The CD28-B7 Family in Anti-Tumor Immunity: Emerging Concepts in Cancer Immunotherapy

The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of can...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Immune network Ročník 14; číslo 6; s. 265
Hlavní autoři: Leung, Joanne, Suh, Woong-Kyung
Médium: Journal Article
Jazyk:angličtina
Vydáno: Korea (South) 01.12.2014
Témata:
ISSN:1598-2629
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of cancer therapeutics that can restore T cell function. Murine tumor models have provided significant support for the targeting of multiple immune checkpoints involving CTLA-4, PD-1, ICOS, B7-H3 and B7-H4 during tumor growth, and clinical studies investigating the therapeutic effects of CTLA-4 and PD-1 blockade have shown exceptionally promising results in patients with advanced melanoma and other cancers. The expression pattern of co-inhibitory B7 ligands in the tumor microenvironment has also been largely correlated with poor patient prognosis, and recent evidence suggests that the presence of several B7 molecules may predict the responsiveness of immunotherapies that rely on pre-existing tumor-associated immune responses. While monotherapies blocking T cell co-inhibition have beneficial effects in reducing tumor burden, combinatorial immunotherapy targeting multiple immune checkpoints involved in various stages of the anti-tumor response has led to the most substantial impact on tumor reduction. In this review, we will examine the contributions of B7- and CD28-family members in the context of cancer development, and discuss the implications of current human findings in cancer immunotherapy.
AbstractList The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of cancer therapeutics that can restore T cell function. Murine tumor models have provided significant support for the targeting of multiple immune checkpoints involving CTLA-4, PD-1, ICOS, B7-H3 and B7-H4 during tumor growth, and clinical studies investigating the therapeutic effects of CTLA-4 and PD-1 blockade have shown exceptionally promising results in patients with advanced melanoma and other cancers. The expression pattern of co-inhibitory B7 ligands in the tumor microenvironment has also been largely correlated with poor patient prognosis, and recent evidence suggests that the presence of several B7 molecules may predict the responsiveness of immunotherapies that rely on pre-existing tumor-associated immune responses. While monotherapies blocking T cell co-inhibition have beneficial effects in reducing tumor burden, combinatorial immunotherapy targeting multiple immune checkpoints involved in various stages of the anti-tumor response has led to the most substantial impact on tumor reduction. In this review, we will examine the contributions of B7- and CD28-family members in the context of cancer development, and discuss the implications of current human findings in cancer immunotherapy.
The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of cancer therapeutics that can restore T cell function. Murine tumor models have provided significant support for the targeting of multiple immune checkpoints involving CTLA-4, PD-1, ICOS, B7-H3 and B7-H4 during tumor growth, and clinical studies investigating the therapeutic effects of CTLA-4 and PD-1 blockade have shown exceptionally promising results in patients with advanced melanoma and other cancers. The expression pattern of co-inhibitory B7 ligands in the tumor microenvironment has also been largely correlated with poor patient prognosis, and recent evidence suggests that the presence of several B7 molecules may predict the responsiveness of immunotherapies that rely on pre-existing tumor-associated immune responses. While monotherapies blocking T cell co-inhibition have beneficial effects in reducing tumor burden, combinatorial immunotherapy targeting multiple immune checkpoints involved in various stages of the anti-tumor response has led to the most substantial impact on tumor reduction. In this review, we will examine the contributions of B7- and CD28-family members in the context of cancer development, and discuss the implications of current human findings in cancer immunotherapy.The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression of co-inhibitory B7 molecules has been attributed to reduced anti-tumor immunity and cancer immune evasion, prompting the development of cancer therapeutics that can restore T cell function. Murine tumor models have provided significant support for the targeting of multiple immune checkpoints involving CTLA-4, PD-1, ICOS, B7-H3 and B7-H4 during tumor growth, and clinical studies investigating the therapeutic effects of CTLA-4 and PD-1 blockade have shown exceptionally promising results in patients with advanced melanoma and other cancers. The expression pattern of co-inhibitory B7 ligands in the tumor microenvironment has also been largely correlated with poor patient prognosis, and recent evidence suggests that the presence of several B7 molecules may predict the responsiveness of immunotherapies that rely on pre-existing tumor-associated immune responses. While monotherapies blocking T cell co-inhibition have beneficial effects in reducing tumor burden, combinatorial immunotherapy targeting multiple immune checkpoints involved in various stages of the anti-tumor response has led to the most substantial impact on tumor reduction. In this review, we will examine the contributions of B7- and CD28-family members in the context of cancer development, and discuss the implications of current human findings in cancer immunotherapy.
Author Suh, Woong-Kyung
Leung, Joanne
Author_xml – sequence: 1
  givenname: Joanne
  surname: Leung
  fullname: Leung, Joanne
  organization: Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada. ; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
– sequence: 2
  givenname: Woong-Kyung
  surname: Suh
  fullname: Suh, Woong-Kyung
  organization: Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada. ; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada. ; Department of Medicine; Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25550693$$D View this record in MEDLINE/PubMed
BookMark eNo1kDtPwzAAhD0U0QfsTMgjS4LfbthK2kKlSizZI8d2WqPYCXEy5N_TiiKddCfdpxtuCWahDRaAJ4xShjF6dSElCLP0IpESwWdggXm2Togg2RwsY_xGSDAq-T2YE845EhldgKI4W5hvyTp5l3CvvGsm6ALchMElxejbHh68H4Mbpje487Y_uXCCeRu07YZ4JXN1yTeqHc62V930AO5q1UT7ePMVKPa7Iv9Mjl8fh3xzTDRliCeSc2aI1QRJamTGkK5NRmvNtLGMUoYRUSarENGmsgYrUcuKV9d2LRVXZAVe_ma7vv0ZbRxK76K2TaOCbcdYYsEwIxIxeUGfb-hYeWvKrnde9VP5fwT5BccTXuA
CitedBy_id crossref_primary_10_1007_s12094_021_02659_w
crossref_primary_10_1158_0008_5472_CAN_15_1879
crossref_primary_10_1080_2162402X_2017_1371896
crossref_primary_10_1080_07391102_2017_1355846
crossref_primary_10_1038_s41598_020_67894_7
crossref_primary_10_1007_s00280_017_3508_1
crossref_primary_10_3389_fonc_2021_600238
crossref_primary_10_1016_j_lfs_2022_120709
crossref_primary_10_1016_j_fsi_2019_10_041
crossref_primary_10_1016_j_intimp_2016_05_020
crossref_primary_10_1038_s41419_018_0796_2
crossref_primary_10_3892_or_2017_5730
crossref_primary_10_1007_s13277_016_5386_2
crossref_primary_10_1186_s12885_022_09294_w
crossref_primary_10_1111_pcmr_12599
crossref_primary_10_1128_JVI_01677_19
crossref_primary_10_1016_j_jtho_2018_03_002
crossref_primary_10_1097_MD_0000000000003220
crossref_primary_10_2217_imt_2021_0093
crossref_primary_10_1177_1010428318815032
crossref_primary_10_3389_fnut_2018_00138
crossref_primary_10_1007_s00262_016_1950_2
crossref_primary_10_3892_ijo_2016_3393
crossref_primary_10_1016_S1473_3099_16_00078_5
crossref_primary_10_1016_j_intimp_2018_01_018
crossref_primary_10_1111_imr_12771
crossref_primary_10_3389_fimmu_2018_02582
crossref_primary_10_1158_1078_0432_CCR_18_2564
crossref_primary_10_1038_s41523_018_0095_1
crossref_primary_10_1002_ijc_31764
crossref_primary_10_1016_j_intimp_2023_110403
crossref_primary_10_1097_PAI_0000000000000817
crossref_primary_10_1002_ijc_30475
crossref_primary_10_1007_s10753_016_0437_9
crossref_primary_10_3390_ijms251910326
crossref_primary_10_1016_j_humpath_2016_06_011
crossref_primary_10_3892_ol_2018_8689
crossref_primary_10_3389_fimmu_2018_01125
crossref_primary_10_1097_CAD_0000000000000921
crossref_primary_10_1186_s12916_016_0635_1
crossref_primary_10_1186_s12885_022_09639_5
crossref_primary_10_1080_14728222_2018_1444753
crossref_primary_10_1016_j_jep_2016_06_019
crossref_primary_10_2217_imt_15_111
crossref_primary_10_3390_pharmaceutics12100955
crossref_primary_10_1016_j_intimp_2023_109827
crossref_primary_10_1159_000505756
crossref_primary_10_3390_life14121546
crossref_primary_10_3389_fimmu_2023_1199173
crossref_primary_10_1080_2162402X_2016_1207841
crossref_primary_10_2217_imt_2017_0120
crossref_primary_10_1186_s13287_016_0400_6
crossref_primary_10_1007_s12032_020_01433_2
crossref_primary_10_1186_s12885_023_10575_1
crossref_primary_10_1016_j_intimp_2018_03_020
crossref_primary_10_1016_j_bcp_2024_116712
crossref_primary_10_1016_j_jdermsci_2018_04_006
ContentType Journal Article
DBID NPM
7X8
DOI 10.4110/in.2014.14.6.265
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
ExternalDocumentID 25550693
Genre Journal Article
Review
GroupedDBID .UV
5-W
53G
8JR
8XY
9ZL
ACYCR
ADBBV
ADRAZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
DBRKI
DIK
E3Z
EF.
F5P
GW5
HYE
KQ8
KVFHK
M48
MZR
M~E
NPM
O5R
O5S
OK1
PGMZT
RPM
TDB
ZZE
7X8
ID FETCH-LOGICAL-c3405-7554d2ec2073d7940cfd93fc4cde4334102ad9b02cdbed1a6f7b5b4cde87a5a2
IEDL.DBID 7X8
ISSN 1598-2629
IngestDate Thu Jul 10 19:09:52 EDT 2025
Thu Jan 02 22:17:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords CD28 family
B7 family
Immune evasion
Co-stimulation
Cancer immunotherapy
Co-inhibition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3405-7554d2ec2073d7940cfd93fc4cde4334102ad9b02cdbed1a6f7b5b4cde87a5a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4275384
PMID 25550693
PQID 1641427047
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1641427047
pubmed_primary_25550693
PublicationCentury 2000
PublicationDate 20141201
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 20141201
  day: 1
PublicationDecade 2010
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Immune network
PublicationTitleAlternate Immune Netw
PublicationYear 2014
References 24691994 - Cancer Res. 2014 Apr 1;74(7):1933-44
19724910 - Int J Oncol. 2009 Oct;35(4):741-9
23716685 - Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9879-84
9707601 - Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10067-71
22658127 - N Engl J Med. 2012 Jun 28;366(26):2443-54
19528259 - J Exp Med. 2009 Jul 6;206(7):1495-503
15878339 - Exp Cell Res. 2005 May 15;306(1):128-41
24690569 - Clin Pharmacol Ther. 2014 Aug;96(2):214-23
11343122 - Nature. 2001 Jan 4;409(6816):102-5
18650384 - Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10495-500
20385810 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7875-80
20143437 - Cancer. 2010 Apr 1;116(7):1757-66
12975453 - J Exp Med. 2003 Sep 15;198(6):851-62
15494491 - J Immunol. 2004 Nov 1;173(9):5445-50
21368758 - Nature. 2011 Mar 17;471(7338):377-81
23390376 - Cancer Immun. 2013;13:5
19544488 - Eur J Immunol. 2009 Jul;39(7):1754-64
24653632 - Chin J Cancer Res. 2014 Feb;26(1):104-11
12826605 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8372-7
20035626 - BMC Cancer. 2009 Dec 26;9:463
16489649 - World J Gastroenterol. 2006 Jan 21;12(3):457-9
15682454 - Eur J Immunol. 2005 Feb;35(2):428-38
21127709 - Clin Dev Immunol. 2010;2010:683875
15611321 - Int Immunol. 2005 Feb;17(2):133-44
24986688 - Blood. 2014 Aug 14;124(7):1070-80
23954143 - Trends Immunol. 2013 Nov;34(11):556-63
15960813 - Genome Biol. 2005;6(6):223
24486724 - Mol Immunol. 2014 May;59(1):46-54
20140740 - J Cancer Res Clin Oncol. 2010 Sep;136(9):1445-52
16914726 - Mol Cell Biol. 2006 Sep;26(17):6403-11
11910893 - Nat Rev Immunol. 2002 Feb;2(2):116-26
23986400 - Sci Transl Med. 2013 Aug 28;5(200):200ra116
20525897 - J Immunol. 2010 Jun 15;184(12):6563-8
14568939 - J Immunol. 2003 Nov 1;171(9):4650-4
16606670 - J Exp Med. 2006 Apr 17;203(4):883-95
15294965 - J Immunol. 2004 Aug 15;173(4):2500-6
21933959 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16723-8
23514593 - Retrovirology. 2013 Mar 20;10:31
15771580 - Annu Rev Immunol. 2005;23:515-48
19584290 - Cancer Res. 2009 Aug 1;69(15):6275-81
19423728 - Blood. 2009 Aug 20;114(8):1537-44
20460488 - Clin Cancer Res. 2010 May 15;16(10 ):2861-71
12920180 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10388-92
9223321 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8099-103
22461641 - Sci Transl Med. 2012 Mar 28;4(127):127ra37
22013483 - Clin Dev Immunol. 2011;2011:695834
16115907 - Clin Cancer Res. 2005 Aug 15;11(16):5708-17
19955922 - Int J Gynecol Cancer. 2009 Dec;19(9):1481-6
19336265 - Int Immunopharmacol. 2009 Jul;9(7-8):900-9
23295794 - J Clin Oncol. 2013 Feb 10;31(5):616-22
19737784 - Int Immunol. 2009 Oct;21(10):1105-11
12925852 - Nat Immunol. 2003 Sep;4(9):899-906
23724846 - N Engl J Med. 2013 Jul 11;369(2):134-44
18042703 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19458-63
9850053 - Cancer Res. 1998 Dec 1;58(23):5301-4
12939639 - Gene Ther. 2003 Sep;10(20):1728-34
15613700 - J Clin Oncol. 2005 Feb 1;23(4):741-50
10430624 - J Exp Med. 1999 Aug 2;190(3):355-66
20333377 - Cancer Immunol Immunother. 2010 Aug;59(8):1163-71
12810690 - J Exp Med. 2003 Jun 16;197(12):1721-30
15756008 - Clin Cancer Res. 2005 Mar 1;11(5):1842-8
9307290 - Cancer Res. 1997 Sep 15;57(18):4036-41
11224528 - Nat Immunol. 2001 Mar;2(3):269-74
11343123 - Nature. 2001 Jan 4;409(6816):105-9
19915142 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20371-6
16382236 - Nature. 2006 Feb 9;439(7077):682-7
16606666 - J Exp Med. 2006 Apr 17;203(4):871-81
12818165 - Immunity. 2003 Jun;18(6):849-61
20479064 - Clin Cancer Res. 2010 Jul 1;16(13):3485-94
24842267 - Breast Cancer Res Treat. 2014 Jul;146(1):15-24
23724867 - N Engl J Med. 2013 Jul 11;369(2):122-33
24292706 - J Clin Invest. 2014 Jan;124(1):99-110
20525992 - N Engl J Med. 2010 Aug 19;363(8):711-23
16725184 - Gynecol Oncol. 2006 Nov;103(2):405-16
19001146 - Oncologist. 2008;13 Suppl 4:10-5
16611412 - Neoplasia. 2006 Mar;8(3):190-8
12091876 - Nat Med. 2002 Aug;8(8):793-800
19188168 - Clin Cancer Res. 2009 Feb 1;15(3):971-9
21098714 - Cancer Res. 2010 Dec 1;70(23):9581-90
21639810 - N Engl J Med. 2011 Jun 30;364(26):2517-26
12218188 - Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12293-7
24777248 - Cancer Immunol Res. 2013 Jul;1(1):32-42
22658128 - N Engl J Med. 2012 Jun 28;366(26):2455-65
15701862 - Clin Cancer Res. 2005 Jan 15;11(2 Pt 1):728-34
23686485 - J Immunol. 2013 Jun 15;190(12):6651-61
15568026 - Nat Immunol. 2005 Jan;6(1):90-8
19915147 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20429-34
23722540 - Cancer Res. 2013 Aug 1;73(15):4820-9
17686830 - Cancer Res. 2007 Aug 15;67(16):7893-900
23455497 - J Immunol. 2013 Apr 1;190(7):3806-14
21708958 - Cancer Res. 2011 Aug 15;71(16):5445-54
18818309 - Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14987-92
19109567 - Blood. 2009 Feb 19;113(8):1759-67
16970282 - Cell Transplant. 2006;15(5):399-410
22437870 - Nat Rev Cancer. 2012 Mar 22;12(4):252-64
22108823 - Cancer Res. 2012 Jan 15;72(2):430-9
12816995 - J Immunol. 2003 Jul 1;171(1):166-74
20516446 - J Clin Oncol. 2010 Jul 1;28(19):3167-75
References_xml – reference: 21933959 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16723-8
– reference: 9850053 - Cancer Res. 1998 Dec 1;58(23):5301-4
– reference: 9307290 - Cancer Res. 1997 Sep 15;57(18):4036-41
– reference: 24486724 - Mol Immunol. 2014 May;59(1):46-54
– reference: 20333377 - Cancer Immunol Immunother. 2010 Aug;59(8):1163-71
– reference: 21708958 - Cancer Res. 2011 Aug 15;71(16):5445-54
– reference: 23724867 - N Engl J Med. 2013 Jul 11;369(2):122-33
– reference: 21368758 - Nature. 2011 Mar 17;471(7338):377-81
– reference: 19001146 - Oncologist. 2008;13 Suppl 4:10-5
– reference: 20460488 - Clin Cancer Res. 2010 May 15;16(10 ):2861-71
– reference: 15613700 - J Clin Oncol. 2005 Feb 1;23(4):741-50
– reference: 15701862 - Clin Cancer Res. 2005 Jan 15;11(2 Pt 1):728-34
– reference: 10430624 - J Exp Med. 1999 Aug 2;190(3):355-66
– reference: 20516446 - J Clin Oncol. 2010 Jul 1;28(19):3167-75
– reference: 24691994 - Cancer Res. 2014 Apr 1;74(7):1933-44
– reference: 22658127 - N Engl J Med. 2012 Jun 28;366(26):2443-54
– reference: 16970282 - Cell Transplant. 2006;15(5):399-410
– reference: 16606666 - J Exp Med. 2006 Apr 17;203(4):871-81
– reference: 16115907 - Clin Cancer Res. 2005 Aug 15;11(16):5708-17
– reference: 17686830 - Cancer Res. 2007 Aug 15;67(16):7893-900
– reference: 15960813 - Genome Biol. 2005;6(6):223
– reference: 12091876 - Nat Med. 2002 Aug;8(8):793-800
– reference: 19528259 - J Exp Med. 2009 Jul 6;206(7):1495-503
– reference: 15611321 - Int Immunol. 2005 Feb;17(2):133-44
– reference: 9223321 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8099-103
– reference: 23986400 - Sci Transl Med. 2013 Aug 28;5(200):200ra116
– reference: 15494491 - J Immunol. 2004 Nov 1;173(9):5445-50
– reference: 21127709 - Clin Dev Immunol. 2010;2010:683875
– reference: 20385810 - Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7875-80
– reference: 24690569 - Clin Pharmacol Ther. 2014 Aug;96(2):214-23
– reference: 22013483 - Clin Dev Immunol. 2011;2011:695834
– reference: 12826605 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8372-7
– reference: 16725184 - Gynecol Oncol. 2006 Nov;103(2):405-16
– reference: 16606670 - J Exp Med. 2006 Apr 17;203(4):883-95
– reference: 15756008 - Clin Cancer Res. 2005 Mar 1;11(5):1842-8
– reference: 24292706 - J Clin Invest. 2014 Jan;124(1):99-110
– reference: 21098714 - Cancer Res. 2010 Dec 1;70(23):9581-90
– reference: 12925852 - Nat Immunol. 2003 Sep;4(9):899-906
– reference: 22108823 - Cancer Res. 2012 Jan 15;72(2):430-9
– reference: 16914726 - Mol Cell Biol. 2006 Sep;26(17):6403-11
– reference: 19915147 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20429-34
– reference: 11224528 - Nat Immunol. 2001 Mar;2(3):269-74
– reference: 11910893 - Nat Rev Immunol. 2002 Feb;2(2):116-26
– reference: 11343122 - Nature. 2001 Jan 4;409(6816):102-5
– reference: 16382236 - Nature. 2006 Feb 9;439(7077):682-7
– reference: 21639810 - N Engl J Med. 2011 Jun 30;364(26):2517-26
– reference: 24842267 - Breast Cancer Res Treat. 2014 Jul;146(1):15-24
– reference: 20479064 - Clin Cancer Res. 2010 Jul 1;16(13):3485-94
– reference: 19724910 - Int J Oncol. 2009 Oct;35(4):741-9
– reference: 23716685 - Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9879-84
– reference: 19955922 - Int J Gynecol Cancer. 2009 Dec;19(9):1481-6
– reference: 19915142 - Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20371-6
– reference: 24653632 - Chin J Cancer Res. 2014 Feb;26(1):104-11
– reference: 15878339 - Exp Cell Res. 2005 May 15;306(1):128-41
– reference: 20143437 - Cancer. 2010 Apr 1;116(7):1757-66
– reference: 23954143 - Trends Immunol. 2013 Nov;34(11):556-63
– reference: 18650384 - Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10495-500
– reference: 19188168 - Clin Cancer Res. 2009 Feb 1;15(3):971-9
– reference: 18042703 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19458-63
– reference: 15682454 - Eur J Immunol. 2005 Feb;35(2):428-38
– reference: 16611412 - Neoplasia. 2006 Mar;8(3):190-8
– reference: 20525992 - N Engl J Med. 2010 Aug 19;363(8):711-23
– reference: 20525897 - J Immunol. 2010 Jun 15;184(12):6563-8
– reference: 15294965 - J Immunol. 2004 Aug 15;173(4):2500-6
– reference: 22437870 - Nat Rev Cancer. 2012 Mar 22;12(4):252-64
– reference: 11343123 - Nature. 2001 Jan 4;409(6816):105-9
– reference: 12920180 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10388-92
– reference: 23455497 - J Immunol. 2013 Apr 1;190(7):3806-14
– reference: 22461641 - Sci Transl Med. 2012 Mar 28;4(127):127ra37
– reference: 22658128 - N Engl J Med. 2012 Jun 28;366(26):2455-65
– reference: 12939639 - Gene Ther. 2003 Sep;10(20):1728-34
– reference: 19336265 - Int Immunopharmacol. 2009 Jul;9(7-8):900-9
– reference: 20140740 - J Cancer Res Clin Oncol. 2010 Sep;136(9):1445-52
– reference: 24986688 - Blood. 2014 Aug 14;124(7):1070-80
– reference: 9707601 - Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10067-71
– reference: 24777248 - Cancer Immunol Res. 2013 Jul;1(1):32-42
– reference: 23514593 - Retrovirology. 2013 Mar 20;10:31
– reference: 12218188 - Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12293-7
– reference: 15771580 - Annu Rev Immunol. 2005;23:515-48
– reference: 19423728 - Blood. 2009 Aug 20;114(8):1537-44
– reference: 23390376 - Cancer Immun. 2013;13:5
– reference: 19584290 - Cancer Res. 2009 Aug 1;69(15):6275-81
– reference: 15568026 - Nat Immunol. 2005 Jan;6(1):90-8
– reference: 20035626 - BMC Cancer. 2009 Dec 26;9:463
– reference: 19544488 - Eur J Immunol. 2009 Jul;39(7):1754-64
– reference: 18818309 - Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14987-92
– reference: 16489649 - World J Gastroenterol. 2006 Jan 21;12(3):457-9
– reference: 14568939 - J Immunol. 2003 Nov 1;171(9):4650-4
– reference: 23722540 - Cancer Res. 2013 Aug 1;73(15):4820-9
– reference: 23686485 - J Immunol. 2013 Jun 15;190(12):6651-61
– reference: 12975453 - J Exp Med. 2003 Sep 15;198(6):851-62
– reference: 12816995 - J Immunol. 2003 Jul 1;171(1):166-74
– reference: 19109567 - Blood. 2009 Feb 19;113(8):1759-67
– reference: 12818165 - Immunity. 2003 Jun;18(6):849-61
– reference: 12810690 - J Exp Med. 2003 Jun 16;197(12):1721-30
– reference: 23724846 - N Engl J Med. 2013 Jul 11;369(2):134-44
– reference: 19737784 - Int Immunol. 2009 Oct;21(10):1105-11
– reference: 23295794 - J Clin Oncol. 2013 Feb 10;31(5):616-22
SSID ssj0064375
Score 1.8924896
SecondaryResourceType review_article
Snippet The interactions between B7 molecules and CD28-family receptors are crucial in the regulation of adaptive cellular immunity. In cancer, the aberrant expression...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 265
Title The CD28-B7 Family in Anti-Tumor Immunity: Emerging Concepts in Cancer Immunotherapy
URI https://www.ncbi.nlm.nih.gov/pubmed/25550693
https://www.proquest.com/docview/1641427047
Volume 14
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAgsTC-1FeMhJriuM4dsKCSqACCaoOGbpVfkXKQFKaFqn_nnOSwoSExJIljhSdv7v7fOe7Q-hGEmWpgR0ALiA8xhX3YmLh1CqEkIJZplTdxPVVDIfReByP2oBb1V6rXNnE2lCbUrsY-S3Qep9RQZi4n354bmqUy662IzTWUScAKuNQLcbfWQSXkwrrfqkxoIHTuElTMvB4t7nrfeozMBQ93qM8_J1g1o5msPvfX9xDOy3FxP0GE_tozRYHaKsZOrk8RCkgAyePNPIeBG7mXuC8wP1innvp4r2c4Ze6ZmS-vMMuZOWmGOGkqW6s3MrEAaVd1dZvLY9QOnhKk2evna3g6QA4mieARhhqNQUVN6CTRGcmDjLNtLEsANdGqDSxIlQbZY0veSZUqNzbSMhQ0mO0UZSFPUU4E8RIazISasoixaUBBhr6GeVKisDXXXS9ktYEoOvyEbKw5aKa_Miri04akU-mTY-NCZx0QsLj4OwPX5-jbbeXzSWTC9TJQHHtJdrUn_O8ml3VmIDncPT2BeEGv1w
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+CD28-B7+Family+in+Anti-Tumor+Immunity%3A+Emerging+Concepts+in+Cancer+Immunotherapy&rft.jtitle=Immune+network&rft.au=Leung%2C+Joanne&rft.au=Suh%2C+Woong-Kyung&rft.date=2014-12-01&rft.issn=1598-2629&rft.volume=14&rft.issue=6&rft.spage=265&rft_id=info:doi/10.4110%2Fin.2014.14.6.265&rft_id=info%3Apmid%2F25550693&rft_id=info%3Apmid%2F25550693&rft.externalDocID=25550693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2629&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2629&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2629&client=summon