation for the Beas and Sunkoshi river basin respectively for a 7‐day ahead forecast. Thus, the proposed framework can be considered as a promising tool having reasonably good performance in forecasting streamflow at a higher lead time. Occurrences of extreme events, especially floods, have become more frequent and severe in the recent past due to the global impacts of climate change. In this context, possibilities for generating a near‐accurate streamflow forecast at higher lead times, which could be utilized for developing a reliable flood warning system to minimize the effects of extreme events, are highly important. This paper aims to investigate the potential of a novel hybrid modeling framework that couples the random forest algorithm, particle filter, and the HBV model for improving the overall accuracy of forecasts at higher lead times through the dynamic error correction schematic. The new framework simulates an ensemble of streamflow for estimating uncertainty associated with the predictions and is applied across two snow‐fed Himalayan rivers: the Beas River in India and the Sunkoshi River in Nepal. Several statistical indices along with graphical performance indicators were used for assessing the accuracy of the model performance and associated uncertainty. The modeling framework achieved the Nash Sutcliffe Efficiency of 0.94 and 0.98 in calibration and 0.95 and 0.99 in validation for the Beas and Sunkoshi river basin respectively for a 7‐day ahead forecast. Thus, the proposed framework can be considered as a promising tool having reasonably good performance in forecasting streamflow at a higher lead time. Key Points Hybrid hydrological model integrates process‐based model with machine learning algorithm through data assimilation technique Dynamic error correction framework capable of improving the streamflow forecast at longer lead time is proposed Overall the developed framework improves the forecast accuracy along with quantifying the model prediction uncertainty |
| Author | Adeloye, Adebayo J. Roy, Abhinanda Kasiviswanathan, K. S. Ojha, Chandra Shekhar P. Patidar, Sandhya Soundharajan, Bankaru‐Swamy |
| Author_xml | – sequence: 1 givenname: Abhinanda surname: Roy fullname: Roy, Abhinanda organization: Indian Institute of Technology Roorkee – sequence: 2 givenname: K. S. orcidid: 0000-0003-4706-6931 surname: Kasiviswanathan fullname: Kasiviswanathan, K. S. email: k.kasiviswanathan@wr.iitr.ac.in organization: Indian Institute of Technology Roorkee – sequence: 3 givenname: Sandhya orcidid: 0000-0001-9562-6986 surname: Patidar fullname: Patidar, Sandhya organization: Heriot‐Watt University – sequence: 4 givenname: Adebayo J. orcidid: 0000-0002-2820-4596 surname: Adeloye fullname: Adeloye, Adebayo J. organization: Heriot‐Watt University – sequence: 5 givenname: Bankaru‐Swamy orcidid: 0000-0001-6143-9293 surname: Soundharajan fullname: Soundharajan, Bankaru‐Swamy organization: Amrita Vishwa Vidyapeetham – sequence: 6 givenname: Chandra Shekhar P. surname: Ojha fullname: Ojha, Chandra Shekhar P. organization: Indian Institute of Technology Roorkee |
| BookMark | eNp9kctOHDEQRa0IJAaSHR9gKZss0uBX-7GcTHhJA4kmiVi2PG47GHXbxO5h1Kz4BL6RL4lHwwIhJauSqs69dVW1D3ZCDBaAQ4yOMCLqmCBCrheIUorlOzDBirFKKEF3wAQhRitMldgD-znfIoRZzcUEPEzhVby3Hfx-M2Zv8vPj03Stk4WX2tz4YOHc6hR8-F0GX3S2Lfw6Bt17A09SignOYkrWDD4GeBnb4uNK86K_S_G-iOCPIVnduy6u4WksoM4DnBqzStqM78Gu0122H17qAfh1evJzdl7Nv51dzKbzylCG6so5vBSsbhlujTSSUIG4VtxJJ0W7JMzwpZOW15gvMSXE1cZJZjAnWmlFHacH4NPWt4T6s7J5aHqfje06HWxc5YZIjJVUnJKCfnyD3sZVCiVdQ4RQuBaSbww_bymTYs7JuuYu-V6nscGo2Tyief2IgpM3uPGD3pxsSNp3_xLRrWjtOzv-d0FzvZgtCGd1Tf8Cukid0g |
| CitedBy_id | crossref_primary_10_2166_hydro_2023_217 crossref_primary_10_1016_j_hazadv_2025_100678 crossref_primary_10_1029_2023GL104464 crossref_primary_10_1007_s12040_025_02567_5 crossref_primary_10_1016_j_ejrh_2025_102549 crossref_primary_10_1016_j_jhydrol_2024_130937 crossref_primary_10_1016_j_earscirev_2025_105276 crossref_primary_10_5194_hess_28_2871_2024 crossref_primary_10_1007_s11269_025_04113_w crossref_primary_10_1016_j_jhydrol_2025_132963 crossref_primary_10_1016_j_jhydrol_2025_133954 crossref_primary_10_3390_earth6030064 crossref_primary_10_3390_w17172506 crossref_primary_10_1016_j_ejrh_2025_102337 crossref_primary_10_1061_JCCEE5_CPENG_6757 crossref_primary_10_1016_j_jhydrol_2025_133318 crossref_primary_10_3390_su16041376 crossref_primary_10_1016_j_ejrh_2025_102331 crossref_primary_10_1016_j_jhydrol_2025_133114 crossref_primary_10_5194_hess_29_3589_2025 crossref_primary_10_1080_02626667_2024_2426720 |
| Cites_doi | 10.1175/JHM-D-21-0189.1 10.1038/s41598-021-91327-8 10.1029/2005WR004093 10.5194/hessd-8-10895-2011 10.1002/2018WR022627 10.3390/w12030787 10.1016/j.accre.2017.08.006 10.1029/2000JD900719 10.1016/j.biosystemseng.2018.04.022 10.1016/j.jhydrol.2022.127683 10.3390/app11031114 10.1007/s11269-015-1080-1 10.1007/978-3-642-40457-3_30-1 10.1016/j.jmp.2016.05.006 10.1029/2019WR025237 10.1016/j.jhydrol.2015.10.040 10.1111/j.1752-1688.2009.00302.x 10.1016/j.jhydrol.2014.01.023 10.1007/978-1-4614-6316-0 10.3390/hydrology5030044 10.1016/j.ejrh.2015.06.023 10.3390/w14193013 10.1016/j.ejrh.2021.100849 10.1002/qj.4116 10.5194/hess-15-3237-2011 10.1061/(asce)he.1943-5584.0000751 10.1007/s11269-021-02883-7 10.1098/rsta.2020.0086 10.1002/wrcr.20291 10.1109/ISPA.2005.195385 10.1002/2015WR018266 10.3182/20110828-6-IT-1002.02326 10.1029/2021wr030272 10.5194/gmd-2019-136 10.1016/j.jhydrol.2020.125531 10.1061/(ASCE)WR.1943-5452.0001462 10.1016/j.advwatres.2020.103721 10.1007/s11269-014-0600-8 10.3390/w13121696 10.1016/j.pce.2020.102899 10.26599/BDMA.2018.9020033 10.1016/j.jhydrol.2017.03.032 10.1623/hysj.52.2.376 10.1029/2010WR009137 10.1016/j.jhydrol.2010.01.018 10.1016/j.advwatres.2017.11.011 10.1016/j.advengsoft.2008.08.002 10.5194/hess-21-4927-2017 10.1002/2015WR017192 10.1111/jfr3.12638 10.1029/2020WR028091 10.1016/j.jhydrol.2010.06.007 10.1109/78.978374 10.1029/2019WR026979 10.1080/09715010.2017.1422192 10.3390/w12092440 10.1016/j.jhydrol.2020.124686 10.1016/j.jhydrol.2018.09.052 10.1007/s00477-022-02258-3 10.1061/(asce)he.1943-5584.0002064 10.5194/hess-22-2903-2018 10.3390/w10020192 10.1659/MRD-JOURNAL-D-15-00009 10.1016/j.jhydrol.2015.11.050 10.1061/(asce)he.1943-5584.0001218 10.1029/2018WR023629 10.16943/ptinsa/2020/49802 10.1061/(asce)he.1943-5584.0001828 10.1029/2019WR025228 10.1061/(ASCE)1084-0699(2005)10:4(264) 10.5194/hess-21-4021-2017 10.5194/hess-17-445-2013 10.1016/j.jhydrol.2013.08.030 10.1016/j.jhydrol.2008.02.013 10.1029/2004WR003604 10.1016/j.advwatres.2004.09.002 10.1016/j.eswa.2011.04.114 10.1007/s00477-013-0751-9 10.5194/hess-2016-464 10.3934/fods.2020004 10.1016/j.jhydrol.2021.127297 10.1016/j.jhydrol.2019.03.051 10.1016/j.jhydrol.2010.06.013 10.1029/2020WR028390 10.2166/nh.1998.15 10.1016/j.jhydrol.2016.02.044 10.1080/02626667.2018.1538593 10.1016/j.jhydrol.2021.126666 10.1007/s11269-019-02273-0 10.1016/j.jhydrol.2008.03.027 10.1016/j.cageo.2021.105019 10.1002/hyp.10510 10.1007/s00477-018-1553-x 10.1080/02626667.2017.1308511 10.3390/s21020438 10.1016/j.ress.2021.107961 10.1016/j.advwatres.2013.03.008 10.1007/s10333-020-00822-7 10.4236/acs.2016.62017 10.1007/s11269-015-1171-z 10.1007/s00521-013-1443-6 10.5194/gmd-6-2087-2013 10.1016/j.jhydrol.2020.124666 10.1029/2011WR011649 10.1029/2007WR006758 10.1016/j.jhydrol.2021.125979 10.5194/npg-26-143-2019 10.1007/s00477-016-1273-z 10.1029/2020WR027859 10.1016/j.jocs.2021.101323 10.1016/j.pce.2006.03.020 10.1109/MSP.2014.2330626 10.1029/2005WR004838 10.1016/j.jhydrol.2013.06.043 10.1016/j.advwatres.2011.01.004 10.1029/2012WR012144 10.1007/s12145-020-00528-8 10.3389/frai.2020.565859 10.1016/j.jhydrol.2020.124945 10.3390/su13073670 10.1016/j.jhydrol.2014.03.057 10.1016/j.jhydrol.2014.08.009 10.3390/geosciences11060255 10.3390/w10111536 10.1061/(asce)0733-9437(1999)125:3(148) 10.1016/j.procs.2017.11.212 10.1016/j.jhydrol.2012.01.011 10.2166/hydro.2008.015 10.3390/w11071327 10.1080/02626667.2013.842282 |
| ContentType | Journal Article |
| Copyright | 2023. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2023. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| DOI | 10.1029/2022WR033318 |
| DatabaseName | CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics Physics |
| EISSN | 1944-7973 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2022WR033318 WRCR26455 |
| Genre | researchArticle |
| GeographicLocations | Nepal India |
| GeographicLocations_xml | – name: Nepal – name: India |
| GrantInformation_xml | – fundername: SPARC funderid: P1228 |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AFFHD AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 |
| ID | FETCH-LOGICAL-c3405-ff1b745d41dc8c823706a96f8f87db24c6bf8e6516b1322f5cf84c162a9a93f63 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000949529900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Fri Sep 05 17:27:54 EDT 2025 Wed Aug 13 07:50:13 EDT 2025 Sat Nov 29 01:36:51 EST 2025 Tue Nov 18 21:43:00 EST 2025 Wed Jan 22 16:18:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3405-ff1b745d41dc8c823706a96f8f87db24c6bf8e6516b1322f5cf84c162a9a93f63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4706-6931 0000-0001-9562-6986 0000-0001-6143-9293 0000-0002-2820-4596 |
| PQID | 2779157866 |
| PQPubID | 105507 |
| PageCount | 30 |
| ParticipantIDs | proquest_miscellaneous_2811989632 proquest_journals_2779157866 crossref_primary_10_1029_2022WR033318 crossref_citationtrail_10_1029_2022WR033318 wiley_primary_10_1029_2022WR033318_WRCR26455 |
| PublicationCentury | 2000 |
| PublicationDate | February 2023 2023-02-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Water resources research |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | e_1_2_8_1_36_1 e_1_2_8_1_13_1 e_1_2_8_1_55_1 e_1_2_8_1_32_1 e_1_2_8_1_51_1 e_1_2_8_1_70_1 e_1_2_8_1_124_1 e_1_2_8_1_101_1 e_1_2_8_1_105_1 e_1_2_8_1_128_1 e_1_2_8_1_81_1 e_1_2_8_1_85_1 e_1_2_8_2_9_1 e_1_2_8_1_89_1 e_1_2_8_1_120_1 e_1_2_8_1_29_1 e_1_2_8_1_48_1 e_1_2_8_1_47_1 e_1_2_8_1_24_1 e_1_2_8_1_66_1 e_1_2_8_1_43_1 e_1_2_8_2_5_1 e_1_2_8_1_20_1 e_1_2_8_1_62_1 e_1_2_8_1_109_1 e_1_2_8_1_112_1 e_1_2_8_1_3_1 e_1_2_8_1_116_1 e_1_2_8_1_7_1 e_1_2_8_1_93_1 e_1_2_8_1_74_1 e_1_2_8_1_97_1 e_1_2_8_1_78_1 e_1_2_8_1_17_1 e_1_2_8_1_59_1 e_1_2_8_1_14_1 e_1_2_8_1_33_1 e_1_2_8_1_56_1 e_1_2_8_1_10_1 e_1_2_8_1_52_1 e_1_2_8_1_71_1 e_1_2_8_1_8_1 e_1_2_8_1_118_1 e_1_2_8_1_102_1 e_1_2_8_1_121_1 e_1_2_8_1_106_1 e_1_2_8_1_82_1 e_1_2_8_1_125_1 e_1_2_8_1_86_1 e_1_2_8_1_26_1 e_1_2_8_1_49_1 e_1_2_8_1_25_1 e_1_2_8_1_44_1 e_1_2_8_1_67_1 e_1_2_8_2_2_1 e_1_2_8_1_21_1 e_1_2_8_1_40_1 e_1_2_8_1_63_1 e_1_2_8_2_6_1 Aghakouchak A. (e_1_2_8_1_9_1) 2010; 26 e_1_2_8_1_113_1 e_1_2_8_1_90_1 e_1_2_8_1_117_1 e_1_2_8_1_4_1 e_1_2_8_1_94_1 e_1_2_8_1_75_1 e_1_2_8_1_98_1 e_1_2_8_1_18_1 e_1_2_8_1_37_1 e_1_2_8_1_79_1 e_1_2_8_1_11_1 e_1_2_8_1_57_1 e_1_2_8_1_34_1 e_1_2_8_1_53_1 e_1_2_8_1_30_1 e_1_2_8_1_119_1 e_1_2_8_1_122_1 Kuptametee C. (e_1_2_8_1_54_1) 2022 e_1_2_8_1_103_1 e_1_2_8_1_83_1 e_1_2_8_1_126_1 e_1_2_8_2_7_1 e_1_2_8_1_87_1 e_1_2_8_1_27_1 e_1_2_8_1_68_1 e_1_2_8_1_45_1 e_1_2_8_2_3_1 e_1_2_8_1_64_1 e_1_2_8_1_41_1 e_1_2_8_2_10_1 e_1_2_8_1_60_1 e_1_2_8_1_107_1 e_1_2_8_1_110_1 e_1_2_8_1_91_1 e_1_2_8_1_114_1 e_1_2_8_1_5_1 e_1_2_8_1_72_1 e_1_2_8_1_95_1 e_1_2_8_1_19_1 e_1_2_8_1_76_1 e_1_2_8_1_15_1 e_1_2_8_1_99_1 e_1_2_8_1_38_1 e_1_2_8_1_12_1 e_1_2_8_1_35_1 e_1_2_8_1_58_1 e_1_2_8_1_31_1 e_1_2_8_1_50_1 e_1_2_8_1_100_1 e_1_2_8_1_123_1 e_1_2_8_1_80_1 e_1_2_8_1_127_1 e_1_2_8_1_104_1 e_1_2_8_1_84_1 Bolićbolić M. (e_1_2_8_1_22_1) 2004; 15 e_1_2_8_2_8_1 e_1_2_8_1_88_1 e_1_2_8_1_28_1 e_1_2_8_1_23_1 e_1_2_8_1_46_1 e_1_2_8_1_69_1 e_1_2_8_1_42_1 e_1_2_8_1_65_1 e_1_2_8_2_4_1 e_1_2_8_1_61_1 e_1_2_8_1_108_1 e_1_2_8_1_2_1 e_1_2_8_1_111_1 e_1_2_8_1_6_1 e_1_2_8_1_92_1 e_1_2_8_1_115_1 e_1_2_8_1_73_1 e_1_2_8_1_96_1 e_1_2_8_1_16_1 e_1_2_8_1_39_1 e_1_2_8_1_77_1 |
| References_xml | – ident: e_1_2_8_1_25_1 doi: 10.1175/JHM-D-21-0189.1 – ident: e_1_2_8_1_79_1 doi: 10.1038/s41598-021-91327-8 – ident: e_1_2_8_1_117_1 doi: 10.1029/2005WR004093 – ident: e_1_2_8_2_5_1 – ident: e_1_2_8_1_100_1 doi: 10.5194/hessd-8-10895-2011 – ident: e_1_2_8_1_85_1 doi: 10.1002/2018WR022627 – ident: e_1_2_8_1_74_1 doi: 10.3390/w12030787 – ident: e_1_2_8_1_93_1 doi: 10.1016/j.accre.2017.08.006 – ident: e_1_2_8_1_111_1 doi: 10.1029/2000JD900719 – ident: e_1_2_8_1_102_1 doi: 10.1016/j.biosystemseng.2018.04.022 – ident: e_1_2_8_1_104_1 doi: 10.1016/j.jhydrol.2022.127683 – ident: e_1_2_8_1_13_1 doi: 10.3390/app11031114 – ident: e_1_2_8_1_61_1 doi: 10.1007/s11269-015-1080-1 – ident: e_1_2_8_1_68_1 doi: 10.1007/978-3-642-40457-3_30-1 – ident: e_1_2_8_2_10_1 doi: 10.1016/j.jmp.2016.05.006 – ident: e_1_2_8_1_109_1 doi: 10.1029/2019WR025237 – ident: e_1_2_8_1_97_1 doi: 10.1016/j.jhydrol.2015.10.040 – ident: e_1_2_8_1_123_1 doi: 10.1111/j.1752-1688.2009.00302.x – ident: e_1_2_8_1_108_1 doi: 10.1016/j.jhydrol.2014.01.023 – ident: e_1_2_8_2_9_1 doi: 10.1007/978-1-4614-6316-0 – ident: e_1_2_8_1_81_1 doi: 10.3390/hydrology5030044 – ident: e_1_2_8_1_32_1 doi: 10.1016/j.ejrh.2015.06.023 – ident: e_1_2_8_1_17_1 doi: 10.3390/w14193013 – ident: e_1_2_8_1_76_1 doi: 10.1016/j.ejrh.2021.100849 – ident: e_1_2_8_1_36_1 doi: 10.1002/qj.4116 – ident: e_1_2_8_1_75_1 doi: 10.5194/hess-15-3237-2011 – ident: e_1_2_8_2_7_1 doi: 10.1061/(asce)he.1943-5584.0000751 – ident: e_1_2_8_1_127_1 doi: 10.1007/s11269-021-02883-7 – ident: e_1_2_8_1_24_1 doi: 10.1098/rsta.2020.0086 – ident: e_1_2_8_1_89_1 doi: 10.1002/wrcr.20291 – ident: e_1_2_8_1_33_1 doi: 10.1109/ISPA.2005.195385 – ident: e_1_2_8_1_65_1 doi: 10.1002/2015WR018266 – ident: e_1_2_8_1_88_1 doi: 10.3182/20110828-6-IT-1002.02326 – ident: e_1_2_8_2_6_1 doi: 10.1029/2021wr030272 – ident: e_1_2_8_1_23_1 doi: 10.5194/gmd-2019-136 – ident: e_1_2_8_1_98_1 doi: 10.1016/j.jhydrol.2020.125531 – volume-title: A review of resampling techniques in particle filtering framework year: 2022 ident: e_1_2_8_1_54_1 – ident: e_1_2_8_1_29_1 doi: 10.1061/(ASCE)WR.1943-5452.0001462 – ident: e_1_2_8_1_3_1 doi: 10.1016/j.advwatres.2020.103721 – ident: e_1_2_8_1_57_1 doi: 10.1007/s11269-014-0600-8 – ident: e_1_2_8_1_70_1 doi: 10.3390/w13121696 – ident: e_1_2_8_1_121_1 doi: 10.1016/j.pce.2020.102899 – ident: e_1_2_8_1_128_1 doi: 10.26599/BDMA.2018.9020033 – ident: e_1_2_8_1_12_1 doi: 10.1016/j.jhydrol.2017.03.032 – ident: e_1_2_8_1_53_1 doi: 10.1623/hysj.52.2.376 – ident: e_1_2_8_1_16_1 – ident: e_1_2_8_1_21_1 doi: 10.1029/2010WR009137 – ident: e_1_2_8_1_35_1 doi: 10.1016/j.jhydrol.2010.01.018 – ident: e_1_2_8_1_5_1 doi: 10.1016/j.advwatres.2017.11.011 – ident: e_1_2_8_1_31_1 doi: 10.1016/j.advengsoft.2008.08.002 – ident: e_1_2_8_1_122_1 doi: 10.5194/hess-21-4927-2017 – ident: e_1_2_8_1_84_1 doi: 10.1002/2015WR017192 – ident: e_1_2_8_1_120_1 doi: 10.1111/jfr3.12638 – ident: e_1_2_8_1_72_1 doi: 10.1029/2020WR028091 – ident: e_1_2_8_1_6_1 doi: 10.1016/j.jhydrol.2010.06.007 – ident: e_1_2_8_1_15_1 doi: 10.1109/78.978374 – ident: e_1_2_8_1_62_1 doi: 10.1029/2019WR026979 – ident: e_1_2_8_1_11_1 doi: 10.1080/09715010.2017.1422192 – ident: e_1_2_8_1_80_1 doi: 10.3390/w12092440 – ident: e_1_2_8_1_91_1 doi: 10.1016/j.jhydrol.2020.124686 – ident: e_1_2_8_1_41_1 doi: 10.1016/j.jhydrol.2018.09.052 – ident: e_1_2_8_1_110_1 doi: 10.1007/s00477-022-02258-3 – ident: e_1_2_8_1_30_1 doi: 10.1061/(asce)he.1943-5584.0002064 – ident: e_1_2_8_1_83_1 doi: 10.5194/hess-22-2903-2018 – ident: e_1_2_8_1_42_1 doi: 10.3390/w10020192 – ident: e_1_2_8_1_48_1 doi: 10.1659/MRD-JOURNAL-D-15-00009 – ident: e_1_2_8_1_77_1 doi: 10.1016/j.jhydrol.2015.11.050 – ident: e_1_2_8_1_39_1 doi: 10.1061/(asce)he.1943-5584.0001218 – ident: e_1_2_8_1_4_1 doi: 10.1029/2018WR023629 – ident: e_1_2_8_1_105_1 doi: 10.16943/ptinsa/2020/49802 – ident: e_1_2_8_1_40_1 doi: 10.1061/(asce)he.1943-5584.0001828 – ident: e_1_2_8_1_52_1 doi: 10.1029/2019WR025228 – ident: e_1_2_8_1_107_1 doi: 10.1061/(ASCE)1084-0699(2005)10:4(264) – ident: e_1_2_8_1_116_1 doi: 10.5194/hess-21-4021-2017 – ident: e_1_2_8_1_10_1 doi: 10.5194/hess-17-445-2013 – volume: 15 year: 2004 ident: e_1_2_8_1_22_1 article-title: Resampling algorithms for particle filters: A computational complexity perspective publication-title: EURASIP Journal on Applied Signal Processing – ident: e_1_2_8_1_44_1 doi: 10.1016/j.jhydrol.2013.08.030 – ident: e_1_2_8_1_7_1 doi: 10.1016/j.jhydrol.2008.02.013 – ident: e_1_2_8_1_43_1 – ident: e_1_2_8_1_67_1 doi: 10.1029/2004WR003604 – ident: e_1_2_8_1_69_1 doi: 10.1016/j.advwatres.2004.09.002 – ident: e_1_2_8_1_38_1 doi: 10.1016/j.eswa.2011.04.114 – ident: e_1_2_8_1_112_1 doi: 10.1007/s00477-013-0751-9 – ident: e_1_2_8_1_124_1 doi: 10.5194/hess-2016-464 – ident: e_1_2_8_1_20_1 doi: 10.3934/fods.2020004 – ident: e_1_2_8_1_27_1 doi: 10.1016/j.jhydrol.2021.127297 – ident: e_1_2_8_2_4_1 doi: 10.1016/j.jhydrol.2019.03.051 – ident: e_1_2_8_1_50_1 doi: 10.1016/j.jhydrol.2010.06.013 – ident: e_1_2_8_1_87_1 doi: 10.1029/2020WR028390 – ident: e_1_2_8_1_99_1 doi: 10.2166/nh.1998.15 – ident: e_1_2_8_1_46_1 doi: 10.1016/j.jhydrol.2016.02.044 – ident: e_1_2_8_1_82_1 doi: 10.1080/02626667.2018.1538593 – ident: e_1_2_8_1_63_1 doi: 10.1016/j.jhydrol.2021.126666 – ident: e_1_2_8_1_49_1 doi: 10.1007/s11269-019-02273-0 – ident: e_1_2_8_1_95_1 doi: 10.1016/j.jhydrol.2008.03.027 – ident: e_1_2_8_1_103_1 doi: 10.1016/j.cageo.2021.105019 – ident: e_1_2_8_1_18_1 doi: 10.1002/hyp.10510 – ident: e_1_2_8_2_8_1 doi: 10.1007/s00477-018-1553-x – ident: e_1_2_8_1_37_1 doi: 10.1080/02626667.2017.1308511 – ident: e_1_2_8_1_34_1 doi: 10.3390/s21020438 – ident: e_1_2_8_1_14_1 doi: 10.1016/j.ress.2021.107961 – ident: e_1_2_8_1_126_1 doi: 10.1016/j.advwatres.2013.03.008 – ident: e_1_2_8_1_47_1 doi: 10.1007/s10333-020-00822-7 – ident: e_1_2_8_1_92_1 doi: 10.4236/acs.2016.62017 – ident: e_1_2_8_1_8_1 doi: 10.1007/s11269-015-1171-z – ident: e_1_2_8_1_96_1 doi: 10.1007/s00521-013-1443-6 – ident: e_1_2_8_1_60_1 doi: 10.5194/gmd-6-2087-2013 – ident: e_1_2_8_1_101_1 doi: 10.1016/j.jhydrol.2020.124666 – ident: e_1_2_8_1_73_1 doi: 10.1029/2011WR011649 – ident: e_1_2_8_1_94_1 doi: 10.1029/2007WR006758 – ident: e_1_2_8_2_3_1 doi: 10.1016/j.jhydrol.2021.125979 – ident: e_1_2_8_1_19_1 doi: 10.5194/npg-26-143-2019 – ident: e_1_2_8_1_64_1 doi: 10.1007/s00477-016-1273-z – ident: e_1_2_8_2_2_1 doi: 10.1029/2020WR027859 – ident: e_1_2_8_1_119_1 doi: 10.1016/j.jocs.2021.101323 – ident: e_1_2_8_1_26_1 doi: 10.1016/j.pce.2006.03.020 – ident: e_1_2_8_1_58_1 doi: 10.1109/MSP.2014.2330626 – ident: e_1_2_8_1_115_1 doi: 10.1029/2005WR004838 – ident: e_1_2_8_1_45_1 doi: 10.1016/j.jhydrol.2013.06.043 – ident: e_1_2_8_1_125_1 doi: 10.1016/j.advwatres.2011.01.004 – ident: e_1_2_8_1_66_1 doi: 10.1029/2012WR012144 – ident: e_1_2_8_1_113_1 doi: 10.1007/s12145-020-00528-8 – ident: e_1_2_8_1_28_1 doi: 10.3389/frai.2020.565859 – ident: e_1_2_8_1_55_1 doi: 10.1016/j.jhydrol.2020.124945 – ident: e_1_2_8_1_56_1 doi: 10.3390/su13073670 – ident: e_1_2_8_1_78_1 doi: 10.1016/j.jhydrol.2014.03.057 – volume: 26 start-page: 963 year: 2010 ident: e_1_2_8_1_9_1 article-title: Application of a conceptual hydrologic model in teaching hydrologic processes publication-title: International Journal of Engineering Education – ident: e_1_2_8_1_59_1 doi: 10.1016/j.jhydrol.2014.08.009 – ident: e_1_2_8_1_86_1 doi: 10.3390/geosciences11060255 – ident: e_1_2_8_1_71_1 doi: 10.3390/w10111536 – ident: e_1_2_8_1_114_1 doi: 10.1061/(asce)0733-9437(1999)125:3(148) – ident: e_1_2_8_1_2_1 doi: 10.1016/j.procs.2017.11.212 – ident: e_1_2_8_1_51_1 doi: 10.1016/j.jhydrol.2012.01.011 – ident: e_1_2_8_1_106_1 doi: 10.2166/hydro.2008.015 – ident: e_1_2_8_1_118_1 doi: 10.3390/w11071327 – ident: e_1_2_8_1_90_1 doi: 10.1080/02626667.2013.842282 |
| SSID | ssj0014567 |
| Score | 2.4960804 |
| Snippet | Occurrences of extreme events, especially floods, have become more frequent and severe in the recent past due to the global impacts of climate change. In this... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accuracy Algorithms Climate change Environmental impact Error correction Error correction & detection Flood forecasting Flood warning systems Floods Forecast accuracy Frameworks HBV model hybrid model India Lead time Machine learning Mathematical models Model accuracy model validation Modelling Nepal particle filter Physics random forest River basins Rivers Stream discharge Stream flow streamflow forecast Streamflow forecasting Uncertainty uncertainty quantification Warning systems water watersheds |
| Title | A Novel Physics‐Aware Machine Learning‐Based Dynamic Error Correction Model for Improving Streamflow Forecast Accuracy |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022WR033318 https://www.proquest.com/docview/2779157866 https://www.proquest.com/docview/2811989632 |
| Volume | 59 |
| WOSCitedRecordID | wos000949529900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231212 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXQQIIXvhEd22QkeIKIOv6KH7tuFUhQoYqpe4ucaxuQSjMl7abxtJ-w38gvwXbcUB5AQrxF8rUS5frax77X5yD0QgN33BKaaUJUxgyFTEkHmRn6BsOLIQUdxSbkdFqcnqqP6cAt3IXp-CH6A7cQGXG-DgGuqzaRDQSOTL9rz-ezIaV-VPopmLAYl_N30z6J4LGB3CSYA9BJde---5vtzr-vSL9g5jZYjavN5N7_fud9dDfhTDzqBsYDdMMuH6Lbm2vIrX9O8udfLh-h7yM8rc_tAsd6UGh_XF2PLnRj8YdYamlxYmH97BsO_bJn8FEnZI-Pm6Zu8DhIfMQLEjhoqy2wR8K4P67AIfOtv7lFfYGDEijodoVHAOtGw-VjdDI5_jR-myVRhgyoB3eZc6SSjBtGDBQQqG6GQivhCldIU-UMROUKKzgRVdjoOg6uYEBErpVW1An6BO0s66V9irAGKgOdHdMuZ8bKyiir88owaivmOB-gVxvHlJAYy4NwxqKMmfNcldv_doBe9tZnHVPHH-z2Nj4uU7y2ZS6lIn7yEmKAnvfNPtJC-kQvbb32NgUJBWaC5gP0Onr8r-8p57PxzMNNznf_zfwZuhM07bvS8D20s2rWdh_dgvPV17Y5QDePZpOT9wdxqP8EFdr-UQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CDmm8jLsoDDASPEFEHd_ix9KtGqKrULVpe4scXzak0qCk3bQ98RP4jfwS7MQN5QEkxFskn1wUn2N_9jn-PoBXSjPHLCaJwlgm1BCdSOF0Yga-wbBsQLRqxCbEdJqdnspPUec0nIVp-SG6DbcQGc14HQI8bEhHtoFAkumX7enJbECId8ubsEW9J7EebO3NxseTLpHg8YFYJ5kD2Im17_4J7zbv_31W-gU1NwFrM-OM7_z3t96FnQg20bD1jntwwy7uw_b6LHLtr6MG-vnVA7geoml5YeeoKQrV9Y9v34eXqrLosKm3tChSsZ75hvd-7jNor1WzR_tVVVZoFHQ-mlMSKAiszZGHw6jbs0Ah_a2-uHl5iYIcqFb1Eg21XlVKXz2E4_H-0eggicoMiSYe4SXO4UJQZig2OtOB72bAleQuc5kwRUo1L1xmOcO8CKtdx7TLqMY8VVJJ4jh5BL1FubCPASlNROC0o8ql1FhRGGlVWhhKbEEdY314s-6ZXEfa8qCeMc-b9Hkq881_24fXnfXXlq7jD3a7607OY9DWeSqExH4E47wPL7tmH24hh6IWtlx5mwyHKjNO0j68bbr8r-_JT2ajmcecjD35N_MXsH1wdDjJJx-mH5_C7SBy39aK70JvWa3sM7ilL5af6-p59PifFAoCDA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CDTFeuE8UBhgJniBaHd_ix65dBWJUU8W0vUWOL4BUmilpN40nfsJ-437J7MQN5QEkxFskn1wU-9iffc75PoDXSjPHLCaJwlgm1BCdSOF0Yvq-wbCsT7RqxCbEZJKdnMjDqHMaamFafojuwC14RjNfBwe3p8ZFtoFAkum37enxtE-IH5Y3YZMyyb1nbo6m46ODLpDg8YFYBZkD2Im57_4Ju-v3_74q_YKa64C1WXHG9_77W-_D3Qg20aAdHQ_ghp0_hK1VLXLtr6MG-teLR_BjgCblmZ2hJilU11c_LwfnqrLoU5NvaVGkYv3iG_b82mfQqFWzR_tVVVZoGHQ-mioJFATWZsjDYdSdWaAQ_lbf3aw8R0EOVKt6gQZaLyulLx7D0Xj_8_B9EpUZEk08wkucw4WgzFBsdKYD302fK8ld5jJhipRqXrjMcoZ5EXa7jmmXUY15qqSSxHGyDRvzcm6fAFKaiMBpR5VLqbGiMNKqtDCU2II6xnrwdtUzuY605UE9Y5Y34fNU5uv_tgdvOuvTlq7jD3Y7q07Oo9PWeSqExH4G47wHr7pm724hhqLmtlx6mwyHLDNO0h68a7r8r-_Jj6fDqcecjD39N_OXcPtwNM4PPkw-PoM7QeO-TRXfgY1FtbTP4ZY-W3yrqxdxwF8DmwMBhw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Physics%E2%80%90Aware+Machine+Learning%E2%80%90Based+Dynamic+Error+Correction+Model+for+Improving+Streamflow+Forecast+Accuracy&rft.jtitle=Water+resources+research&rft.au=Roy%2C+Abhinanda&rft.au=Kasiviswanathan%2C+K.+S.&rft.au=Patidar%2C+Sandhya&rft.au=Adeloye%2C+Adebayo+J.&rft.date=2023-02-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=59&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022WR033318&rft.externalDBID=10.1029%252F2022WR033318&rft.externalDocID=WRCR26455 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |