PV/Hydrogen DC microgrid control using distributed economic model predictive control

The integration of hydrogen energy into a photovoltaic-dominated microgrid is now becoming a promising approach to improve the photoconversion efficiency and enhance the operating reliability. However, the energy management and power regulation of the Photovoltaic/Hydrogen DC microgrid face challeng...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Renewable energy Ročník 222; s. 119871
Hlavní autoři: Zhu, Zheng, Liu, Xiangjie, Kong, Xiaobing, Ma, Lele, Lee, Kwang Y., Xu, Yuping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.02.2024
Témata:
ISSN:0960-1481, 1879-0682
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The integration of hydrogen energy into a photovoltaic-dominated microgrid is now becoming a promising approach to improve the photoconversion efficiency and enhance the operating reliability. However, the energy management and power regulation of the Photovoltaic/Hydrogen DC microgrid face challenges due to the intermittency of photovoltaic (PV) power generation and the randomness of load. In this paper, a distributed economic model predictive control (DEMPC) scheme is developed for a PV/Hydrogen DC microgrid, which integrates the energy management, economic optimization, and power regulation into one optimal control framework. Based on the developed distributed converter-based mathematical model, three local controllers are designed to achieve the economic targets of PV subsystem, alkaline electrolyzer subsystem, and proton exchange membrane fuel cell subsystem respectively, which cooperate with each other through the communication network to realize the power supply–demand balance, DC bus voltage stability, and economic optimization. A mixed integer nonlinear programming algorithm utilizing the finite converter switching states is embedded into the DEMPC to solve the non-convex local optimization problems efficiently. The effectiveness and superiority of the proposed DEMPC scheme are verified by simulations under varying irradiance and load conditions, indicating that the DEMPC can achieve a comparable overall dynamic economic performance with a significantly reduced computation burden and power oscillation, compared to the centralized economic model predictive control (CEMPC). •A DEMPC scheme is developed for a PV/Hydrogen DC microgrid.•An EMS is incorporated into the proposed DEMPC scheme.•An efficient algorithm is proposed to solve non-convex DEMPC optimization problem.•The DEMPC is validated by simulations under varying irradiance and load conditions.
AbstractList The integration of hydrogen energy into a photovoltaic-dominated microgrid is now becoming a promising approach to improve the photoconversion efficiency and enhance the operating reliability. However, the energy management and power regulation of the Photovoltaic/Hydrogen DC microgrid face challenges due to the intermittency of photovoltaic (PV) power generation and the randomness of load. In this paper, a distributed economic model predictive control (DEMPC) scheme is developed for a PV/Hydrogen DC microgrid, which integrates the energy management, economic optimization, and power regulation into one optimal control framework. Based on the developed distributed converter-based mathematical model, three local controllers are designed to achieve the economic targets of PV subsystem, alkaline electrolyzer subsystem, and proton exchange membrane fuel cell subsystem respectively, which cooperate with each other through the communication network to realize the power supply–demand balance, DC bus voltage stability, and economic optimization. A mixed integer nonlinear programming algorithm utilizing the finite converter switching states is embedded into the DEMPC to solve the non-convex local optimization problems efficiently. The effectiveness and superiority of the proposed DEMPC scheme are verified by simulations under varying irradiance and load conditions, indicating that the DEMPC can achieve a comparable overall dynamic economic performance with a significantly reduced computation burden and power oscillation, compared to the centralized economic model predictive control (CEMPC). •A DEMPC scheme is developed for a PV/Hydrogen DC microgrid.•An EMS is incorporated into the proposed DEMPC scheme.•An efficient algorithm is proposed to solve non-convex DEMPC optimization problem.•The DEMPC is validated by simulations under varying irradiance and load conditions.
The integration of hydrogen energy into a photovoltaic-dominated microgrid is now becoming a promising approach to improve the photoconversion efficiency and enhance the operating reliability. However, the energy management and power regulation of the Photovoltaic/Hydrogen DC microgrid face challenges due to the intermittency of photovoltaic (PV) power generation and the randomness of load. In this paper, a distributed economic model predictive control (DEMPC) scheme is developed for a PV/Hydrogen DC microgrid, which integrates the energy management, economic optimization, and power regulation into one optimal control framework. Based on the developed distributed converter-based mathematical model, three local controllers are designed to achieve the economic targets of PV subsystem, alkaline electrolyzer subsystem, and proton exchange membrane fuel cell subsystem respectively, which cooperate with each other through the communication network to realize the power supply–demand balance, DC bus voltage stability, and economic optimization. A mixed integer nonlinear programming algorithm utilizing the finite converter switching states is embedded into the DEMPC to solve the non-convex local optimization problems efficiently. The effectiveness and superiority of the proposed DEMPC scheme are verified by simulations under varying irradiance and load conditions, indicating that the DEMPC can achieve a comparable overall dynamic economic performance with a significantly reduced computation burden and power oscillation, compared to the centralized economic model predictive control (CEMPC).
ArticleNumber 119871
Author Liu, Xiangjie
Ma, Lele
Lee, Kwang Y.
Xu, Yuping
Kong, Xiaobing
Zhu, Zheng
Author_xml – sequence: 1
  givenname: Zheng
  orcidid: 0009-0004-5104-7578
  surname: Zhu
  fullname: Zhu, Zheng
  organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, Beijing, China
– sequence: 2
  givenname: Xiangjie
  orcidid: 0000-0002-9116-518X
  surname: Liu
  fullname: Liu, Xiangjie
  organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, Beijing, China
– sequence: 3
  givenname: Xiaobing
  surname: Kong
  fullname: Kong, Xiaobing
  email: kongxiaobing@ncepu.edu.cn
  organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, Beijing, China
– sequence: 4
  givenname: Lele
  surname: Ma
  fullname: Ma, Lele
  organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, Beijing, China
– sequence: 5
  givenname: Kwang Y.
  orcidid: 0000-0002-9965-9117
  surname: Lee
  fullname: Lee, Kwang Y.
  organization: Department of Electrical and Computer Engineering, Baylor University, Waco, 76798, TX, USA
– sequence: 6
  givenname: Yuping
  surname: Xu
  fullname: Xu, Yuping
  organization: The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, Beijing, China
BookMark eNqFkL1qIzEUhUVIYG0nb5Biym3G0ZXGI02KhcX7k4AhKZK0Qj93gsx45JVkQ94-MrPbpNigQgKd73DvNyfnYxiRkGugS6DQ3myXEcdylowyvgTopIAzMgMpupq2kp2TGe1aWkMj4QuZp7SlFFZSNDPy9Phyc_fmYnjFsfqxrnbelnf0rrJhzDEM1SH58bVyPuXozSGjq7B8hRKsdsHhUO0jOm-zP-I_5pJc9HpIePX3XpDnXz-f1nf15uH3_fr7pracd7lGIVCjcdrIfkVbujLQMG6M4L2QwHoGTjPTWuE6Ck3bdqwH5rQG3nMjjeQL8nXq3cfw54Apq51PFodBjxgOSXFY8ZYK3rESvZ2iZb2UIvbK-qyzPw2s_aCAqpNKtVWTSnVSqSaVBW4-wPvodzq-fYZ9mzAsDo4eo0rW42iLrog2Kxf8_wveAYckkwU
CitedBy_id crossref_primary_10_1155_er_5321698
crossref_primary_10_1002_cta_4392
crossref_primary_10_1016_j_ijhydene_2024_08_425
crossref_primary_10_1049_gtd2_70125
crossref_primary_10_1016_j_ijhydene_2024_11_195
crossref_primary_10_1016_j_renene_2024_121687
crossref_primary_10_1016_j_epsr_2025_112276
crossref_primary_10_1109_ACCESS_2025_3595057
crossref_primary_10_1016_j_renene_2025_122386
crossref_primary_10_1016_j_renene_2025_124396
crossref_primary_10_1051_e3sconf_202563801001
crossref_primary_10_1016_j_apenergy_2025_126418
crossref_primary_10_1007_s43069_025_00494_1
crossref_primary_10_1016_j_isatra_2025_06_029
crossref_primary_10_1016_j_renene_2024_120688
crossref_primary_10_1016_j_mex_2025_103220
crossref_primary_10_1016_j_rineng_2025_105479
crossref_primary_10_1016_j_apenergy_2024_124965
crossref_primary_10_3390_en17153814
crossref_primary_10_3390_math12131939
crossref_primary_10_1016_j_ijhydene_2025_150301
crossref_primary_10_1016_j_compeleceng_2025_110442
crossref_primary_10_1016_j_egyr_2024_08_069
crossref_primary_10_1016_j_energ_2025_100019
Cites_doi 10.1016/j.renene.2022.06.140
10.1109/TSMC.2019.2897646
10.1109/TIE.2006.878328
10.1109/TPEL.2011.2179672
10.1109/TSG.2015.2457910
10.1109/TCST.2013.2295737
10.1016/S0360-3199(02)00033-2
10.1016/j.rser.2020.110626
10.1016/j.renene.2021.09.048
10.1109/TSTE.2018.2873390
10.1016/j.jprocont.2018.11.003
10.1109/TIE.2017.2779412
10.1109/TSTE.2021.3066334
10.1109/TIA.2019.2921028
10.1109/TCST.2013.2248156
10.1016/j.apenergy.2022.119549
10.1016/j.apenergy.2021.118092
10.1016/j.solener.2017.02.017
10.1016/j.renene.2022.12.031
10.1016/j.apenergy.2023.121058
10.1016/j.ijhydene.2018.04.013
10.1016/j.renene.2021.12.011
10.1109/TPEL.2022.3159828
10.1109/TEC.2008.2011837
10.1016/j.apenergy.2020.115960
10.1109/TSTE.2019.2919499
10.1016/j.rser.2020.110422
10.1016/j.ijhydene.2019.05.097
10.1109/TSG.2016.2524688
10.1016/j.apenergy.2022.119050
10.1016/j.renene.2016.05.006
10.1016/j.conengprac.2018.09.025
10.1016/j.apenergy.2018.03.085
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2023.119871
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
ExternalDocumentID 10_1016_j_renene_2023_119871
S096014812301786X
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62073136; 61833011; 62203170
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2021YFE0190900
  funderid: http://dx.doi.org/10.13039/501100012166
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2023JC002; 2023YQ002
  funderid: http://dx.doi.org/10.13039/501100012226
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABMYL
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-e77eaebdab8f50605b1423bb73f7812f21da2b6c7d90146692f12daa13f3b8b83
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001166074400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1481
IngestDate Wed Oct 01 14:36:26 EDT 2025
Sat Nov 29 07:06:16 EST 2025
Tue Nov 18 22:33:02 EST 2025
Sat Mar 23 16:30:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Distributed economic model predictive control
Hydrogen generation
Fuel cell
Solar energy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-e77eaebdab8f50605b1423bb73f7812f21da2b6c7d90146692f12daa13f3b8b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0004-5104-7578
0000-0002-9116-518X
0000-0002-9965-9117
PQID 3153607392
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153607392
crossref_citationtrail_10_1016_j_renene_2023_119871
crossref_primary_10_1016_j_renene_2023_119871
elsevier_sciencedirect_doi_10_1016_j_renene_2023_119871
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Mo, Zhao (b3) 2023; 203
Kong, Yu, Cai (b14) 2019; 44
Çelik, Meral (b13) 2019; 82
Mutoh, Ohno, Inoue (b29) 2006; 53
Quevedo, Aguilera, Perez, Cortes, Lizana (b34) 2012; 27
Wang, Zhang, Bao (b28) 2019; 73
Hu, Shan, Yang, Parisio, Li, Amjady, Islam, Cheng, Guerrero, Rodríguez (b22) 2023
Jia, Li, Wang, Cham, Han (b32) 2009; 24
Zhao, Zhou, Gao, Ma, Qin (b33) 2017; 144
Li, Chen, Wu, Wang, Liu, Qi, Lu, Gao (b9) 2021; 137
Kong, Ma, Wang, Guo, Abdelbaky, Liu, Lee (b25) 2022; 181
Cai, Xiang, Wei (b30) 2018; 65
Hu, Xu, Cheng, Guerrero (b19) 2018; 221
Ulleberg (b31) 2003; 28
Liu, Fu, Qiu, Zhang, Li, Yang, Liu, Jiang (b18) 2023; 341
Trifkovic, Sheikhzadeh, Nigim, Daoutidis (b10) 2014; 22
Kong, Liu, Ma, Lee (b11) 2019; 49
Han, Chen, Li, Yang, Zare, Zheng (b7) 2019; 44
Dou, Yue, Guerrero, Xie, Hu (b16) 2017; 8
Tobajas, Garcia-Torres, Roncero-Sánchez, Vázquez, Bellatreche, Nieto (b23) 2022; 306
Jia, Dong, Sun, Chen (b26) 2020; 11
Xing, Xu, Guo, Wu, Liu (b17) 2021; 12
Hu, Shan, Cheng, Islam (b12) 2022; 37
Shan, Hu, Chan, Fu, Guerrero (b20) 2019; 10
Li, Gao, Li, Zhou (b1) 2022; 185
Lotfi, Khodaei (b6) 2017; 8
K/bidi, Damour, Grondin, Hilairet, Benne (b15) 2022; 323
Zhang, Bao, Wang, Zheng, Skyllas-Kazacos (b27) 2017; 100
Armghan, Yang, Ali, Armghan, Alanazi (b2) 2022; 316
Hu, Shan, Guerrero, Ioinovici, Chan, Rodriguez (b4) 2021; 136
Mahmud, Roy, Saha, Haque, Pota (b8) 2019; 55
Grover, Verma, Bhatti (b5) 2022; 196
Clarke, Brear, Manzie (b24) 2020; 280
Parisio, Rikos, Glielmo (b21) 2014; 22
Hu (10.1016/j.renene.2023.119871_b22) 2023
Jia (10.1016/j.renene.2023.119871_b32) 2009; 24
Kong (10.1016/j.renene.2023.119871_b14) 2019; 44
Li (10.1016/j.renene.2023.119871_b1) 2022; 185
Lotfi (10.1016/j.renene.2023.119871_b6) 2017; 8
Parisio (10.1016/j.renene.2023.119871_b21) 2014; 22
Shan (10.1016/j.renene.2023.119871_b20) 2019; 10
Tobajas (10.1016/j.renene.2023.119871_b23) 2022; 306
Jia (10.1016/j.renene.2023.119871_b26) 2020; 11
Hu (10.1016/j.renene.2023.119871_b19) 2018; 221
Clarke (10.1016/j.renene.2023.119871_b24) 2020; 280
Trifkovic (10.1016/j.renene.2023.119871_b10) 2014; 22
Quevedo (10.1016/j.renene.2023.119871_b34) 2012; 27
Mutoh (10.1016/j.renene.2023.119871_b29) 2006; 53
Kong (10.1016/j.renene.2023.119871_b11) 2019; 49
Zhang (10.1016/j.renene.2023.119871_b27) 2017; 100
Li (10.1016/j.renene.2023.119871_b9) 2021; 137
Liu (10.1016/j.renene.2023.119871_b18) 2023; 341
Kong (10.1016/j.renene.2023.119871_b25) 2022; 181
Dou (10.1016/j.renene.2023.119871_b16) 2017; 8
Hu (10.1016/j.renene.2023.119871_b4) 2021; 136
Liu (10.1016/j.renene.2023.119871_b3) 2023; 203
Zhao (10.1016/j.renene.2023.119871_b33) 2017; 144
Armghan (10.1016/j.renene.2023.119871_b2) 2022; 316
Han (10.1016/j.renene.2023.119871_b7) 2019; 44
Xing (10.1016/j.renene.2023.119871_b17) 2021; 12
Cai (10.1016/j.renene.2023.119871_b30) 2018; 65
Wang (10.1016/j.renene.2023.119871_b28) 2019; 73
Hu (10.1016/j.renene.2023.119871_b12) 2022; 37
K/bidi (10.1016/j.renene.2023.119871_b15) 2022; 323
Mahmud (10.1016/j.renene.2023.119871_b8) 2019; 55
Ulleberg (10.1016/j.renene.2023.119871_b31) 2003; 28
Grover (10.1016/j.renene.2023.119871_b5) 2022; 196
Çelik (10.1016/j.renene.2023.119871_b13) 2019; 82
References_xml – volume: 49
  start-page: 1570
  year: 2019
  end-page: 1581
  ident: b11
  article-title: Hierarchical distributed model predictive control of standalone wind/solar/battery power system
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 341
  year: 2023
  ident: b18
  article-title: Charging private electric vehicles solely by photovoltaics: A battery-free direct-current microgrid with distributed charging strategy
  publication-title: Appl. Energy
– volume: 22
  start-page: 1813
  year: 2014
  end-page: 1827
  ident: b21
  article-title: A model predictive control approach to microgrid operation optimization
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 28
  start-page: 21
  year: 2003
  end-page: 33
  ident: b31
  article-title: Modeling of advanced alkaline electrolyzers: A system simulation approach
  publication-title: Int. J. Hydrogen Energy
– volume: 24
  start-page: 283
  year: 2009
  end-page: 291
  ident: b32
  article-title: Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell
  publication-title: IEEE Trans. Energy Convers.
– volume: 323
  year: 2022
  ident: b15
  article-title: Multistage power and energy management strategy for hybrid microgrid with photovoltaic production and hydrogen storage
  publication-title: Appl. Energy
– volume: 203
  start-page: 102
  year: 2023
  end-page: 112
  ident: b3
  article-title: Two-level optimal scheduling method for a renewable microgrid considering charging performances of heat pump with thermal storages
  publication-title: Renew. Energy
– volume: 55
  start-page: 5343
  year: 2019
  end-page: 5352
  ident: b8
  article-title: Robust nonlinear adaptive feedback linearizing decentralized controller design for islanded DC microgrids
  publication-title: IEEE Trans. Ind. Appl.
– volume: 37
  start-page: 9907
  year: 2022
  end-page: 9922
  ident: b12
  article-title: Overview of power converter control in microgrids—Challenges, advances, and future trends
  publication-title: IEEE Trans. Power Electron.
– volume: 196
  start-page: 883
  year: 2022
  end-page: 900
  ident: b5
  article-title: DOBC-based frequency & voltage regulation strategy for PV-diesel hybrid microgrid during islanding conditions
  publication-title: Renew. Energy
– volume: 185
  start-page: 86
  year: 2022
  end-page: 95
  ident: b1
  article-title: Effect of the temperature difference between land and lake on photovoltaic power generation
  publication-title: Renew. Energy
– volume: 181
  start-page: 581
  year: 2022
  end-page: 591
  ident: b25
  article-title: Large-scale wind farm control using distributed economic model predictive scheme
  publication-title: Renew. Energy
– volume: 27
  start-page: 3128
  year: 2012
  end-page: 3136
  ident: b34
  article-title: Model predictive control of an AFE rectifier with dynamic references
  publication-title: IEEE Trans. Power Electron.
– volume: 316
  year: 2022
  ident: b2
  article-title: Quick reaching law based global terminal sliding mode control for wind/hydrogen/battery DC microgrid
  publication-title: Appl. Energy
– volume: 144
  start-page: 767
  year: 2017
  end-page: 779
  ident: b33
  article-title: A novel global maximum power point tracking strategy (GMPPT) based on optimal current control for photovoltaic systems adaptive to variable environmental and partial shading conditions
  publication-title: Sol. Energy
– volume: 22
  start-page: 169
  year: 2014
  end-page: 179
  ident: b10
  article-title: Modeling and control of a renewable hybrid energy system with hydrogen storage
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 44
  start-page: 25129
  year: 2019
  end-page: 25144
  ident: b14
  article-title: Modeling, control and simulation of a photovoltaic /hydrogen/ supercapacitor hybrid power generation system for grid-connected applications
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 2370
  year: 2017
  end-page: 2381
  ident: b16
  article-title: Multiagent system-based distributed coordinated control for radial DC microgrid considering transmission time delays
  publication-title: IEEE Trans. Smart Grid
– volume: 306
  year: 2022
  ident: b23
  article-title: Resilience-oriented schedule of microgrids with hybrid energy storage system using model predictive control
  publication-title: Appl. Energy
– volume: 53
  start-page: 1055
  year: 2006
  end-page: 1065
  ident: b29
  article-title: A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems
  publication-title: IEEE Trans. Ind. Electron.
– volume: 100
  start-page: 18
  year: 2017
  end-page: 34
  ident: b27
  article-title: Dissipativity based distributed economic model predictive control for residential microgrids with renewable energy generation and battery energy storage
  publication-title: Renew. Energy
– volume: 10
  start-page: 1823
  year: 2019
  end-page: 1833
  ident: b20
  article-title: Model predictive control of bidirectional DC–DC converters and AC/DC interlinking converters—A new control method for PV-Wind-Battery microgrids
  publication-title: IEEE Trans. Sustain. Energy
– volume: 136
  year: 2021
  ident: b4
  article-title: Model predictive control of microgrids – An overview
  publication-title: Renew. Sustain. Energy Rev.
– volume: 137
  year: 2021
  ident: b9
  article-title: How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China
  publication-title: Renew. Sustain. Energy Rev.
– volume: 221
  start-page: 195
  year: 2018
  end-page: 203
  ident: b19
  article-title: A model predictive control strategy of PV-Battery microgrid under variable power generations and load conditions
  publication-title: Appl. Energy
– volume: 12
  start-page: 1801
  year: 2021
  end-page: 1810
  ident: b17
  article-title: Distributed secondary control for DC microgrid with event-triggered signal transmissions
  publication-title: IEEE Trans. Sustain. Energy
– volume: 280
  year: 2020
  ident: b24
  article-title: Control of an isolated microgrid using hierarchical economic model predictive control
  publication-title: Appl. Energy
– volume: 65
  start-page: 5601
  year: 2018
  end-page: 5610
  ident: b30
  article-title: Decentralized coordination control of multiple photovoltaic sources for DC bus voltage regulating and power sharing
  publication-title: IEEE Trans. Ind. Electron.
– volume: 44
  start-page: 19395
  year: 2019
  end-page: 19404
  ident: b7
  article-title: Two-level energy management strategy for PV-Fuel cell-battery-based DC microgrid
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 296
  year: 2017
  end-page: 304
  ident: b6
  article-title: AC versus DC microgrid planning
  publication-title: IEEE Trans. Smart Grid
– volume: 82
  start-page: 72
  year: 2019
  end-page: 85
  ident: b13
  article-title: Current control based power management strategy for distributed power generation system
  publication-title: Control Eng. Pract.
– start-page: 1
  year: 2023
  ident: b22
  article-title: Economic model predictive control for microgrid optimization: A review
  publication-title: IEEE Trans. Smart Grid
– volume: 11
  start-page: 1089
  year: 2020
  end-page: 1099
  ident: b26
  article-title: Distributed economic model predictive control for a wind–photovoltaic–battery microgrid power system
  publication-title: IEEE Trans. Sustain. Energy
– volume: 73
  start-page: 9
  year: 2019
  end-page: 18
  ident: b28
  article-title: A self-interested distributed economic model predictive control approach to battery energy storage networks
  publication-title: J. Process Control
– volume: 196
  start-page: 883
  year: 2022
  ident: 10.1016/j.renene.2023.119871_b5
  article-title: DOBC-based frequency & voltage regulation strategy for PV-diesel hybrid microgrid during islanding conditions
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.06.140
– volume: 49
  start-page: 1570
  issue: 8
  year: 2019
  ident: 10.1016/j.renene.2023.119871_b11
  article-title: Hierarchical distributed model predictive control of standalone wind/solar/battery power system
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2019.2897646
– volume: 53
  start-page: 1055
  issue: 4
  year: 2006
  ident: 10.1016/j.renene.2023.119871_b29
  article-title: A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2006.878328
– volume: 27
  start-page: 3128
  issue: 7
  year: 2012
  ident: 10.1016/j.renene.2023.119871_b34
  article-title: Model predictive control of an AFE rectifier with dynamic references
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2011.2179672
– volume: 8
  start-page: 296
  issue: 1
  year: 2017
  ident: 10.1016/j.renene.2023.119871_b6
  article-title: AC versus DC microgrid planning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2457910
– volume: 22
  start-page: 1813
  issue: 5
  year: 2014
  ident: 10.1016/j.renene.2023.119871_b21
  article-title: A model predictive control approach to microgrid operation optimization
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2013.2295737
– volume: 28
  start-page: 21
  issue: 1
  year: 2003
  ident: 10.1016/j.renene.2023.119871_b31
  article-title: Modeling of advanced alkaline electrolyzers: A system simulation approach
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(02)00033-2
– volume: 137
  year: 2021
  ident: 10.1016/j.renene.2023.119871_b9
  article-title: How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110626
– volume: 181
  start-page: 581
  year: 2022
  ident: 10.1016/j.renene.2023.119871_b25
  article-title: Large-scale wind farm control using distributed economic model predictive scheme
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.09.048
– volume: 10
  start-page: 1823
  issue: 4
  year: 2019
  ident: 10.1016/j.renene.2023.119871_b20
  article-title: Model predictive control of bidirectional DC–DC converters and AC/DC interlinking converters—A new control method for PV-Wind-Battery microgrids
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2873390
– volume: 73
  start-page: 9
  year: 2019
  ident: 10.1016/j.renene.2023.119871_b28
  article-title: A self-interested distributed economic model predictive control approach to battery energy storage networks
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.11.003
– volume: 65
  start-page: 5601
  issue: 7
  year: 2018
  ident: 10.1016/j.renene.2023.119871_b30
  article-title: Decentralized coordination control of multiple photovoltaic sources for DC bus voltage regulating and power sharing
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2779412
– volume: 12
  start-page: 1801
  issue: 3
  year: 2021
  ident: 10.1016/j.renene.2023.119871_b17
  article-title: Distributed secondary control for DC microgrid with event-triggered signal transmissions
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2021.3066334
– volume: 55
  start-page: 5343
  issue: 5
  year: 2019
  ident: 10.1016/j.renene.2023.119871_b8
  article-title: Robust nonlinear adaptive feedback linearizing decentralized controller design for islanded DC microgrids
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2019.2921028
– volume: 22
  start-page: 169
  issue: 1
  year: 2014
  ident: 10.1016/j.renene.2023.119871_b10
  article-title: Modeling and control of a renewable hybrid energy system with hydrogen storage
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2013.2248156
– volume: 323
  year: 2022
  ident: 10.1016/j.renene.2023.119871_b15
  article-title: Multistage power and energy management strategy for hybrid microgrid with photovoltaic production and hydrogen storage
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119549
– volume: 306
  year: 2022
  ident: 10.1016/j.renene.2023.119871_b23
  article-title: Resilience-oriented schedule of microgrids with hybrid energy storage system using model predictive control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118092
– start-page: 1
  year: 2023
  ident: 10.1016/j.renene.2023.119871_b22
  article-title: Economic model predictive control for microgrid optimization: A review
  publication-title: IEEE Trans. Smart Grid
– volume: 144
  start-page: 767
  year: 2017
  ident: 10.1016/j.renene.2023.119871_b33
  article-title: A novel global maximum power point tracking strategy (GMPPT) based on optimal current control for photovoltaic systems adaptive to variable environmental and partial shading conditions
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.02.017
– volume: 203
  start-page: 102
  year: 2023
  ident: 10.1016/j.renene.2023.119871_b3
  article-title: Two-level optimal scheduling method for a renewable microgrid considering charging performances of heat pump with thermal storages
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.12.031
– volume: 341
  year: 2023
  ident: 10.1016/j.renene.2023.119871_b18
  article-title: Charging private electric vehicles solely by photovoltaics: A battery-free direct-current microgrid with distributed charging strategy
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121058
– volume: 44
  start-page: 19395
  issue: 35
  year: 2019
  ident: 10.1016/j.renene.2023.119871_b7
  article-title: Two-level energy management strategy for PV-Fuel cell-battery-based DC microgrid
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.04.013
– volume: 185
  start-page: 86
  year: 2022
  ident: 10.1016/j.renene.2023.119871_b1
  article-title: Effect of the temperature difference between land and lake on photovoltaic power generation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.12.011
– volume: 37
  start-page: 9907
  issue: 8
  year: 2022
  ident: 10.1016/j.renene.2023.119871_b12
  article-title: Overview of power converter control in microgrids—Challenges, advances, and future trends
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2022.3159828
– volume: 24
  start-page: 283
  issue: 1
  year: 2009
  ident: 10.1016/j.renene.2023.119871_b32
  article-title: Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2008.2011837
– volume: 280
  year: 2020
  ident: 10.1016/j.renene.2023.119871_b24
  article-title: Control of an isolated microgrid using hierarchical economic model predictive control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115960
– volume: 11
  start-page: 1089
  issue: 2
  year: 2020
  ident: 10.1016/j.renene.2023.119871_b26
  article-title: Distributed economic model predictive control for a wind–photovoltaic–battery microgrid power system
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2019.2919499
– volume: 136
  year: 2021
  ident: 10.1016/j.renene.2023.119871_b4
  article-title: Model predictive control of microgrids – An overview
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110422
– volume: 44
  start-page: 25129
  issue: 46
  year: 2019
  ident: 10.1016/j.renene.2023.119871_b14
  article-title: Modeling, control and simulation of a photovoltaic /hydrogen/ supercapacitor hybrid power generation system for grid-connected applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.097
– volume: 8
  start-page: 2370
  issue: 5
  year: 2017
  ident: 10.1016/j.renene.2023.119871_b16
  article-title: Multiagent system-based distributed coordinated control for radial DC microgrid considering transmission time delays
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2524688
– volume: 316
  year: 2022
  ident: 10.1016/j.renene.2023.119871_b2
  article-title: Quick reaching law based global terminal sliding mode control for wind/hydrogen/battery DC microgrid
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119050
– volume: 100
  start-page: 18
  year: 2017
  ident: 10.1016/j.renene.2023.119871_b27
  article-title: Dissipativity based distributed economic model predictive control for residential microgrids with renewable energy generation and battery energy storage
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.05.006
– volume: 82
  start-page: 72
  year: 2019
  ident: 10.1016/j.renene.2023.119871_b13
  article-title: Current control based power management strategy for distributed power generation system
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2018.09.025
– volume: 221
  start-page: 195
  year: 2018
  ident: 10.1016/j.renene.2023.119871_b19
  article-title: A model predictive control strategy of PV-Battery microgrid under variable power generations and load conditions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.03.085
SSID ssj0015874
Score 2.545371
Snippet The integration of hydrogen energy into a photovoltaic-dominated microgrid is now becoming a promising approach to improve the photoconversion efficiency and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119871
SubjectTerms algorithms
Distributed economic model predictive control
econometric models
economic performance
electric potential difference
Fuel cell
fuel cells
hydrogen
Hydrogen generation
light intensity
mathematical models
power generation
renewable energy sources
Solar energy
Title PV/Hydrogen DC microgrid control using distributed economic model predictive control
URI https://dx.doi.org/10.1016/j.renene.2023.119871
https://www.proquest.com/docview/3153607392
Volume 222
WOSCitedRecordID wos001166074400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELag5QEeEKcol4zEWxWo7U3sPFbbogKlWsGyylsUx07JCrLVHlD-PTM-sgsVKiDxEkWWj92ZL-PxeA5CntcaS-JwnaRqzyYDxkxS5ZVJGGdasbquffjY5FienKiiyEfBlXfhygnIrlPn5_nZf2U1tAGzMXT2L9jdTwoN8A5MhyewHZ5_xPjRBMYefTfzGXTZPRjufkGfu9N5a3q_9JUzEBjMmYvlrkDntCE-2VfGwcwBpnWSMI7ZVGLfg3z85kKurIscXBufV-6u45MN2yE6-rSurQAUnk7bHkVvgycwtGMAWt_9ndNlj234S8EcwQfRgznayGKczNopyRkbs70EDl6-n_WiVknMf6B-ksXcBylfkOvexDB9gWk-O8xuygUI-1xJtt7Heu_CD7gcrgbHKyZVVlwl21ymOQi97f3Xh8Wb_popVT5Nd_x5MbbSOQBeXOt3ussvu7hTTca3yM1wpqD7Hgu3yRXb3SE3NjJN3iXj0eRlxAQ9GNIeEzTwlzpM0A1M0IgJ6jBB15iIY-6Rj68Ox8OjJBTUSGoh8mVipbSV1abSqsHEkilaAIXWUjQSqNVwZiqus1oavFzPspw3jJuqYqIRWmkl7pOtbtbZB4Qam4N6BZpOlQpMyo_E1tIaBXMMZFPvEBFJVdYh2zwWPflcRrfCaekJXCKBS0_gHZL0o858tpVL-svIhTJojF4TLAE4l4x8FplWgkDFW7Kqs7PVohSgA2R4f80f_vPsj8j19bfxmGwt5yv7hFyrvy7bxfxpQOEPb4ufxg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PV%2FHydrogen+DC+microgrid+control+using+distributed+economic+model+predictive+control&rft.jtitle=Renewable+energy&rft.au=Zhu%2C+Zheng&rft.au=Liu%2C+Xiangjie&rft.au=Kong%2C+Xiaobing&rft.au=Ma%2C+Lele&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=222&rft_id=info:doi/10.1016%2Fj.renene.2023.119871&rft.externalDocID=S096014812301786X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon