Convergence theorems of subgradient extragradient algorithm for solving variational inequalities and a convex feasibility problem

Let C be a nonempty closed and convex subset of a uniformly smooth and 2-uniformly convex real Banach space E with dual space E ∗ . In this paper, a Krasnoselskii-type subgradient extragradient iterative algorithm is constructed and used to approximate a common element of solutions of variational in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fixed point theory and algorithms for sciences and engineering Ročník 2018; číslo 1; s. 1 - 14
Hlavní autoři: Chidume, C. E., Nnakwe, M. O.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 18.06.2018
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1687-1812, 1687-1812, 2730-5422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let C be a nonempty closed and convex subset of a uniformly smooth and 2-uniformly convex real Banach space E with dual space E ∗ . In this paper, a Krasnoselskii-type subgradient extragradient iterative algorithm is constructed and used to approximate a common element of solutions of variational inequality problems and fixed points of a countable family of relatively nonexpansive maps. The theorems proved are improvement of the results of Censor et al. (J. Optim. Theory Appl. 148:318–335, 2011 ).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1812
1687-1812
2730-5422
DOI:10.1186/s13663-018-0641-4