A divide-and-conquer stochastic alterable direction image denoising method

A novel image denoising method based on stochastic technique is proposed in this paper. The procedure is divided into two phases: the appropriate random sampling strategy is adopted to search for similar patches, then the original image is estimated by these patches. Specifically, in order to reduce...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing Ročník 108; s. 90 - 101
Hlavní autoři: Feng, Xiang-chu, Luo, Liang, Jia, Xi-xi, Wang, Wei-wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2015
Témata:
ISSN:0165-1684, 1872-7557
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A novel image denoising method based on stochastic technique is proposed in this paper. The procedure is divided into two phases: the appropriate random sampling strategy is adopted to search for similar patches, then the original image is estimated by these patches. Specifically, in order to reduce the sampling rejection rate, the observed image is decomposed into different frequency bands by 2D wavelet transform, then the similar patches are collected by alterable direction Markov-Chain Monte Carlo (MCMC) sampling with a properly chosen rejection criterion. Rather than taking the weighted average of similar patches, we use two-directional non-local (TDNL) method in order to take full use of the similarity between similar patches collected. The simulation results show that the proposed method improves the efficiency of searching similar patches. Compared with the NLM and BM3D method, our approach has lower computational complexity, better performance in protecting image details and higher visual quality, respectively. •This paper presents a divide-and-conquer technique to search the similar patches in an image.•The original image patches are approximated by TDNL approximation method.•An effective image denoising algorithm is proposed.
AbstractList A novel image denoising method based on stochastic technique is proposed in this paper. The procedure is divided into two phases: the appropriate random sampling strategy is adopted to search for similar patches, then the original image is estimated by these patches. Specifically, in order to reduce the sampling rejection rate, the observed image is decomposed into different frequency bands by 2D wavelet transform, then the similar patches are collected by alterable direction Markov-Chain Monte Carlo (MCMC) sampling with a properly chosen rejection criterion. Rather than taking the weighted average of similar patches, we use two-directional non-local (TDNL) method in order to take full use of the similarity between similar patches collected. The simulation results show that the proposed method improves the efficiency of searching similar patches. Compared with the NLM and BM3D method, our approach has lower computational complexity, better performance in protecting image details and higher visual quality, respectively.
A novel image denoising method based on stochastic technique is proposed in this paper. The procedure is divided into two phases: the appropriate random sampling strategy is adopted to search for similar patches, then the original image is estimated by these patches. Specifically, in order to reduce the sampling rejection rate, the observed image is decomposed into different frequency bands by 2D wavelet transform, then the similar patches are collected by alterable direction Markov-Chain Monte Carlo (MCMC) sampling with a properly chosen rejection criterion. Rather than taking the weighted average of similar patches, we use two-directional non-local (TDNL) method in order to take full use of the similarity between similar patches collected. The simulation results show that the proposed method improves the efficiency of searching similar patches. Compared with the NLM and BM3D method, our approach has lower computational complexity, better performance in protecting image details and higher visual quality, respectively. •This paper presents a divide-and-conquer technique to search the similar patches in an image.•The original image patches are approximated by TDNL approximation method.•An effective image denoising algorithm is proposed.
Author Jia, Xi-xi
Wang, Wei-wei
Feng, Xiang-chu
Luo, Liang
Author_xml – sequence: 1
  givenname: Xiang-chu
  orcidid: 0000-0002-3463-2060
  surname: Feng
  fullname: Feng, Xiang-chu
– sequence: 2
  givenname: Liang
  surname: Luo
  fullname: Luo, Liang
  email: luoliang775@163.com
– sequence: 3
  givenname: Xi-xi
  surname: Jia
  fullname: Jia, Xi-xi
– sequence: 4
  givenname: Wei-wei
  surname: Wang
  fullname: Wang, Wei-wei
BookMark eNqFkD9PwzAQxS1UJNrCN2DIyJJgx3HiMCBVFX9ViQVmy7EvravULrZbiW-PqzAxwHS603tP934zNLHOAkLXBBcEk_p2WwSz3ntXlJhUBeYFpvUZmhLelHnDWDNB0yRjOal5dYFmIWwxxoTWeIpeF5k2R6Mhl1bnytnPA_gsRKc2MkSjMjlE8LIbIOk8qGiczcxOrtMO1plg7DrbQdw4fYnOezkEuPqZc_Tx-PC-fM5Xb08vy8UqV5S2Me85MIJ5VzLFSwCsy66XlGno-paXTPJ05bSqJOGy4W1PodG9rgivatU3StM5uhlzU-P0bYhiZ4KCYZAW3CEIUtctb9uSsyStRqnyLgQPvdj79Lz_EgSLEzqxFSM6cUInMBcJXbLd_bIpE-WpevTSDP-Z70czJAZHA14EZcAqGPkJ7czfAd9PWZBW
CitedBy_id crossref_primary_10_1016_j_sigpro_2016_05_026
crossref_primary_10_1016_j_neucom_2018_02_057
crossref_primary_10_1155_2017_4065306
crossref_primary_10_3390_f14010141
Cites_doi 10.1007/s11263-009-0272-7
10.1109/LSP.2005.859509
10.1006/cviu.1996.0060
10.1016/j.patcog.2011.05.002
10.1093/biomet/57.1.97
10.1007/s11263-007-0052-1
10.1109/TSP.2006.881199
10.1109/LSP.2013.2244081
10.1016/j.patcog.2009.09.023
10.1109/TCS.1987.1086066
10.3724/SP.J.1146.2010.00335
10.1109/TIP.2012.2214043
10.1016/j.sigpro.2011.03.021
10.1109/ICIP.2008.4712109
10.1109/TIP.2008.924279
10.1117/12.7973877
10.1016/0031-3203(94)90013-2
10.1109/TIP.2007.901238
10.1109/TIP.2003.819861
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.sigpro.2014.08.036
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
EndPage 101
ExternalDocumentID 10_1016_j_sigpro_2014_08_036
S0165168414004009
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c339t-f8e5108b25c82ee0d2bfa35debf9825a882e8344a18a789f3e7dfd41846cf7cd3
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346542300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Sun Sep 28 11:49:36 EDT 2025
Sat Nov 29 03:22:48 EST 2025
Tue Nov 18 22:52:12 EST 2025
Fri Feb 23 02:33:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Non-local means
Two-directional method
Markov-Chain Monte Carlo sampling
Image denoising
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-f8e5108b25c82ee0d2bfa35debf9825a882e8344a18a789f3e7dfd41846cf7cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3463-2060
PQID 1669899285
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1669899285
crossref_primary_10_1016_j_sigpro_2014_08_036
crossref_citationtrail_10_1016_j_sigpro_2014_08_036
elsevier_sciencedirect_doi_10_1016_j_sigpro_2014_08_036
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Signal processing
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bemstein (bib6) 1987; 34
Aharon, Elad, Bruckstein (bib12) 2006; 54
Xuan-de, Xiang-chu, Wei-wei (bib14) 2013; 22
Zhang, Feng, Wang, Xue (bib21) 2013; 20
Lei, Wei-sheng, Zhang, Guang-ming (bib13) 2010; 43
Wong, Kumar Mishra, Zhang, Fieguth, Clausi (bib11) 2011; 91
John (bib20) 1996; 64
Mahmoudi, Sapiro (bib8) 2005; 12
Hastings (bib18) 1970; 57
Zhang, Wu (bib19) 2008; 17
Jian-lou, Xiang-chu, Yan (bib1) 2011; 34
Lindenbaum, Fischer, Bruckstein (bib7) 1994; 27
Yu, Wei-wei, Xiang-chu (bib3) 2012; 45
Yu, Wei-wei, Xiang-chu (bib4) 2011; 37
Katkovnik, Foi, Egiazarian (bib5) 2010; 86
Zhou, Bovik, Sheikh, Simoncelli (bib15) 2004; 13
Wei-bin, Xiang-chu, Wei-wei (bib2) 2011; 33
Dabov, Foi, Katkovnik, Egiazarian (bib16) 2007; 16
Buades, Coll, Morel (bib10) 2008; 76
Lee (bib17) 1986; 25
J. Orchard, M. Ebrahimi, A. Wong, Effcient nonlocal-means denoising using the SVD. in: Proceedings of IEEE International Conference on Image Processing, 2008.
Jian-lou (10.1016/j.sigpro.2014.08.036_bib1) 2011; 34
Wei-bin (10.1016/j.sigpro.2014.08.036_bib2) 2011; 33
Lindenbaum (10.1016/j.sigpro.2014.08.036_bib7) 1994; 27
Dabov (10.1016/j.sigpro.2014.08.036_bib16) 2007; 16
Lee (10.1016/j.sigpro.2014.08.036_bib17) 1986; 25
10.1016/j.sigpro.2014.08.036_bib9
Yu (10.1016/j.sigpro.2014.08.036_bib4) 2011; 37
Zhang (10.1016/j.sigpro.2014.08.036_bib21) 2013; 20
Yu (10.1016/j.sigpro.2014.08.036_bib3) 2012; 45
Lei (10.1016/j.sigpro.2014.08.036_bib13) 2010; 43
Wong (10.1016/j.sigpro.2014.08.036_bib11) 2011; 91
Katkovnik (10.1016/j.sigpro.2014.08.036_bib5) 2010; 86
Hastings (10.1016/j.sigpro.2014.08.036_bib18) 1970; 57
Bemstein (10.1016/j.sigpro.2014.08.036_bib6) 1987; 34
Zhang (10.1016/j.sigpro.2014.08.036_bib19) 2008; 17
Mahmoudi (10.1016/j.sigpro.2014.08.036_bib8) 2005; 12
Buades (10.1016/j.sigpro.2014.08.036_bib10) 2008; 76
Xuan-de (10.1016/j.sigpro.2014.08.036_bib14) 2013; 22
Zhou (10.1016/j.sigpro.2014.08.036_bib15) 2004; 13
John (10.1016/j.sigpro.2014.08.036_bib20) 1996; 64
Aharon (10.1016/j.sigpro.2014.08.036_bib12) 2006; 54
References_xml – volume: 25
  start-page: 636
  year: 1986
  end-page: 643
  ident: bib17
  article-title: Speckle suppression and analysis for synthetic aperture radar
  publication-title: Opt. Eng.
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  ident: bib18
  article-title: Monte carlo sampling methods using Markov Chains and their applications
  publication-title: Biometrika
– volume: 34
  start-page: 1142
  year: 2011
  end-page: 1147
  ident: bib1
  article-title: Improved TV-stokes model and algorithm for image inpainting
  publication-title: J. Electron. Inf. Technol.
– volume: 27
  start-page: 1
  year: 1994
  end-page: 8
  ident: bib7
  article-title: On gabor contribution to image enhancement
  publication-title: Pattern Recognit.
– volume: 22
  start-page: 408
  year: 2013
  end-page: 412
  ident: bib14
  article-title: Two-direction nonlocal model for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 91
  start-page: 2112
  year: 2011
  end-page: 2120
  ident: bib11
  article-title: Stochastic image denoising based on Markov-Chain Monte Carlo sampling
  publication-title: Signal Process.
– volume: 86
  start-page: 1
  year: 2010
  end-page: 32
  ident: bib5
  article-title: From local kernel to nonlocal multiple-model image denoising
  publication-title: Int. J. Comput. Vis.
– volume: 33
  start-page: 342
  year: 2011
  end-page: 346
  ident: bib2
  article-title: Accelerated Landweber iterative thresholding algorithm in wavelet domain for image restoration
  publication-title: J. Electron. Inf. Technol.
– volume: 17
  start-page: 887
  year: 2008
  end-page: 896
  ident: bib19
  article-title: Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation
  publication-title: IEEE Trans. Image Process.
– volume: 43
  start-page: 1531
  year: 2010
  end-page: 1549
  ident: bib13
  article-title: Two-stage image denoising by principal component analysis with local pixel grouping
  publication-title: Pattern Recognit.
– reference: J. Orchard, M. Ebrahimi, A. Wong, Effcient nonlocal-means denoising using the SVD. in: Proceedings of IEEE International Conference on Image Processing, 2008.
– volume: 37
  start-page: 1059
  year: 2011
  end-page: 1066
  ident: bib4
  article-title: Iteratively reweighted method based nonrigid image registration
  publication-title: Acta Automat. Sin.
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  ident: bib12
  article-title: The K-SVD
  publication-title: IEEE Trans. Signal Process.
– volume: 64
  start-page: 300
  year: 1996
  end-page: 302
  ident: bib20
  article-title: Fast noise variance estimation
  publication-title: Comput. Vis. Image Underst.
– volume: 12
  start-page: 839
  year: 2005
  end-page: 842
  ident: bib8
  article-title: Fast image and video denoising via nonlocal means of similar neighborhoods
  publication-title: IEEE Signal Process. Lett.
– volume: 34
  start-page: 1275
  year: 1987
  end-page: 1291
  ident: bib6
  article-title: Adaptive nonlinear filters for simultaneous removal of different kinds of noise in images
  publication-title: IEEE Trans. Circuits Syst.
– volume: 20
  start-page: 319
  year: 2013
  end-page: 322
  ident: bib21
  article-title: Edge strength similarity for image quality assessment
  publication-title: IEEE Signal Process. Lett.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib15
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 45
  start-page: 363
  year: 2012
  end-page: 372
  ident: bib3
  article-title: A new fast multiphase image segmentation algorithm based on nonconvex regularizer
  publication-title: Pattern Recognit.
– volume: 76
  start-page: 123
  year: 2008
  end-page: 139
  ident: bib10
  article-title: Nonlocal image and movie denoising
  publication-title: Int. J. Comput. Vis.
– volume: 16
  start-page: 2080
  year: 2007
  end-page: 2095
  ident: bib16
  article-title: Image denoising by sparse 3D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
– volume: 86
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.sigpro.2014.08.036_bib5
  article-title: From local kernel to nonlocal multiple-model image denoising
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0272-7
– volume: 12
  start-page: 839
  issue: 12
  year: 2005
  ident: 10.1016/j.sigpro.2014.08.036_bib8
  article-title: Fast image and video denoising via nonlocal means of similar neighborhoods
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2005.859509
– volume: 37
  start-page: 1059
  issue: 9
  year: 2011
  ident: 10.1016/j.sigpro.2014.08.036_bib4
  article-title: Iteratively reweighted method based nonrigid image registration
  publication-title: Acta Automat. Sin.
– volume: 64
  start-page: 300
  issue: 2
  year: 1996
  ident: 10.1016/j.sigpro.2014.08.036_bib20
  article-title: Fast noise variance estimation
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.1996.0060
– volume: 45
  start-page: 363
  issue: 1
  year: 2012
  ident: 10.1016/j.sigpro.2014.08.036_bib3
  article-title: A new fast multiphase image segmentation algorithm based on nonconvex regularizer
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.05.002
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  ident: 10.1016/j.sigpro.2014.08.036_bib18
  article-title: Monte carlo sampling methods using Markov Chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 76
  start-page: 123
  issue: 2
  year: 2008
  ident: 10.1016/j.sigpro.2014.08.036_bib10
  article-title: Nonlocal image and movie denoising
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0052-1
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 10.1016/j.sigpro.2014.08.036_bib12
  article-title: The K-SVD
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume: 20
  start-page: 319
  issue: 4
  year: 2013
  ident: 10.1016/j.sigpro.2014.08.036_bib21
  article-title: Edge strength similarity for image quality assessment
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2013.2244081
– volume: 43
  start-page: 1531
  issue: 4
  year: 2010
  ident: 10.1016/j.sigpro.2014.08.036_bib13
  article-title: Two-stage image denoising by principal component analysis with local pixel grouping
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.09.023
– volume: 34
  start-page: 1275
  issue: 11
  year: 1987
  ident: 10.1016/j.sigpro.2014.08.036_bib6
  article-title: Adaptive nonlinear filters for simultaneous removal of different kinds of noise in images
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/TCS.1987.1086066
– volume: 34
  start-page: 1142
  issue: 5
  year: 2011
  ident: 10.1016/j.sigpro.2014.08.036_bib1
  article-title: Improved TV-stokes model and algorithm for image inpainting
  publication-title: J. Electron. Inf. Technol.
– volume: 33
  start-page: 342
  issue: 2
  year: 2011
  ident: 10.1016/j.sigpro.2014.08.036_bib2
  article-title: Accelerated Landweber iterative thresholding algorithm in wavelet domain for image restoration
  publication-title: J. Electron. Inf. Technol.
  doi: 10.3724/SP.J.1146.2010.00335
– volume: 22
  start-page: 408
  issue: 1
  year: 2013
  ident: 10.1016/j.sigpro.2014.08.036_bib14
  article-title: Two-direction nonlocal model for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2214043
– volume: 91
  start-page: 2112
  issue: 8
  year: 2011
  ident: 10.1016/j.sigpro.2014.08.036_bib11
  article-title: Stochastic image denoising based on Markov-Chain Monte Carlo sampling
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2011.03.021
– ident: 10.1016/j.sigpro.2014.08.036_bib9
  doi: 10.1109/ICIP.2008.4712109
– volume: 17
  start-page: 887
  issue: 6
  year: 2008
  ident: 10.1016/j.sigpro.2014.08.036_bib19
  article-title: Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.924279
– volume: 25
  start-page: 636
  issue: 5
  year: 1986
  ident: 10.1016/j.sigpro.2014.08.036_bib17
  article-title: Speckle suppression and analysis for synthetic aperture radar
  publication-title: Opt. Eng.
  doi: 10.1117/12.7973877
– volume: 27
  start-page: 1
  issue: 1
  year: 1994
  ident: 10.1016/j.sigpro.2014.08.036_bib7
  article-title: On gabor contribution to image enhancement
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(94)90013-2
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 10.1016/j.sigpro.2014.08.036_bib16
  article-title: Image denoising by sparse 3D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.sigpro.2014.08.036_bib15
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
SSID ssj0001360
Score 2.121286
Snippet A novel image denoising method based on stochastic technique is proposed in this paper. The procedure is divided into two phases: the appropriate random...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 90
SubjectTerms Computer simulation
Image denoising
Markov-Chain Monte Carlo sampling
Monte Carlo methods
Noise reduction
Non-local means
Sampling
Searching
Stochasticity
Two-directional method
Wavelet transforms
Title A divide-and-conquer stochastic alterable direction image denoising method
URI https://dx.doi.org/10.1016/j.sigpro.2014.08.036
https://www.proquest.com/docview/1669899285
Volume 108
WOSCitedRecordID wos000346542300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ_tIaQv2qQpLvQWFFaWJcvHpaS0ewiFpNQ3I1vyxiHxLvtI9-dnpPFjyVLSFnoxi7FsWTP7zafxPAj5VGrAOKEjGhotaSRHEc2N1ZQbIAeyBBuWY7OJ-PxcpWnyfTCYt7kwdzdxXavNJpn_V1HDORC2S539C3F3N4UT8BuEDkcQOxz_SPDjE59iZamuDYXdLgD_4gQoXnGll746q_s-jglTCHcu2PHWhe4ABM0q7zvAvtLbxPWimjreOse8gtbeeQ6JaJGCnk1pcbXuQnzWM9z06_7iCYbmphXdVL0rH2_w01b0l6223RBM9HFY6BvbyY9Bd6UUlElsAndqEWJVDJxeYFnqDoNHagtFsYFoY48ZPmUH6tHrcH26rKbw7i5IL_LFWPmDytreVl-4mbiJsMjDVvKE7IWxSNSQ7I2_naWTznoz7jPLu5m36ZY-JnD3Wb-jMw8Mu2crlwdkv9lmBGNUjxdkYOuX5PlW8clXZDIOdhUl6BUl6BQl6BQl8IoSdIoSoKK8Jj--nF1-_kqbzhq04DxZ0VJZwGKVh6JQobUjE-al5sLYvExUKDRsu6xrwKKZ0rFKSm5jU5qIAVktyrgw_A0Z1rPaviWBsjHYKKkFByprwP5pVhgmtTVALqWR7whvFygrmrLzrvvJTdbGF15nuKyZW9bMNUXlMIp2o-ZYduWR6-N27bOGOuLSZKAuj4z82IoqA2R1n8t0bWfrZcaka66ahEoc_vPdj8iz_s_yngxXi7U9Jk-Lu1W1XHxodO8eD3ehTw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+divide-and-conquer+stochastic+alterable+direction+image+denoising+method&rft.jtitle=Signal+processing&rft.au=Feng%2C+Xiang-chu&rft.au=Luo%2C+Liang&rft.au=Jia%2C+Xi-xi&rft.au=Wang%2C+Wei-wei&rft.date=2015-03-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=108&rft.spage=90&rft.epage=101&rft_id=info:doi/10.1016%2Fj.sigpro.2014.08.036&rft.externalDocID=S0165168414004009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon