Multi-parameter and multi-objective optimization of dual-fuel cell system heavy-duty vehicles: Sizing for serial development
Dual-fuel cell hybrid system provides an attractive propulsion option in transportation, especially for heavy-duty vehicles. However, the larger vehicle weight improves the sensitivity of power demand to road conditions and vehicle handling, making it a challenge to realize reasonable sizing. The sc...
Uložené v:
| Vydané v: | Energy (Oxford) Ročník 308; s. 132857 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.11.2024
|
| Predmet: | |
| ISSN: | 0360-5442 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Dual-fuel cell hybrid system provides an attractive propulsion option in transportation, especially for heavy-duty vehicles. However, the larger vehicle weight improves the sensitivity of power demand to road conditions and vehicle handling, making it a challenge to realize reasonable sizing. The scope of this work is to demonstrate a multi-objective and multi-parameter optimization for the serial development of the heavy-duty vehicle, powered by a dual-fuel cell hybrid system. Toward this end, a comprehensive modeling is presented combining the degradation model of the FC system and the battery system. The Pareto theory is introduced to evaluate the three-dimensional objectives involving the equivalent hydrogen consumption, the mass goal, and the vehicle dynamic, which is derived from different six-dimensional parameters under a dual-layer optimization approach. The brute force approach is not applicable in the presence of the curse of dimensionality arising from multi-parameter optimization. The proposed methodology offers a viable approach to acquiring rational sets of sizing solutions in the optimization space with high-dimensional parameters. Considering the serialization of products, the improved solution and the corresponding performance upper limit have be determined according to the proposed methodology under different weight levels as well.
•Multi-objective jellyfish swarm algorithm is introduced into the sizing procedure.•The equivalent hydrogen consumption combining degradation models.•The sizing procedure is conducted for the serial development under different vehicle weights.•Pareto optimization is introduced to solve the multi-objective problem of the dual-FCS architecture.•The upper-performance limit is obtained by dynamic programming algorithm. |
|---|---|
| AbstractList | Dual-fuel cell hybrid system provides an attractive propulsion option in transportation, especially for heavy-duty vehicles. However, the larger vehicle weight improves the sensitivity of power demand to road conditions and vehicle handling, making it a challenge to realize reasonable sizing. The scope of this work is to demonstrate a multi-objective and multi-parameter optimization for the serial development of the heavy-duty vehicle, powered by a dual-fuel cell hybrid system. Toward this end, a comprehensive modeling is presented combining the degradation model of the FC system and the battery system. The Pareto theory is introduced to evaluate the three-dimensional objectives involving the equivalent hydrogen consumption, the mass goal, and the vehicle dynamic, which is derived from different six-dimensional parameters under a dual-layer optimization approach. The brute force approach is not applicable in the presence of the curse of dimensionality arising from multi-parameter optimization. The proposed methodology offers a viable approach to acquiring rational sets of sizing solutions in the optimization space with high-dimensional parameters. Considering the serialization of products, the improved solution and the corresponding performance upper limit have be determined according to the proposed methodology under different weight levels as well. Dual-fuel cell hybrid system provides an attractive propulsion option in transportation, especially for heavy-duty vehicles. However, the larger vehicle weight improves the sensitivity of power demand to road conditions and vehicle handling, making it a challenge to realize reasonable sizing. The scope of this work is to demonstrate a multi-objective and multi-parameter optimization for the serial development of the heavy-duty vehicle, powered by a dual-fuel cell hybrid system. Toward this end, a comprehensive modeling is presented combining the degradation model of the FC system and the battery system. The Pareto theory is introduced to evaluate the three-dimensional objectives involving the equivalent hydrogen consumption, the mass goal, and the vehicle dynamic, which is derived from different six-dimensional parameters under a dual-layer optimization approach. The brute force approach is not applicable in the presence of the curse of dimensionality arising from multi-parameter optimization. The proposed methodology offers a viable approach to acquiring rational sets of sizing solutions in the optimization space with high-dimensional parameters. Considering the serialization of products, the improved solution and the corresponding performance upper limit have be determined according to the proposed methodology under different weight levels as well. •Multi-objective jellyfish swarm algorithm is introduced into the sizing procedure.•The equivalent hydrogen consumption combining degradation models.•The sizing procedure is conducted for the serial development under different vehicle weights.•Pareto optimization is introduced to solve the multi-objective problem of the dual-FCS architecture.•The upper-performance limit is obtained by dynamic programming algorithm. |
| ArticleNumber | 132857 |
| Author | Han, Ruoyan Chen, Jinzhou He, Hongwen Zhang, Zhendong Quan, Shengwei |
| Author_xml | – sequence: 1 givenname: Zhendong surname: Zhang fullname: Zhang, Zhendong – sequence: 2 givenname: Hongwen surname: He fullname: He, Hongwen email: hwhebit@bit.edu.cn – sequence: 3 givenname: Shengwei surname: Quan fullname: Quan, Shengwei – sequence: 4 givenname: Jinzhou surname: Chen fullname: Chen, Jinzhou – sequence: 5 givenname: Ruoyan surname: Han fullname: Han, Ruoyan |
| BookMark | eNqFkU1v1DAQhn0oEm3hH3DwkUsWO4k3SQ9IqOJLKuIAnK1Ze9zOyrGD7URKxY9nt-HEAU4jjeZ5NfPMFbsIMSBjr6TYSSH3b447DJju110t6nYnm7pX3QW7FM1eVKpt6-fsKuejEEL1w3DJfn2ZfaFqggQjFkwcguXjUy8ejmgKLcjjVGikRygUA4-O2xl85Wb03KD3PK-54MgfEJa1snNZ-YIPZDzmG_6NHinccxcTz5gIPLe4oI_TiKG8YM8c-Iwv_9Rr9uPD---3n6q7rx8_3767q0zTDKVy4Oraqr1FY6HprJAH0_eHAXFwNVrRKSU64RphWqV6gL3oOgHKmOHgZF9Dc81eb7lTij9nzEWPlM-rQ8A4Z91I1cpOdqo_jd5soybFnBM6bag8HV4SkNdS6LNmfdSbZn3WrDfNJ7j9C54SjZDW_2FvNwxPDhbCpLMhDAYtpdMHtI3074DfyzahNQ |
| CitedBy_id | crossref_primary_10_3390_su17125431 crossref_primary_10_1002_adsu_202500886 crossref_primary_10_1016_j_ijhydene_2024_11_193 crossref_primary_10_3390_jmse12122133 crossref_primary_10_3390_su17136170 crossref_primary_10_1063_5_0274938 crossref_primary_10_1016_j_ijhydene_2024_12_268 |
| Cites_doi | 10.1109/TIE.2004.834972 10.1016/j.apenergy.2021.116469 10.1016/j.apenergy.2022.119354 10.3390/wevj13010021 10.1016/j.ijhydene.2016.12.129 10.1016/j.trd.2019.03.004 10.1149/1.2043959 10.1016/j.ijhydene.2019.02.003 10.1016/j.est.2023.108962 10.1016/j.jpowsour.2010.04.078 10.1016/j.chaos.2020.109738 10.1016/j.apenergy.2022.119873 10.1016/j.enconman.2023.117498 10.1016/j.apenergy.2021.117345 10.1016/j.energy.2022.126519 10.1016/j.enconman.2021.114063 10.1016/j.enconman.2021.115094 10.1109/4235.996017 10.1016/j.apenergy.2020.115021 10.1016/j.apenergy.2022.119252 10.1016/j.enconman.2023.117101 10.1016/j.ijhydene.2015.04.112 10.1016/j.enconman.2023.117330 10.1109/TVT.2017.2676044 10.1109/TEVC.2023.3314152 10.1016/j.rser.2023.113470 10.1016/j.apenergy.2014.12.062 10.1016/j.apenergy.2022.119137 10.3390/en11113060 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2024.132857 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2024_132857 S0360544224026318 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAQXK AATTM AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEUPX AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-faf22d56decda37d01bc88b9ee9f2ed0755070f30c4558aa60770a5cc9bf182a3 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001300377400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Nov 09 14:07:48 EST 2025 Sat Nov 29 06:36:07 EST 2025 Tue Nov 18 22:10:46 EST 2025 Sat Feb 08 15:52:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hybrid system sizing Heavy-duty vehicle Fuel cell Multi-objective jellyfish swarm algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c339t-faf22d56decda37d01bc88b9ee9f2ed0755070f30c4558aa60770a5cc9bf182a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3154171758 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3154171758 crossref_citationtrail_10_1016_j_energy_2024_132857 crossref_primary_10_1016_j_energy_2024_132857 elsevier_sciencedirect_doi_10_1016_j_energy_2024_132857 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 2024-11-00 20241101 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cha, Enshaei, Nguyen, Jayasinghe (bib1) 2023; 183 Jain, Desai, Williamson (bib13) 2009 Skarlis, Molos, Ayfantopoulou, Nikiforiadis, Bakouros (bib5) 2023; 50 Chen, Pei, Song (bib29) 2015; 142 Novella, Morena, Lopez-Juarez, Nidaguila (bib24) 2023; 293 Deb, Pratap, Agarwal, Meyarivan (bib33) 2002; 6 Chou, Truong (bib32) 2020; 135 Perez, Hu, Dey, Moura (bib31) 2017; 66 Xun, Murgovski, Liu (bib21) 2022; 320 Çabukoglu, Georges, Küng, Pareschi, Boulouchos (bib6) 2019; 70 Anselma, Belingardi (bib22) 2022; 321 Corne, Knowles, Oates (bib34) 2000 Zitzler, Laumanns, Thiele (bib35) 2001 Global (bib3) 2023 Desantes, Novella, Pla, Lopez-Juarez (bib26) 2022; 317 Li, Xu, Lu, Du, Huang (bib15) 2021; 236 Molina, Novella, Pla, Lopez-Juarez (bib10) 2021; 285 Wang, Yu, Xu, Wu, Wang, Huang (bib14) 2022; 325 Cai, Brett, Browning, Brandon (bib17) 2010; 195 (bib4) 2022 Zhang, Cheng, Xing, Wang, Qin (bib8) 2023; 73 Tiseira, Novella, Garcia-Cuevas, Lopez-Juarez (bib9) 2023; 288 Eckert, Barbosa, Da Silva, Silva, Silva, Dedini (bib20) 2022; 252 Raga, Barrado, Lazaro, Martin-Lozano, Quesada, Zumel (bib11) 2018; 11 Correa, Farret, Canha, Simoes (bib27) 2004; 51 Li, López-Ibáñez, Yao (bib36) 2024; 28 Cox, Bauer, Mendoza Beltran, Van Vuuren, Mutel (bib2) 2020; 269 Perez-Dávila, Álvarez Fernández (bib25) 2023; 267 Shojaeefard, Mollajafari, Edalat Pishe, Mohsen Mousavi (bib16) 2023; 56 Kast, Vijayagopal, Gangloff, Marcinkoski (bib7) 2017; 42 Da Silva, Eckert, Silva, Corrêa, Silva, Bueno (bib19) 2023; 292 Wang, Moura, Advani, Prasad (bib30) 2019; 44 Iqbal, Becherif, Ramadan, Badji (bib18) 2021; 300 Li, Feng, Jia (bib12) 2022; 13 Liu, Liu (bib23) 2015; 40 Amphlett, Baumert, Mann, Peppley, Roberge, Harris (bib28) 1995; 142 Zhang (10.1016/j.energy.2024.132857_bib8) 2023; 73 Li (10.1016/j.energy.2024.132857_bib15) 2021; 236 Anselma (10.1016/j.energy.2024.132857_bib22) 2022; 321 Corne (10.1016/j.energy.2024.132857_bib34) 2000 Skarlis (10.1016/j.energy.2024.132857_bib5) 2023; 50 Global (10.1016/j.energy.2024.132857_bib3) 2023 Tiseira (10.1016/j.energy.2024.132857_bib9) 2023; 288 Kast (10.1016/j.energy.2024.132857_bib7) 2017; 42 Li (10.1016/j.energy.2024.132857_bib36) 2024; 28 Cha (10.1016/j.energy.2024.132857_bib1) 2023; 183 Chen (10.1016/j.energy.2024.132857_bib29) 2015; 142 Jain (10.1016/j.energy.2024.132857_bib13) 2009 Novella (10.1016/j.energy.2024.132857_bib24) 2023; 293 Cox (10.1016/j.energy.2024.132857_bib2) 2020; 269 Molina (10.1016/j.energy.2024.132857_bib10) 2021; 285 Desantes (10.1016/j.energy.2024.132857_bib26) 2022; 317 Shojaeefard (10.1016/j.energy.2024.132857_bib16) 2023; 56 Chou (10.1016/j.energy.2024.132857_bib32) 2020; 135 Çabukoglu (10.1016/j.energy.2024.132857_bib6) 2019; 70 Zitzler (10.1016/j.energy.2024.132857_bib35) 2001 Da Silva (10.1016/j.energy.2024.132857_bib19) 2023; 292 (10.1016/j.energy.2024.132857_bib4) 2022 Raga (10.1016/j.energy.2024.132857_bib11) 2018; 11 Wang (10.1016/j.energy.2024.132857_bib14) 2022; 325 Eckert (10.1016/j.energy.2024.132857_bib20) 2022; 252 Perez-Dávila (10.1016/j.energy.2024.132857_bib25) 2023; 267 Perez (10.1016/j.energy.2024.132857_bib31) 2017; 66 Cai (10.1016/j.energy.2024.132857_bib17) 2010; 195 Liu (10.1016/j.energy.2024.132857_bib23) 2015; 40 Correa (10.1016/j.energy.2024.132857_bib27) 2004; 51 Xun (10.1016/j.energy.2024.132857_bib21) 2022; 320 Li (10.1016/j.energy.2024.132857_bib12) 2022; 13 Wang (10.1016/j.energy.2024.132857_bib30) 2019; 44 Amphlett (10.1016/j.energy.2024.132857_bib28) 1995; 142 Iqbal (10.1016/j.energy.2024.132857_bib18) 2021; 300 Deb (10.1016/j.energy.2024.132857_bib33) 2002; 6 |
| References_xml | – volume: 51 start-page: 1103 year: 2004 end-page: 1112 ident: bib27 article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach publication-title: IEEE Trans Ind Electron – start-page: 95 year: 2001 end-page: 100 ident: bib35 article-title: SPEA2: improving the Strength Pareto evolutionary algorithm publication-title: Optim. Control Appl. Ind. Probl. – start-page: 839 year: 2000 end-page: 848 ident: bib34 article-title: The Pareto envelope-based selection algorithm for multiobjective optimization publication-title: Parallel Probl. Solving Nat. PPSN VI – volume: 267 year: 2023 ident: bib25 article-title: Optimization algorithm applied to extended range fuel cell hybrid vehicles. Contribution to road transport decarbonization publication-title: Energy – volume: 325 year: 2022 ident: bib14 article-title: Scenario analysis, management, and optimization of a new Vehicle-to-Micro-Grid (V2μG) network based on off-grid renewable building energy systems publication-title: Appl Energy – volume: 183 year: 2023 ident: bib1 article-title: Towards a future electric ferry using optimisation-based power management strategy in fuel cell and battery vehicle application — a review publication-title: Renew Sustain Energy Rev – volume: 236 year: 2021 ident: bib15 article-title: Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm publication-title: Energy Convers Manag – volume: 44 start-page: 8479 year: 2019 end-page: 8492 ident: bib30 article-title: Power management system for a fuel cell/battery hybrid vehicle incorporating fuel cell and battery degradation publication-title: Int J Hydrogen Energy – volume: 50 year: 2023 ident: bib5 article-title: Light commercial electric vehicles with hydrogen fuel-cell range extender: refueling strategy evaluation publication-title: Res Transp Bus Manag – volume: 252 year: 2022 ident: bib20 article-title: Electric hydraulic hybrid vehicle powertrain design and optimization-based power distribution control to extend driving range and battery life cycle publication-title: Energy Convers Manag – volume: 321 year: 2022 ident: bib22 article-title: Fuel cell electrified propulsion systems for long-haul heavy-duty trucks: present and future cost-oriented sizing publication-title: Appl Energy – volume: 293 year: 2023 ident: bib24 article-title: Effect of differential control and sizing on multi-FCS architectures for heavy-duty fuel cell vehicles publication-title: Energy Convers Manag – volume: 269 year: 2020 ident: bib2 article-title: Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios publication-title: Appl Energy – volume: 70 start-page: 35 year: 2019 end-page: 48 ident: bib6 article-title: Fuel cell electric vehicles: an option to decarbonize heavy-duty transport? Results from a Swiss case-study publication-title: Transp Res Part Transp Environ – volume: 142 start-page: 154 year: 2015 end-page: 163 ident: bib29 article-title: Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells publication-title: Appl Energy – volume: 285 year: 2021 ident: bib10 article-title: Optimization and sizing of a fuel cell range extender vehicle for passenger car applications in driving cycle conditions publication-title: Appl Energy – volume: 317 year: 2022 ident: bib26 article-title: A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications publication-title: Appl Energy – volume: 13 start-page: 21 year: 2022 ident: bib12 article-title: An energy management strategy and parameter optimization of fuel cell electric vehicles publication-title: World Electr Veh J – volume: 73 year: 2023 ident: bib8 article-title: Optimal sizing of battery-supercapacitor energy storage systems for trams using improved PSO algorithm publication-title: J Energy Storage – volume: 66 start-page: 7761 year: 2017 end-page: 7770 ident: bib31 article-title: Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics publication-title: IEEE Trans Veh Technol – volume: 288 year: 2023 ident: bib9 article-title: Concept design and energy balance optimization of a hydrogen fuel cell helicopter for unmanned aerial vehicle and aerotaxi applications publication-title: Energy Convers Manag – start-page: 980 year: 2009 end-page: 985 ident: bib13 article-title: Genetic algorithm based optimal powertrain component sizing and control strategy design for a fuel cell hybrid electric bus publication-title: 2009 IEEE Veh. Power Propuls. Conf. – volume: 195 start-page: 6559 year: 2010 end-page: 6569 ident: bib17 article-title: A sizing-design methodology for hybrid fuel cell power systems and its application to an unmanned underwater vehicle publication-title: J Power Sources – volume: 135 year: 2020 ident: bib32 article-title: Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems publication-title: Chaos, Solit Fractals – year: 2022 ident: bib4 article-title: Vision 2050: a strategy to decarbonize the global transport sector by mid-century – volume: 292 year: 2023 ident: bib19 article-title: Aging-aware optimal power management control and component sizing of a fuel cell hybrid electric vehicle powertrain publication-title: Energy Convers Manag – volume: 300 year: 2021 ident: bib18 article-title: Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles publication-title: Appl Energy – volume: 40 start-page: 8454 year: 2015 end-page: 8464 ident: bib23 article-title: Optimal power source sizing of fuel cell hybrid vehicles based on Pontryagin's minimum principle publication-title: Int J Hydrogen Energy – year: 2023 ident: bib3 article-title: Data explorer – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib33 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput – volume: 142 start-page: 9 year: 1995 end-page: 15 ident: bib28 article-title: Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell: II . Empirical model development publication-title: J Electrochem Soc – volume: 42 start-page: 4508 year: 2017 end-page: 4517 ident: bib7 article-title: Clean commercial transportation: medium and heavy duty fuel cell electric trucks publication-title: Int J Hydrogen Energy – volume: 56 year: 2023 ident: bib16 article-title: Plug-in fuel cell vehicle performance and battery sizing optimization based on reduced fuel cell energy consumption and waste heat publication-title: Sustain Energy Technol Assessments – volume: 28 start-page: 696 year: 2024 end-page: 717 ident: bib36 article-title: Multi-objective archiving publication-title: IEEE Trans Evol Comput – volume: 320 year: 2022 ident: bib21 article-title: Chance-constrained robust co-design optimization for fuel cell hybrid electric trucks publication-title: Appl Energy – volume: 11 start-page: 3060 year: 2018 ident: bib11 article-title: Influence of the main design factors on the optimal fuel cell-based powertrain sizing publication-title: Energies – year: 2022 ident: 10.1016/j.energy.2024.132857_bib4 – volume: 51 start-page: 1103 year: 2004 ident: 10.1016/j.energy.2024.132857_bib27 article-title: An electrochemical-based fuel-cell model suitable for electrical engineering automation approach publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2004.834972 – volume: 50 year: 2023 ident: 10.1016/j.energy.2024.132857_bib5 article-title: Light commercial electric vehicles with hydrogen fuel-cell range extender: refueling strategy evaluation publication-title: Res Transp Bus Manag – volume: 285 year: 2021 ident: 10.1016/j.energy.2024.132857_bib10 article-title: Optimization and sizing of a fuel cell range extender vehicle for passenger car applications in driving cycle conditions publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116469 – start-page: 95 year: 2001 ident: 10.1016/j.energy.2024.132857_bib35 article-title: SPEA2: improving the Strength Pareto evolutionary algorithm publication-title: Optim. Control Appl. Ind. Probl. – volume: 321 year: 2022 ident: 10.1016/j.energy.2024.132857_bib22 article-title: Fuel cell electrified propulsion systems for long-haul heavy-duty trucks: present and future cost-oriented sizing publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119354 – volume: 56 year: 2023 ident: 10.1016/j.energy.2024.132857_bib16 article-title: Plug-in fuel cell vehicle performance and battery sizing optimization based on reduced fuel cell energy consumption and waste heat publication-title: Sustain Energy Technol Assessments – volume: 13 start-page: 21 year: 2022 ident: 10.1016/j.energy.2024.132857_bib12 article-title: An energy management strategy and parameter optimization of fuel cell electric vehicles publication-title: World Electr Veh J doi: 10.3390/wevj13010021 – volume: 42 start-page: 4508 year: 2017 ident: 10.1016/j.energy.2024.132857_bib7 article-title: Clean commercial transportation: medium and heavy duty fuel cell electric trucks publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.12.129 – volume: 70 start-page: 35 year: 2019 ident: 10.1016/j.energy.2024.132857_bib6 article-title: Fuel cell electric vehicles: an option to decarbonize heavy-duty transport? Results from a Swiss case-study publication-title: Transp Res Part Transp Environ doi: 10.1016/j.trd.2019.03.004 – volume: 142 start-page: 9 year: 1995 ident: 10.1016/j.energy.2024.132857_bib28 article-title: Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell: II . Empirical model development publication-title: J Electrochem Soc doi: 10.1149/1.2043959 – volume: 44 start-page: 8479 year: 2019 ident: 10.1016/j.energy.2024.132857_bib30 article-title: Power management system for a fuel cell/battery hybrid vehicle incorporating fuel cell and battery degradation publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.003 – year: 2023 ident: 10.1016/j.energy.2024.132857_bib3 – volume: 73 year: 2023 ident: 10.1016/j.energy.2024.132857_bib8 article-title: Optimal sizing of battery-supercapacitor energy storage systems for trams using improved PSO algorithm publication-title: J Energy Storage doi: 10.1016/j.est.2023.108962 – volume: 195 start-page: 6559 year: 2010 ident: 10.1016/j.energy.2024.132857_bib17 article-title: A sizing-design methodology for hybrid fuel cell power systems and its application to an unmanned underwater vehicle publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.04.078 – volume: 135 year: 2020 ident: 10.1016/j.energy.2024.132857_bib32 article-title: Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems publication-title: Chaos, Solit Fractals doi: 10.1016/j.chaos.2020.109738 – volume: 325 year: 2022 ident: 10.1016/j.energy.2024.132857_bib14 article-title: Scenario analysis, management, and optimization of a new Vehicle-to-Micro-Grid (V2μG) network based on off-grid renewable building energy systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119873 – start-page: 839 year: 2000 ident: 10.1016/j.energy.2024.132857_bib34 article-title: The Pareto envelope-based selection algorithm for multiobjective optimization – volume: 293 year: 2023 ident: 10.1016/j.energy.2024.132857_bib24 article-title: Effect of differential control and sizing on multi-FCS architectures for heavy-duty fuel cell vehicles publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2023.117498 – volume: 300 year: 2021 ident: 10.1016/j.energy.2024.132857_bib18 article-title: Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117345 – volume: 267 year: 2023 ident: 10.1016/j.energy.2024.132857_bib25 article-title: Optimization algorithm applied to extended range fuel cell hybrid vehicles. Contribution to road transport decarbonization publication-title: Energy doi: 10.1016/j.energy.2022.126519 – volume: 236 year: 2021 ident: 10.1016/j.energy.2024.132857_bib15 article-title: Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114063 – volume: 252 year: 2022 ident: 10.1016/j.energy.2024.132857_bib20 article-title: Electric hydraulic hybrid vehicle powertrain design and optimization-based power distribution control to extend driving range and battery life cycle publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.115094 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.energy.2024.132857_bib33 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 269 year: 2020 ident: 10.1016/j.energy.2024.132857_bib2 article-title: Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115021 – volume: 320 year: 2022 ident: 10.1016/j.energy.2024.132857_bib21 article-title: Chance-constrained robust co-design optimization for fuel cell hybrid electric trucks publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119252 – volume: 288 year: 2023 ident: 10.1016/j.energy.2024.132857_bib9 article-title: Concept design and energy balance optimization of a hydrogen fuel cell helicopter for unmanned aerial vehicle and aerotaxi applications publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2023.117101 – start-page: 980 year: 2009 ident: 10.1016/j.energy.2024.132857_bib13 article-title: Genetic algorithm based optimal powertrain component sizing and control strategy design for a fuel cell hybrid electric bus – volume: 40 start-page: 8454 year: 2015 ident: 10.1016/j.energy.2024.132857_bib23 article-title: Optimal power source sizing of fuel cell hybrid vehicles based on Pontryagin's minimum principle publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.04.112 – volume: 292 year: 2023 ident: 10.1016/j.energy.2024.132857_bib19 article-title: Aging-aware optimal power management control and component sizing of a fuel cell hybrid electric vehicle powertrain publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2023.117330 – volume: 66 start-page: 7761 year: 2017 ident: 10.1016/j.energy.2024.132857_bib31 article-title: Optimal charging of Li-ion batteries with coupled electro-thermal-aging dynamics publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2017.2676044 – volume: 28 start-page: 696 year: 2024 ident: 10.1016/j.energy.2024.132857_bib36 article-title: Multi-objective archiving publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2023.3314152 – volume: 183 year: 2023 ident: 10.1016/j.energy.2024.132857_bib1 article-title: Towards a future electric ferry using optimisation-based power management strategy in fuel cell and battery vehicle application — a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2023.113470 – volume: 142 start-page: 154 year: 2015 ident: 10.1016/j.energy.2024.132857_bib29 article-title: Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.12.062 – volume: 317 year: 2022 ident: 10.1016/j.energy.2024.132857_bib26 article-title: A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119137 – volume: 11 start-page: 3060 year: 2018 ident: 10.1016/j.energy.2024.132857_bib11 article-title: Influence of the main design factors on the optimal fuel cell-based powertrain sizing publication-title: Energies doi: 10.3390/en11113060 |
| SSID | ssj0005899 |
| Score | 2.4905639 |
| Snippet | Dual-fuel cell hybrid system provides an attractive propulsion option in transportation, especially for heavy-duty vehicles. However, the larger vehicle weight... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 132857 |
| SubjectTerms | batteries energy Fuel cell Heavy-duty vehicle Hybrid system sizing hydrogen Multi-objective jellyfish swarm algorithm transportation |
| Title | Multi-parameter and multi-objective optimization of dual-fuel cell system heavy-duty vehicles: Sizing for serial development |
| URI | https://dx.doi.org/10.1016/j.energy.2024.132857 https://www.proquest.com/docview/3154171758 |
| Volume | 308 |
| WOSCitedRecordID | wos001300377400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhgQvCAYT40tGQrxUrrJ8OrxNqBOgqYDopIoXy3actVWXlLUpZUL87ZxjOykFtPHAS1RZTtLkfjnfne93h9CLNJehyCUlnGYBOCgiJzygnPihjJNY8kQKWjebSAYDOhqlHzqdH44Ls5olRUHX63T-X0UNYyBsTZ39B3E3F4UB-A1ChyOIHY7XEnxNqSW6pPe5TnWpdwfqtEFSiqlRb90SFMW5ZWBqc1ETskheqVlXB_JteWdtRK6-kawCO32lxk3-3KfJpUu_NA_kmFdNEo2L9BteoS5oujY59E3UoYlTfx4r3U_krI3J1oshjHxtSWofKxumhckwPmlzEiy1ZFJcjstqM4Lhh5bK1yq6IPZIFIa_aOXAo915D3xlXavqj7rehB2mPVU_TE9f2c5v1za3nz94z45PT07YsD8avpx_IbrrmN6dty1YbqBdP4lSUOy7R2_7o3dtkhCtO5A2_9CRL-sMwd9v_DfjZmuZr22X4V10xzod-MiA5R7qqGIP3XKc9MUe2u-3fEeYaBX-4j76voUmDGjCW2jCm2jCZY4bNGGNJmzQhFs0YYemV9hgCQM6sMES3sDSA3R63B--fkNsww4igyBdkpznvp9FcaZkxoMk8w6FpFSkSqW5rzKwTsH78PLAk2EUUc5jL0k8HkmZihz8XB7so52iLNRDhONc-SkPVSzAYI9TQT0aCp-rMMwyIeLkAAXuTTNpq9nrpioz5tIWp8zIh2n5MCOfA0Sas-ammssV8xMnRGYtUmNpMgDhFWc-dzJnoLD16-aFKqsFC8BpOUzAaqePrjHnMbrdfjJP0M7yolJP0U25Wk4WF88sXH8COS2_Xw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-parameter+and+multi-objective+optimization+of+dual-fuel+cell+system+heavy-duty+vehicles%3A+Sizing+for+serial+development&rft.jtitle=Energy+%28Oxford%29&rft.au=Zhang%2C+Zhendong&rft.au=He%2C+Hongwen&rft.au=Quan%2C+Shengwei&rft.au=Chen%2C+Jinzhou&rft.date=2024-11-01&rft.issn=0360-5442&rft.volume=308+p.132857-&rft_id=info:doi/10.1016%2Fj.energy.2024.132857&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |