Blind Speech Extraction Based on Rank-Constrained Spatial Covariance Matrix Estimation With Multivariate Generalized Gaussian Distribution

In this article, we propose a new blind speech extraction (BSE) method that robustly extracts a directional speech from background diffuse noise by combining independent low-rank matrix analysis (ILRMA) and efficient rank-constrained spatial covariance matrix (SCM) estimation. To achieve more accura...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM transactions on audio, speech, and language processing Ročník 28; s. 1948 - 1963
Hlavní autoři: Kubo, Yuki, Takamune, Norihiro, Kitamura, Daichi, Saruwatari, Hiroshi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2329-9290, 2329-9304
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, we propose a new blind speech extraction (BSE) method that robustly extracts a directional speech from background diffuse noise by combining independent low-rank matrix analysis (ILRMA) and efficient rank-constrained spatial covariance matrix (SCM) estimation. To achieve more accurate BSE than ILRMA, which assumes each source to be a point source (rank-1 spatial model), the proposed method restores the lost spatial basis for the full-rank SCM of diffuse noise. We adopt the multivariate complex generalized Gaussian distribution (GGD) as the statistical generative model to express various types of observed signal. To estimate the model parameters for an arbitrary shape parameter of the multivariate GGD, we derive a new inequality for rank-constrained SCMs. Also, we propose new acceleration methods to accomplish much faster extraction than conventional blind source separation methods. In BSE experiments using simulated and real recorded data, we confirm that the proposed method achieves more accurate and faster speech extraction than conventional methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2329-9290
2329-9304
DOI:10.1109/TASLP.2020.3003165