Multi-parameter and multi-objective optimization of dual-fuel cell system heavy-duty vehicles: Sizing for serial development

Dual-fuel cell hybrid system provides an attractive propulsion option in transportation, especially for heavy-duty vehicles. However, the larger vehicle weight improves the sensitivity of power demand to road conditions and vehicle handling, making it a challenge to realize reasonable sizing. The sc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy (Oxford) Ročník 308; s. 132857
Hlavní autori: Zhang, Zhendong, He, Hongwen, Quan, Shengwei, Chen, Jinzhou, Han, Ruoyan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2024
Predmet:
ISSN:0360-5442
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Dual-fuel cell hybrid system provides an attractive propulsion option in transportation, especially for heavy-duty vehicles. However, the larger vehicle weight improves the sensitivity of power demand to road conditions and vehicle handling, making it a challenge to realize reasonable sizing. The scope of this work is to demonstrate a multi-objective and multi-parameter optimization for the serial development of the heavy-duty vehicle, powered by a dual-fuel cell hybrid system. Toward this end, a comprehensive modeling is presented combining the degradation model of the FC system and the battery system. The Pareto theory is introduced to evaluate the three-dimensional objectives involving the equivalent hydrogen consumption, the mass goal, and the vehicle dynamic, which is derived from different six-dimensional parameters under a dual-layer optimization approach. The brute force approach is not applicable in the presence of the curse of dimensionality arising from multi-parameter optimization. The proposed methodology offers a viable approach to acquiring rational sets of sizing solutions in the optimization space with high-dimensional parameters. Considering the serialization of products, the improved solution and the corresponding performance upper limit have be determined according to the proposed methodology under different weight levels as well. •Multi-objective jellyfish swarm algorithm is introduced into the sizing procedure.•The equivalent hydrogen consumption combining degradation models.•The sizing procedure is conducted for the serial development under different vehicle weights.•Pareto optimization is introduced to solve the multi-objective problem of the dual-FCS architecture.•The upper-performance limit is obtained by dynamic programming algorithm.
AbstractList Dual-fuel cell hybrid system provides an attractive propulsion option in transportation, especially for heavy-duty vehicles. However, the larger vehicle weight improves the sensitivity of power demand to road conditions and vehicle handling, making it a challenge to realize reasonable sizing. The scope of this work is to demonstrate a multi-objective and multi-parameter optimization for the serial development of the heavy-duty vehicle, powered by a dual-fuel cell hybrid system. Toward this end, a comprehensive modeling is presented combining the degradation model of the FC system and the battery system. The Pareto theory is introduced to evaluate the three-dimensional objectives involving the equivalent hydrogen consumption, the mass goal, and the vehicle dynamic, which is derived from different six-dimensional parameters under a dual-layer optimization approach. The brute force approach is not applicable in the presence of the curse of dimensionality arising from multi-parameter optimization. The proposed methodology offers a viable approach to acquiring rational sets of sizing solutions in the optimization space with high-dimensional parameters. Considering the serialization of products, the improved solution and the corresponding performance upper limit have be determined according to the proposed methodology under different weight levels as well.
Dual-fuel cell hybrid system provides an attractive propulsion option in transportation, especially for heavy-duty vehicles. However, the larger vehicle weight improves the sensitivity of power demand to road conditions and vehicle handling, making it a challenge to realize reasonable sizing. The scope of this work is to demonstrate a multi-objective and multi-parameter optimization for the serial development of the heavy-duty vehicle, powered by a dual-fuel cell hybrid system. Toward this end, a comprehensive modeling is presented combining the degradation model of the FC system and the battery system. The Pareto theory is introduced to evaluate the three-dimensional objectives involving the equivalent hydrogen consumption, the mass goal, and the vehicle dynamic, which is derived from different six-dimensional parameters under a dual-layer optimization approach. The brute force approach is not applicable in the presence of the curse of dimensionality arising from multi-parameter optimization. The proposed methodology offers a viable approach to acquiring rational sets of sizing solutions in the optimization space with high-dimensional parameters. Considering the serialization of products, the improved solution and the corresponding performance upper limit have be determined according to the proposed methodology under different weight levels as well. •Multi-objective jellyfish swarm algorithm is introduced into the sizing procedure.•The equivalent hydrogen consumption combining degradation models.•The sizing procedure is conducted for the serial development under different vehicle weights.•Pareto optimization is introduced to solve the multi-objective problem of the dual-FCS architecture.•The upper-performance limit is obtained by dynamic programming algorithm.
ArticleNumber 132857
Author Han, Ruoyan
Chen, Jinzhou
He, Hongwen
Zhang, Zhendong
Quan, Shengwei
Author_xml – sequence: 1
  givenname: Zhendong
  surname: Zhang
  fullname: Zhang, Zhendong
– sequence: 2
  givenname: Hongwen
  surname: He
  fullname: He, Hongwen
  email: hwhebit@bit.edu.cn
– sequence: 3
  givenname: Shengwei
  surname: Quan
  fullname: Quan, Shengwei
– sequence: 4
  givenname: Jinzhou
  surname: Chen
  fullname: Chen, Jinzhou
– sequence: 5
  givenname: Ruoyan
  surname: Han
  fullname: Han, Ruoyan
BookMark eNqFkU1v1DAQhn0oEm3hH3DwkUsWO4k3SQ9IqOJLKuIAnK1Ze9zOyrGD7URKxY9nt-HEAU4jjeZ5NfPMFbsIMSBjr6TYSSH3b447DJju110t6nYnm7pX3QW7FM1eVKpt6-fsKuejEEL1w3DJfn2ZfaFqggQjFkwcguXjUy8ejmgKLcjjVGikRygUA4-O2xl85Wb03KD3PK-54MgfEJa1snNZ-YIPZDzmG_6NHinccxcTz5gIPLe4oI_TiKG8YM8c-Iwv_9Rr9uPD---3n6q7rx8_3767q0zTDKVy4Oraqr1FY6HprJAH0_eHAXFwNVrRKSU64RphWqV6gL3oOgHKmOHgZF9Dc81eb7lTij9nzEWPlM-rQ8A4Z91I1cpOdqo_jd5soybFnBM6bag8HV4SkNdS6LNmfdSbZn3WrDfNJ7j9C54SjZDW_2FvNwxPDhbCpLMhDAYtpdMHtI3074DfyzahNQ
CitedBy_id crossref_primary_10_3390_su17125431
crossref_primary_10_1002_adsu_202500886
crossref_primary_10_1016_j_ijhydene_2024_11_193
crossref_primary_10_3390_jmse12122133
crossref_primary_10_3390_su17136170
crossref_primary_10_1063_5_0274938
crossref_primary_10_1016_j_ijhydene_2024_12_268
Cites_doi 10.1109/TIE.2004.834972
10.1016/j.apenergy.2021.116469
10.1016/j.apenergy.2022.119354
10.3390/wevj13010021
10.1016/j.ijhydene.2016.12.129
10.1016/j.trd.2019.03.004
10.1149/1.2043959
10.1016/j.ijhydene.2019.02.003
10.1016/j.est.2023.108962
10.1016/j.jpowsour.2010.04.078
10.1016/j.chaos.2020.109738
10.1016/j.apenergy.2022.119873
10.1016/j.enconman.2023.117498
10.1016/j.apenergy.2021.117345
10.1016/j.energy.2022.126519
10.1016/j.enconman.2021.114063
10.1016/j.enconman.2021.115094
10.1109/4235.996017
10.1016/j.apenergy.2020.115021
10.1016/j.apenergy.2022.119252
10.1016/j.enconman.2023.117101
10.1016/j.ijhydene.2015.04.112
10.1016/j.enconman.2023.117330
10.1109/TVT.2017.2676044
10.1109/TEVC.2023.3314152
10.1016/j.rser.2023.113470
10.1016/j.apenergy.2014.12.062
10.1016/j.apenergy.2022.119137
10.3390/en11113060
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2024.132857
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2024_132857
S0360544224026318
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEUPX
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-faf22d56decda37d01bc88b9ee9f2ed0755070f30c4558aa60770a5cc9bf182a3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001300377400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Nov 09 14:07:48 EST 2025
Sat Nov 29 06:36:07 EST 2025
Tue Nov 18 22:10:46 EST 2025
Sat Feb 08 15:52:27 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Hybrid system sizing
Heavy-duty vehicle
Fuel cell
Multi-objective jellyfish swarm algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-faf22d56decda37d01bc88b9ee9f2ed0755070f30c4558aa60770a5cc9bf182a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3154171758
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3154171758
crossref_citationtrail_10_1016_j_energy_2024_132857
crossref_primary_10_1016_j_energy_2024_132857
elsevier_sciencedirect_doi_10_1016_j_energy_2024_132857
PublicationCentury 2000
PublicationDate 2024-11-01
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cha, Enshaei, Nguyen, Jayasinghe (bib1) 2023; 183
Jain, Desai, Williamson (bib13) 2009
Skarlis, Molos, Ayfantopoulou, Nikiforiadis, Bakouros (bib5) 2023; 50
Chen, Pei, Song (bib29) 2015; 142
Novella, Morena, Lopez-Juarez, Nidaguila (bib24) 2023; 293
Deb, Pratap, Agarwal, Meyarivan (bib33) 2002; 6
Chou, Truong (bib32) 2020; 135
Perez, Hu, Dey, Moura (bib31) 2017; 66
Xun, Murgovski, Liu (bib21) 2022; 320
Çabukoglu, Georges, Küng, Pareschi, Boulouchos (bib6) 2019; 70
Anselma, Belingardi (bib22) 2022; 321
Corne, Knowles, Oates (bib34) 2000
Zitzler, Laumanns, Thiele (bib35) 2001
Global (bib3) 2023
Desantes, Novella, Pla, Lopez-Juarez (bib26) 2022; 317
Li, Xu, Lu, Du, Huang (bib15) 2021; 236
Molina, Novella, Pla, Lopez-Juarez (bib10) 2021; 285
Wang, Yu, Xu, Wu, Wang, Huang (bib14) 2022; 325
Cai, Brett, Browning, Brandon (bib17) 2010; 195
(bib4) 2022
Zhang, Cheng, Xing, Wang, Qin (bib8) 2023; 73
Tiseira, Novella, Garcia-Cuevas, Lopez-Juarez (bib9) 2023; 288
Eckert, Barbosa, Da Silva, Silva, Silva, Dedini (bib20) 2022; 252
Raga, Barrado, Lazaro, Martin-Lozano, Quesada, Zumel (bib11) 2018; 11
Correa, Farret, Canha, Simoes (bib27) 2004; 51
Li, López-Ibáñez, Yao (bib36) 2024; 28
Cox, Bauer, Mendoza Beltran, Van Vuuren, Mutel (bib2) 2020; 269
Perez-Dávila, Álvarez Fernández (bib25) 2023; 267
Shojaeefard, Mollajafari, Edalat Pishe, Mohsen Mousavi (bib16) 2023; 56
Kast, Vijayagopal, Gangloff, Marcinkoski (bib7) 2017; 42
Da Silva, Eckert, Silva, Corrêa, Silva, Bueno (bib19) 2023; 292
Wang, Moura, Advani, Prasad (bib30) 2019; 44
Iqbal, Becherif, Ramadan, Badji (bib18) 2021; 300
Li, Feng, Jia (bib12) 2022; 13
Liu, Liu (bib23) 2015; 40
Amphlett, Baumert, Mann, Peppley, Roberge, Harris (bib28) 1995; 142
Zhang (10.1016/j.energy.2024.132857_bib8) 2023; 73
Li (10.1016/j.energy.2024.132857_bib15) 2021; 236
Anselma (10.1016/j.energy.2024.132857_bib22) 2022; 321
Corne (10.1016/j.energy.2024.132857_bib34) 2000
Skarlis (10.1016/j.energy.2024.132857_bib5) 2023; 50
Global (10.1016/j.energy.2024.132857_bib3) 2023
Tiseira (10.1016/j.energy.2024.132857_bib9) 2023; 288
Kast (10.1016/j.energy.2024.132857_bib7) 2017; 42
Li (10.1016/j.energy.2024.132857_bib36) 2024; 28
Cha (10.1016/j.energy.2024.132857_bib1) 2023; 183
Chen (10.1016/j.energy.2024.132857_bib29) 2015; 142
Jain (10.1016/j.energy.2024.132857_bib13) 2009
Novella (10.1016/j.energy.2024.132857_bib24) 2023; 293
Cox (10.1016/j.energy.2024.132857_bib2) 2020; 269
Molina (10.1016/j.energy.2024.132857_bib10) 2021; 285
Desantes (10.1016/j.energy.2024.132857_bib26) 2022; 317
Shojaeefard (10.1016/j.energy.2024.132857_bib16) 2023; 56
Chou (10.1016/j.energy.2024.132857_bib32) 2020; 135
Çabukoglu (10.1016/j.energy.2024.132857_bib6) 2019; 70
Zitzler (10.1016/j.energy.2024.132857_bib35) 2001
Da Silva (10.1016/j.energy.2024.132857_bib19) 2023; 292
(10.1016/j.energy.2024.132857_bib4) 2022
Raga (10.1016/j.energy.2024.132857_bib11) 2018; 11
Wang (10.1016/j.energy.2024.132857_bib14) 2022; 325
Eckert (10.1016/j.energy.2024.132857_bib20) 2022; 252
Perez-Dávila (10.1016/j.energy.2024.132857_bib25) 2023; 267
Perez (10.1016/j.energy.2024.132857_bib31) 2017; 66
Cai (10.1016/j.energy.2024.132857_bib17) 2010; 195
Liu (10.1016/j.energy.2024.132857_bib23) 2015; 40
Correa (10.1016/j.energy.2024.132857_bib27) 2004; 51
Xun (10.1016/j.energy.2024.132857_bib21) 2022; 320
Li (10.1016/j.energy.2024.132857_bib12) 2022; 13
Wang (10.1016/j.energy.2024.132857_bib30) 2019; 44
Amphlett (10.1016/j.energy.2024.132857_bib28) 1995; 142
Iqbal (10.1016/j.energy.2024.132857_bib18) 2021; 300
Deb (10.1016/j.energy.2024.132857_bib33) 2002; 6
References_xml – volume: 51
  start-page: 1103
  year: 2004
  end-page: 1112
  ident: bib27
  article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach
  publication-title: IEEE Trans Ind Electron
– start-page: 95
  year: 2001
  end-page: 100
  ident: bib35
  article-title: SPEA2: improving the Strength Pareto evolutionary algorithm
  publication-title: Optim. Control Appl. Ind. Probl.
– start-page: 839
  year: 2000
  end-page: 848
  ident: bib34
  article-title: The Pareto envelope-based selection algorithm for multiobjective optimization
  publication-title: Parallel Probl. Solving Nat. PPSN VI
– volume: 267
  year: 2023
  ident: bib25
  article-title: Optimization algorithm applied to extended range fuel cell hybrid vehicles. Contribution to road transport decarbonization
  publication-title: Energy
– volume: 325
  year: 2022
  ident: bib14
  article-title: Scenario analysis, management, and optimization of a new Vehicle-to-Micro-Grid (V2μG) network based on off-grid renewable building energy systems
  publication-title: Appl Energy
– volume: 183
  year: 2023
  ident: bib1
  article-title: Towards a future electric ferry using optimisation-based power management strategy in fuel cell and battery vehicle application — a review
  publication-title: Renew Sustain Energy Rev
– volume: 236
  year: 2021
  ident: bib15
  article-title: Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm
  publication-title: Energy Convers Manag
– volume: 44
  start-page: 8479
  year: 2019
  end-page: 8492
  ident: bib30
  article-title: Power management system for a fuel cell/battery hybrid vehicle incorporating fuel cell and battery degradation
  publication-title: Int J Hydrogen Energy
– volume: 50
  year: 2023
  ident: bib5
  article-title: Light commercial electric vehicles with hydrogen fuel-cell range extender: refueling strategy evaluation
  publication-title: Res Transp Bus Manag
– volume: 252
  year: 2022
  ident: bib20
  article-title: Electric hydraulic hybrid vehicle powertrain design and optimization-based power distribution control to extend driving range and battery life cycle
  publication-title: Energy Convers Manag
– volume: 321
  year: 2022
  ident: bib22
  article-title: Fuel cell electrified propulsion systems for long-haul heavy-duty trucks: present and future cost-oriented sizing
  publication-title: Appl Energy
– volume: 293
  year: 2023
  ident: bib24
  article-title: Effect of differential control and sizing on multi-FCS architectures for heavy-duty fuel cell vehicles
  publication-title: Energy Convers Manag
– volume: 269
  year: 2020
  ident: bib2
  article-title: Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios
  publication-title: Appl Energy
– volume: 70
  start-page: 35
  year: 2019
  end-page: 48
  ident: bib6
  article-title: Fuel cell electric vehicles: an option to decarbonize heavy-duty transport? Results from a Swiss case-study
  publication-title: Transp Res Part Transp Environ
– volume: 142
  start-page: 154
  year: 2015
  end-page: 163
  ident: bib29
  article-title: Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells
  publication-title: Appl Energy
– volume: 285
  year: 2021
  ident: bib10
  article-title: Optimization and sizing of a fuel cell range extender vehicle for passenger car applications in driving cycle conditions
  publication-title: Appl Energy
– volume: 317
  year: 2022
  ident: bib26
  article-title: A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications
  publication-title: Appl Energy
– volume: 13
  start-page: 21
  year: 2022
  ident: bib12
  article-title: An energy management strategy and parameter optimization of fuel cell electric vehicles
  publication-title: World Electr Veh J
– volume: 73
  year: 2023
  ident: bib8
  article-title: Optimal sizing of battery-supercapacitor energy storage systems for trams using improved PSO algorithm
  publication-title: J Energy Storage
– volume: 66
  start-page: 7761
  year: 2017
  end-page: 7770
  ident: bib31
  article-title: Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics
  publication-title: IEEE Trans Veh Technol
– volume: 288
  year: 2023
  ident: bib9
  article-title: Concept design and energy balance optimization of a hydrogen fuel cell helicopter for unmanned aerial vehicle and aerotaxi applications
  publication-title: Energy Convers Manag
– start-page: 980
  year: 2009
  end-page: 985
  ident: bib13
  article-title: Genetic algorithm based optimal powertrain component sizing and control strategy design for a fuel cell hybrid electric bus
  publication-title: 2009 IEEE Veh. Power Propuls. Conf.
– volume: 195
  start-page: 6559
  year: 2010
  end-page: 6569
  ident: bib17
  article-title: A sizing-design methodology for hybrid fuel cell power systems and its application to an unmanned underwater vehicle
  publication-title: J Power Sources
– volume: 135
  year: 2020
  ident: bib32
  article-title: Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems
  publication-title: Chaos, Solit Fractals
– year: 2022
  ident: bib4
  article-title: Vision 2050: a strategy to decarbonize the global transport sector by mid-century
– volume: 292
  year: 2023
  ident: bib19
  article-title: Aging-aware optimal power management control and component sizing of a fuel cell hybrid electric vehicle powertrain
  publication-title: Energy Convers Manag
– volume: 300
  year: 2021
  ident: bib18
  article-title: Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles
  publication-title: Appl Energy
– volume: 40
  start-page: 8454
  year: 2015
  end-page: 8464
  ident: bib23
  article-title: Optimal power source sizing of fuel cell hybrid vehicles based on Pontryagin's minimum principle
  publication-title: Int J Hydrogen Energy
– year: 2023
  ident: bib3
  article-title: Data explorer
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib33
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
– volume: 142
  start-page: 9
  year: 1995
  end-page: 15
  ident: bib28
  article-title: Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell: II . Empirical model development
  publication-title: J Electrochem Soc
– volume: 42
  start-page: 4508
  year: 2017
  end-page: 4517
  ident: bib7
  article-title: Clean commercial transportation: medium and heavy duty fuel cell electric trucks
  publication-title: Int J Hydrogen Energy
– volume: 56
  year: 2023
  ident: bib16
  article-title: Plug-in fuel cell vehicle performance and battery sizing optimization based on reduced fuel cell energy consumption and waste heat
  publication-title: Sustain Energy Technol Assessments
– volume: 28
  start-page: 696
  year: 2024
  end-page: 717
  ident: bib36
  article-title: Multi-objective archiving
  publication-title: IEEE Trans Evol Comput
– volume: 320
  year: 2022
  ident: bib21
  article-title: Chance-constrained robust co-design optimization for fuel cell hybrid electric trucks
  publication-title: Appl Energy
– volume: 11
  start-page: 3060
  year: 2018
  ident: bib11
  article-title: Influence of the main design factors on the optimal fuel cell-based powertrain sizing
  publication-title: Energies
– year: 2022
  ident: 10.1016/j.energy.2024.132857_bib4
– volume: 51
  start-page: 1103
  year: 2004
  ident: 10.1016/j.energy.2024.132857_bib27
  article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2004.834972
– volume: 50
  year: 2023
  ident: 10.1016/j.energy.2024.132857_bib5
  article-title: Light commercial electric vehicles with hydrogen fuel-cell range extender: refueling strategy evaluation
  publication-title: Res Transp Bus Manag
– volume: 285
  year: 2021
  ident: 10.1016/j.energy.2024.132857_bib10
  article-title: Optimization and sizing of a fuel cell range extender vehicle for passenger car applications in driving cycle conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116469
– start-page: 95
  year: 2001
  ident: 10.1016/j.energy.2024.132857_bib35
  article-title: SPEA2: improving the Strength Pareto evolutionary algorithm
  publication-title: Optim. Control Appl. Ind. Probl.
– volume: 321
  year: 2022
  ident: 10.1016/j.energy.2024.132857_bib22
  article-title: Fuel cell electrified propulsion systems for long-haul heavy-duty trucks: present and future cost-oriented sizing
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119354
– volume: 56
  year: 2023
  ident: 10.1016/j.energy.2024.132857_bib16
  article-title: Plug-in fuel cell vehicle performance and battery sizing optimization based on reduced fuel cell energy consumption and waste heat
  publication-title: Sustain Energy Technol Assessments
– volume: 13
  start-page: 21
  year: 2022
  ident: 10.1016/j.energy.2024.132857_bib12
  article-title: An energy management strategy and parameter optimization of fuel cell electric vehicles
  publication-title: World Electr Veh J
  doi: 10.3390/wevj13010021
– volume: 42
  start-page: 4508
  year: 2017
  ident: 10.1016/j.energy.2024.132857_bib7
  article-title: Clean commercial transportation: medium and heavy duty fuel cell electric trucks
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.12.129
– volume: 70
  start-page: 35
  year: 2019
  ident: 10.1016/j.energy.2024.132857_bib6
  article-title: Fuel cell electric vehicles: an option to decarbonize heavy-duty transport? Results from a Swiss case-study
  publication-title: Transp Res Part Transp Environ
  doi: 10.1016/j.trd.2019.03.004
– volume: 142
  start-page: 9
  year: 1995
  ident: 10.1016/j.energy.2024.132857_bib28
  article-title: Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell: II . Empirical model development
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2043959
– volume: 44
  start-page: 8479
  year: 2019
  ident: 10.1016/j.energy.2024.132857_bib30
  article-title: Power management system for a fuel cell/battery hybrid vehicle incorporating fuel cell and battery degradation
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.02.003
– year: 2023
  ident: 10.1016/j.energy.2024.132857_bib3
– volume: 73
  year: 2023
  ident: 10.1016/j.energy.2024.132857_bib8
  article-title: Optimal sizing of battery-supercapacitor energy storage systems for trams using improved PSO algorithm
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.108962
– volume: 195
  start-page: 6559
  year: 2010
  ident: 10.1016/j.energy.2024.132857_bib17
  article-title: A sizing-design methodology for hybrid fuel cell power systems and its application to an unmanned underwater vehicle
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.04.078
– volume: 135
  year: 2020
  ident: 10.1016/j.energy.2024.132857_bib32
  article-title: Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems
  publication-title: Chaos, Solit Fractals
  doi: 10.1016/j.chaos.2020.109738
– volume: 325
  year: 2022
  ident: 10.1016/j.energy.2024.132857_bib14
  article-title: Scenario analysis, management, and optimization of a new Vehicle-to-Micro-Grid (V2μG) network based on off-grid renewable building energy systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119873
– start-page: 839
  year: 2000
  ident: 10.1016/j.energy.2024.132857_bib34
  article-title: The Pareto envelope-based selection algorithm for multiobjective optimization
– volume: 293
  year: 2023
  ident: 10.1016/j.energy.2024.132857_bib24
  article-title: Effect of differential control and sizing on multi-FCS architectures for heavy-duty fuel cell vehicles
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2023.117498
– volume: 300
  year: 2021
  ident: 10.1016/j.energy.2024.132857_bib18
  article-title: Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117345
– volume: 267
  year: 2023
  ident: 10.1016/j.energy.2024.132857_bib25
  article-title: Optimization algorithm applied to extended range fuel cell hybrid vehicles. Contribution to road transport decarbonization
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126519
– volume: 236
  year: 2021
  ident: 10.1016/j.energy.2024.132857_bib15
  article-title: Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114063
– volume: 252
  year: 2022
  ident: 10.1016/j.energy.2024.132857_bib20
  article-title: Electric hydraulic hybrid vehicle powertrain design and optimization-based power distribution control to extend driving range and battery life cycle
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.115094
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.energy.2024.132857_bib33
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 269
  year: 2020
  ident: 10.1016/j.energy.2024.132857_bib2
  article-title: Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115021
– volume: 320
  year: 2022
  ident: 10.1016/j.energy.2024.132857_bib21
  article-title: Chance-constrained robust co-design optimization for fuel cell hybrid electric trucks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119252
– volume: 288
  year: 2023
  ident: 10.1016/j.energy.2024.132857_bib9
  article-title: Concept design and energy balance optimization of a hydrogen fuel cell helicopter for unmanned aerial vehicle and aerotaxi applications
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2023.117101
– start-page: 980
  year: 2009
  ident: 10.1016/j.energy.2024.132857_bib13
  article-title: Genetic algorithm based optimal powertrain component sizing and control strategy design for a fuel cell hybrid electric bus
– volume: 40
  start-page: 8454
  year: 2015
  ident: 10.1016/j.energy.2024.132857_bib23
  article-title: Optimal power source sizing of fuel cell hybrid vehicles based on Pontryagin's minimum principle
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.04.112
– volume: 292
  year: 2023
  ident: 10.1016/j.energy.2024.132857_bib19
  article-title: Aging-aware optimal power management control and component sizing of a fuel cell hybrid electric vehicle powertrain
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2023.117330
– volume: 66
  start-page: 7761
  year: 2017
  ident: 10.1016/j.energy.2024.132857_bib31
  article-title: Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2017.2676044
– volume: 28
  start-page: 696
  year: 2024
  ident: 10.1016/j.energy.2024.132857_bib36
  article-title: Multi-objective archiving
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2023.3314152
– volume: 183
  year: 2023
  ident: 10.1016/j.energy.2024.132857_bib1
  article-title: Towards a future electric ferry using optimisation-based power management strategy in fuel cell and battery vehicle application — a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2023.113470
– volume: 142
  start-page: 154
  year: 2015
  ident: 10.1016/j.energy.2024.132857_bib29
  article-title: Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.12.062
– volume: 317
  year: 2022
  ident: 10.1016/j.energy.2024.132857_bib26
  article-title: A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119137
– volume: 11
  start-page: 3060
  year: 2018
  ident: 10.1016/j.energy.2024.132857_bib11
  article-title: Influence of the main design factors on the optimal fuel cell-based powertrain sizing
  publication-title: Energies
  doi: 10.3390/en11113060
SSID ssj0005899
Score 2.4905639
Snippet Dual-fuel cell hybrid system provides an attractive propulsion option in transportation, especially for heavy-duty vehicles. However, the larger vehicle weight...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 132857
SubjectTerms batteries
energy
Fuel cell
Heavy-duty vehicle
Hybrid system sizing
hydrogen
Multi-objective jellyfish swarm algorithm
transportation
Title Multi-parameter and multi-objective optimization of dual-fuel cell system heavy-duty vehicles: Sizing for serial development
URI https://dx.doi.org/10.1016/j.energy.2024.132857
https://www.proquest.com/docview/3154171758
Volume 308
WOSCitedRecordID wos001300377400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhgQvCAYT40tGQrxUrrJ8OrxNqBOgqYDopIoXy3actVWXlLUpZUL87ZxjOykFtPHAS1RZTtLkfjnfne93h9CLNJehyCUlnGYBOCgiJzygnPihjJNY8kQKWjebSAYDOhqlHzqdH44Ls5olRUHX63T-X0UNYyBsTZ39B3E3F4UB-A1ChyOIHY7XEnxNqSW6pPe5TnWpdwfqtEFSiqlRb90SFMW5ZWBqc1ETskheqVlXB_JteWdtRK6-kawCO32lxk3-3KfJpUu_NA_kmFdNEo2L9BteoS5oujY59E3UoYlTfx4r3U_krI3J1oshjHxtSWofKxumhckwPmlzEiy1ZFJcjstqM4Lhh5bK1yq6IPZIFIa_aOXAo915D3xlXavqj7rehB2mPVU_TE9f2c5v1za3nz94z45PT07YsD8avpx_IbrrmN6dty1YbqBdP4lSUOy7R2_7o3dtkhCtO5A2_9CRL-sMwd9v_DfjZmuZr22X4V10xzod-MiA5R7qqGIP3XKc9MUe2u-3fEeYaBX-4j76voUmDGjCW2jCm2jCZY4bNGGNJmzQhFs0YYemV9hgCQM6sMES3sDSA3R63B--fkNsww4igyBdkpznvp9FcaZkxoMk8w6FpFSkSqW5rzKwTsH78PLAk2EUUc5jL0k8HkmZihz8XB7so52iLNRDhONc-SkPVSzAYI9TQT0aCp-rMMwyIeLkAAXuTTNpq9nrpioz5tIWp8zIh2n5MCOfA0Sas-ammssV8xMnRGYtUmNpMgDhFWc-dzJnoLD16-aFKqsFC8BpOUzAaqePrjHnMbrdfjJP0M7yolJP0U25Wk4WF88sXH8COS2_Xw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-parameter+and+multi-objective+optimization+of+dual-fuel+cell+system+heavy-duty+vehicles%3A+Sizing+for+serial+development&rft.jtitle=Energy+%28Oxford%29&rft.au=Zhang%2C+Zhendong&rft.au=He%2C+Hongwen&rft.au=Quan%2C+Shengwei&rft.au=Chen%2C+Jinzhou&rft.date=2024-11-01&rft.issn=0360-5442&rft.volume=308+p.132857-&rft_id=info:doi/10.1016%2Fj.energy.2024.132857&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon