Fast Training Algorithms for Deep Convolutional Fuzzy Systems With Application to Stock Index Prediction

A deep convolutional fuzzy system (DCFS) on a high-dimensional input space is a multilayer connection of many low-dimensional fuzzy systems, where the input variables to the low-dimensional fuzzy systems are selected through a moving window across the input spaces of the layers. To design the DCFS b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on fuzzy systems Ročník 28; číslo 7; s. 1301 - 1314
Hlavní autor: Wang, Li-Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-6706, 1941-0034
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A deep convolutional fuzzy system (DCFS) on a high-dimensional input space is a multilayer connection of many low-dimensional fuzzy systems, where the input variables to the low-dimensional fuzzy systems are selected through a moving window across the input spaces of the layers. To design the DCFS based on an input-output data pairs, we propose a bottom-up layer-by-layer scheme. Specifically, by viewing each of the first-layer fuzzy systems as a weak estimator of the output based only on a very small portion of the input variables, we design these fuzzy systems using the Wang-Mendel method. After the first-layer fuzzy systems are designed, we pass the data through the first layer to form a new dataset and design the second-layer fuzzy systems based on this new dataset in the same way as designing the first-layer fuzzy systems. Repeating this process layer-by-layer, we design the whole DCFS. We also propose a DCFS with parameter sharing to save memory and computation. We apply the DCFS models to predict a synthetic chaotic plus random time-series and the real Hang Seng Index of the Hong Kong stock market.
AbstractList A deep convolutional fuzzy system (DCFS) on a high-dimensional input space is a multilayer connection of many low-dimensional fuzzy systems, where the input variables to the low-dimensional fuzzy systems are selected through a moving window across the input spaces of the layers. To design the DCFS based on an input–output data pairs, we propose a bottom–up layer-by-layer scheme. Specifically, by viewing each of the first-layer fuzzy systems as a weak estimator of the output based only on a very small portion of the input variables, we design these fuzzy systems using the Wang–Mendel method. After the first-layer fuzzy systems are designed, we pass the data through the first layer to form a new dataset and design the second-layer fuzzy systems based on this new dataset in the same way as designing the first-layer fuzzy systems. Repeating this process layer-by-layer, we design the whole DCFS. We also propose a DCFS with parameter sharing to save memory and computation. We apply the DCFS models to predict a synthetic chaotic plus random time-series and the real Hang Seng Index of the Hong Kong stock market.
Author Wang, Li-Xin
Author_xml – sequence: 1
  givenname: Li-Xin
  orcidid: 0000-0002-0820-9592
  surname: Wang
  fullname: Wang, Li-Xin
  email: lxwang@ucas.edu.cn
  organization: University of Chinese Academy of Sciences, Beijing, China
BookMark eNp9kEFLwzAYhoMoqNM_oJeA5858TZemxzGdDgYKmwheSpZ-dZm1qUkmbr_e1g0PHjx9ge95kzfPKTmsbY2EXADrA7Dsej5-ennpxwyyfpxxlkh5QE4gSyBijCeH7ZkJHomUiWNy6v2KMUgGIE_Icqx8oHOnTG3qVzqsXq0zYfnuaWkdvUFs6MjWn7ZaB2NrVdHxervd0NnGB2yh55alw6apjFYdQIOls2D1G53UBX7RR4eF0d3mjByVqvJ4vp898jS-nY_uo-nD3WQ0nEaa8yxEWPCygCJJU1Q6FlIvMBNpIbvqmrFFKbQClDFAwlU2AB2jEFwOFAIMOCx4j1zt7m2c_VijD_nKrl3b3Odx0hrJJOdpS8U7SjvrvcMyb5x5V26TA8s7o_mP0bwzmu-NtiH5J6RN-Pl2aP1V_0cvd1GDiL9vyVRKwWP-Dc5nh2I
CODEN IEFSEV
CitedBy_id crossref_primary_10_1109_TFUZZ_2024_3354919
crossref_primary_10_1007_s10489_022_04134_7
crossref_primary_10_1016_j_energy_2020_118700
crossref_primary_10_1109_TFUZZ_2024_3397728
crossref_primary_10_1109_TETCI_2024_3432667
crossref_primary_10_1109_TFUZZ_2024_3398719
crossref_primary_10_1109_TFUZZ_2022_3149395
crossref_primary_10_1109_TFUZZ_2023_3293834
crossref_primary_10_1109_TFUZZ_2025_3588624
crossref_primary_10_1109_TFUZZ_2023_3330883
crossref_primary_10_1145_3502289
crossref_primary_10_1007_s00521_021_06807_9
crossref_primary_10_1007_s10614_024_10599_0
crossref_primary_10_1007_s10614_023_10464_6
crossref_primary_10_1109_TFUZZ_2025_3572922
crossref_primary_10_1109_TFUZZ_2020_3021713
crossref_primary_10_1007_s10462_022_10188_3
crossref_primary_10_1109_TFUZZ_2022_3163909
crossref_primary_10_1109_TFUZZ_2024_3519767
crossref_primary_10_1109_TFUZZ_2021_3098339
crossref_primary_10_1109_TITS_2022_3222492
crossref_primary_10_1109_TFUZZ_2023_3347793
crossref_primary_10_1109_TSMC_2025_3534988
crossref_primary_10_1007_s10489_021_02326_1
crossref_primary_10_1038_s41598_023_48575_7
crossref_primary_10_1109_ACCESS_2022_3171109
Cites_doi 10.1007/s12083-015-0365-8
10.4018/IJCINI.2016010104
10.1109/TFUZZ.2006.882472
10.1109/ICIES.2012.6530868
10.1109/FUZZY.1992.258711
10.1109/21.199466
10.1109/FUZZ-IEEE.2017.8015616
10.1109/ICEEE.2011.6106658
10.1080/00207179108934205
10.3233/IFS-141410
10.1109/IEDEC.2013.6526772
10.2307/2325486
10.3905/joi.2001.319457
10.1109/TFUZZ.2005.856559
10.1109/FUZZY.2010.5584232
10.1109/ICISIP.2004.1287681
10.1109/TETCI.2017.2761915
10.1109/TCYB.2013.2295114
10.1016/S0165-0114(01)00176-2
10.1016/S0165-0114(96)00197-2
10.1109/TFUZZ.2014.2374193
10.5391/IJFIS.2008.8.2.087
10.1109/TMECH.2015.2494607
10.1109/TFUZZ.2017.2729507
10.1109/TFUZZ.2004.832538
10.1006/jcss.1997.1504
10.1007/s00500-013-1179-3
10.1007/s00500-018-3111-3
10.1109/TFUZZ.2017.2698399
10.1109/TFUZZ.2014.2346244
10.1109/TFUZZ.2003.819839
10.1007/BF00058655
10.1109/TFUZZ.2008.924343
10.1016/j.apm.2007.03.007
10.1016/j.smhl.2018.07.001
10.1109/TFUZZ.2006.876365
10.3182/20110828-6-IT-1002.00986
10.1109/91.797984
10.1038/nature14539
10.1109/TFUZZ.2017.2701313
10.1109/FUZZY.2010.5584851
10.1109/ICCCYB.2009.5393940
10.1109/IJCNN.2016.7727238
10.1023/A:1010933404324
10.1162/neco.2006.18.7.1527
10.1109/91.868953
10.1109/FUZZY.2010.5584496
10.1093/rfs/1.1.41
10.1109/TFUZZ.2016.2574911
10.1038/nature16961
10.1016/j.jsv.2004.11.030
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2019.2930488
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 1314
ExternalDocumentID 10_1109_TFUZZ_2019_2930488
8788632
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c339t-ed3fd1d477eac268cbe967d86706c00bf6ca1e821143a951c2e66385ae11531b3
IEDL.DBID RIE
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545205300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Mon Jun 30 02:26:23 EDT 2025
Sat Nov 29 03:12:38 EST 2025
Tue Nov 18 22:32:15 EST 2025
Wed Aug 27 02:37:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-ed3fd1d477eac268cbe967d86706c00bf6ca1e821143a951c2e66385ae11531b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0820-9592
OpenAccessLink https://ieeexplore.ieee.org/document/8788632
PQID 2419498337
PQPubID 85428
PageCount 14
ParticipantIDs crossref_primary_10_1109_TFUZZ_2019_2930488
proquest_journals_2419498337
crossref_citationtrail_10_1109_TFUZZ_2019_2930488
ieee_primary_8788632
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref59
rapach (ref52) 0; 2a
ref15
shiller (ref56) 2006
ref55
ref11
lecun (ref1) 1990
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
dong (ref14) 2004; 2
ref46
ref45
ref48
ref41
ref44
soros (ref53) 2003
ref8
ref7
malkiel (ref47) 2012
ref9
ref6
ref5
ref40
hastie (ref43) 2009
ref35
ref34
ref37
ref36
ref31
ref30
ref33
surowiecki (ref42) 2005
ref32
lo (ref49) 2001
ref2
ref39
ref38
lecun (ref3) 2015; 521
ref24
ref23
ref26
ref25
ref20
silver (ref4) 2016; 529
ref22
ref21
wang (ref58) 1997
ref27
ahin (ref28) 2011; 44
ref29
ref60
ref61
References_xml – ident: ref24
  doi: 10.1007/s12083-015-0365-8
– volume: 2
  start-page: 1530
  year: 2004
  ident: ref14
  article-title: Approach for evolving hierarchical T-S fuzzy systems
  publication-title: Proc Int Conf Signal Process
– ident: ref26
  doi: 10.4018/IJCINI.2016010104
– ident: ref13
  doi: 10.1109/TFUZZ.2006.882472
– year: 2012
  ident: ref47
  publication-title: A Random Walk Down Wall Street
– ident: ref23
  doi: 10.1109/ICIES.2012.6530868
– ident: ref60
  doi: 10.1109/FUZZY.1992.258711
– ident: ref40
  doi: 10.1109/21.199466
– ident: ref37
  doi: 10.1109/FUZZ-IEEE.2017.8015616
– ident: ref32
  doi: 10.1109/ICEEE.2011.6106658
– ident: ref6
  doi: 10.1080/00207179108934205
– ident: ref20
  doi: 10.3233/IFS-141410
– ident: ref18
  doi: 10.1109/IEDEC.2013.6526772
– ident: ref48
  doi: 10.2307/2325486
– ident: ref51
  doi: 10.3905/joi.2001.319457
– ident: ref11
  doi: 10.1109/TFUZZ.2005.856559
– ident: ref19
  doi: 10.1109/FUZZY.2010.5584232
– ident: ref15
  doi: 10.1109/ICISIP.2004.1287681
– ident: ref38
  doi: 10.1109/TETCI.2017.2761915
– ident: ref35
  doi: 10.1109/TCYB.2013.2295114
– ident: ref10
  doi: 10.1016/S0165-0114(01)00176-2
– ident: ref7
  doi: 10.1016/S0165-0114(96)00197-2
– ident: ref54
  doi: 10.1109/TFUZZ.2014.2374193
– ident: ref30
  doi: 10.5391/IJFIS.2008.8.2.087
– ident: ref31
  doi: 10.1109/TMECH.2015.2494607
– ident: ref39
  doi: 10.1109/TFUZZ.2017.2729507
– ident: ref21
  doi: 10.1109/TFUZZ.2004.832538
– year: 2009
  ident: ref43
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref46
  doi: 10.1006/jcss.1997.1504
– start-page: 396
  year: 1990
  ident: ref1
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1007/s00500-013-1179-3
– year: 1997
  ident: ref58
  publication-title: A Course in Fuzzy Systems and Control
– ident: ref34
  doi: 10.1007/s00500-018-3111-3
– ident: ref36
  doi: 10.1109/TFUZZ.2017.2698399
– ident: ref57
  doi: 10.1109/TFUZZ.2014.2346244
– ident: ref41
  doi: 10.1109/TFUZZ.2003.819839
– ident: ref44
  doi: 10.1007/BF00058655
– ident: ref12
  doi: 10.1109/TFUZZ.2008.924343
– ident: ref16
  doi: 10.1016/j.apm.2007.03.007
– ident: ref5
  doi: 10.1016/j.smhl.2018.07.001
– year: 2001
  ident: ref49
  publication-title: A Non-Random Walk Down Wall Street
– ident: ref9
  doi: 10.1109/TFUZZ.2006.876365
– volume: 44
  start-page: 8993
  year: 2011
  ident: ref28
  article-title: A hierarchical fuzzy decision maker for the weapon target assignment
  publication-title: IFAC Proc Vol
  doi: 10.3182/20110828-6-IT-1002.00986
– ident: ref8
  doi: 10.1109/91.797984
– volume: 521
  start-page: 436
  year: 2015
  ident: ref3
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref61
  doi: 10.1109/TFUZZ.2017.2701313
– ident: ref17
  doi: 10.1109/FUZZY.2010.5584851
– year: 2003
  ident: ref53
  publication-title: The Alchemy of Finance
– ident: ref29
  doi: 10.1109/ICCCYB.2009.5393940
– volume: 2a
  start-page: 327
  year: 0
  ident: ref52
  article-title: Forecasting stock returns
  publication-title: Handbook of Economic Forecasting
– ident: ref33
  doi: 10.1109/IJCNN.2016.7727238
– ident: ref45
  doi: 10.1023/A:1010933404324
– ident: ref2
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref59
  doi: 10.1109/91.868953
– ident: ref22
  doi: 10.1109/FUZZY.2010.5584496
– year: 2006
  ident: ref56
  publication-title: Irrational Exuberance
– ident: ref50
  doi: 10.1093/rfs/1.1.41
– year: 2005
  ident: ref42
  publication-title: The wisdom of crowds Why the many are smarter than the few
– ident: ref55
  doi: 10.1109/TFUZZ.2016.2574911
– volume: 529
  start-page: 484
  year: 2016
  ident: ref4
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref27
  doi: 10.1016/j.jsv.2004.11.030
SSID ssj0014518
Score 2.5896149
Snippet A deep convolutional fuzzy system (DCFS) on a high-dimensional input space is a multilayer connection of many low-dimensional fuzzy systems, where the input...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1301
SubjectTerms Algorithms
Computational modeling
Datasets
Deep learning
Fuzzy sets
Fuzzy systems
hierarchical fuzzy systems
Input variables
Multilayers
Prediction algorithms
stock index prediction
Stock market indexes
Training
Wang–Mendel (WM) method
Windows
Title Fast Training Algorithms for Deep Convolutional Fuzzy Systems With Application to Stock Index Prediction
URI https://ieeexplore.ieee.org/document/8788632
https://www.proquest.com/docview/2419498337
Volume 28
WOSCitedRecordID wos000545205300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8CxGEcKNBNlC_5sNsWSOIkto8VEDFpQkgrW8Uliu1nQIIGtSkS_euxXbcb2jSJWyQ_R5F_z-8j7wvgc2zQGGOZl2OdRlmKLJKJVlFmEmaktou-PPrnd3Z5yYdDcbUCX5e1MIjok8_w2D36WL5u1NT9Kjvh1l8rqBW4q4yxea3WMmKQ5cm87K2gUcHiYlEgE4uTQXl9c-OyuMSxVW6OZd8oIT9V5S9R7PVL2Xnfl23BZrAjSX8O_Das4GgHOosZDSRc2R3Y-KPhYBfuynrSkkEYC0H6D7fN-L69e5wQa7uSM8QnctqMngM72veX09nshYS25uSXpSX93yFv0jbkR2slKvnmmi6Sq7EL-7iVj3Bdng9OL6IwayFSlIo2Qk2NTnTGmJXEacGVRFEwzd1RqjiWplB1gty6ixmtrVWmUrS2Cs9rtCYlTST9BGujZoS7QKyPJHmucsmNzFgta5kpoWITixq1zmUPksXhVyo0InfzMB4q75DEovKAVQ6wKgDWgy_LPU_zNhz_pe46iJaUAZ0eHCwwrsJNnVTWghGZ4JSyvX_v2ocPqfOxfYruAay14ykewrp6bu8n4yPPhK9iEtzL
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTxQxFH8hSKIeREDiKmoP3HRgZtqZtscNOoG4bkhYlHCZTNtXIcEdsjtLIn-9bbe7YiAm3Cbp62TS3-v7mPcFsJtatNY65hXY5AnLkScqMzphNuNWGbcYyqO_D_hwKM7O5PEKfFrWwiBiSD7DPf8YYvmm1TP_q2xfOH-tpE7gPikYy7N5tdYyZsCKbF74VtKk5Gm5KJFJ5f6oOj0_93lccs-pN8-0_6ihMFflnjAOGqZaf9y3vYQX0ZIk_Tn0G7CC401YX0xpIPHSbsLzOy0Ht-CiaqYdGcXBEKR_9bOdXHYXv6bEWa_kM-I1OWjHN5Eh3fur2e3tbxIbm5Mfjpb0_wa9SdeSk87JVHLk2y6S44kP_PiVV3BafRkdHCZx2kKiKZVdgoZakxnGuZPFeSm0QllyI_xR6jRVttRNhsI5jIw2zi7TOTprRRQNOqOSZopuw-q4HeNrIM5LUqLQhRJWMd6oRjEtdWpT2aAxhepBtjj8WsdW5H4ixlUdXJJU1gGw2gNWR8B68HG553reiOO_1FseoiVlRKcHOwuM63hXp7WzYSSTglL-5uFdH-Dp4ejboB4cDb--hWe597hDwu4OrHaTGb6DNX3TXU4n7wND_gEDY-AS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Training+Algorithms+for+Deep+Convolutional+Fuzzy+Systems+With+Application+to+Stock+Index+Prediction&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Li-Xin%2C+Wang&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=28&rft.issue=7&rft.spage=1301&rft_id=info:doi/10.1109%2FTFUZZ.2019.2930488&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon